Università degli Studi di Cagliari

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Università degli Studi di Cagliari"

Transcript

1 Uiversità degli Studi di Cagliari Facoltà di Igegeria Corso di Laurea Specialistica i Igegeria per l Ambiete ed il Territorio Approssimazioe di Fuzioi co l ausilio di MATLAB. Elaborato di Calcolo Numerico Docete: Prof.Giuseppe RODRIGUEZ Studete: Alessadro MAZZELLA Ao Accademico

2 Idice. Itroduzioe..3. Iterpolazioe di ua fuzioe4 3. Iterpolazioe Poliomiale Poliomio Iterpolate ella Forma di Lagrage Implemetazioe MATLAB 7 Esempio 8 3. Errore di Iterpolazioe 3.. Implemetazioe MATLAB. Esempio Approssimazioe el Seso dei Miimi Quadrati. 5 Esempio. 7 Esempio

3 . Itroduzioe Molto spesso i campo igegeristico ci si può trovare a dover risolvere problemi di approssimazioe di fuzioe, ricoducibili alle segueti tipologie pricipali:. Della fuzioe f si cooscoo solamete i valori i u isieme discreto di puti i P ( i, yi co i =,,,, tali che y i = f ( i proveieti, ad esempio, da ua serie di aalisi sperimetali. I questo fragete può essere ecessario disporre di ua approssimazioe della fuzioe f i maiera tale da poter stimare il suo valore i u puto di coordiate qualsiasi ( X, Y co X i, oppure i valori di ua sua derivata di ordie k ( f k. Si possoo presetare vari casi: a il umero di dati dispoibili è piccolo, come ello studio di alcui feomei fisici o biologici; b il umero di dati dispoibili è molto elevato, come di solito accade elle aalisi statistiche; c i valori i f ( i y = possoo essere affetti da errori di misura limitati e co ua distribuzioe abbastaza regolare, come accade di solito per i dati rilevati i laboratorio; d i valori i f ( i y = possoo essere affetti da errori di misura molto elevati e seza alcua distribuzioe regolare, come può accadere per esempio per u o corretto fuzioameto degli strumeti di laboratorio o quado, i ua idagie ecoomica o demografica, i dati vegoo rilevati i modo errato.. La fuzioe f possiede alcue proprietà di cotiuità e derivabilità che permettoo di scrivere lo sviluppo di Taylor, oppure possiede delle proprietà più specifiche, come ad esempio periodicità o simmetria, che possoo essere opportuamete sfruttate per costruire ua fuzioe g più facilmete calcolabile della stessa f. Le teciche per la risoluzioe di questi tipi di problemi soo pricipalmete due: l iterpolazioe: si determia quella fuzioe, tra ua fissata famiglia di fuzioi, che i opportui puti, detti odi, assuma gli stessi valori assuti dalla fuzioe data; l approssimazioe: si determia quella fuzioe, tra ua fissata famiglia di fuzioi, la cui distaza dalla fuzioe da approssimare risulti la miima possibile. Nel presete studio soo stati sviluppati e cofrotati alcui dei metodi di iterpolazioe poliomiale e di approssimazioe el seso dei miimi quadrati attraverso l ausilio del software MATLAB

4 . Iterpolazioe di ua fuzioe Cosideriamo + puti i P di coordiate ( iterpolate Φ passate per tutti gli i puti P i, cioè tale che i, y i co i =,,,,. Vogliamo costruire ua fuzioe ( i = yi Φ per i =,,,, Ipotizzado che i dati provegao da ua fuzioe cotiua è possibile scegliere + fuzioi cotiue Φ, Φ, Φ,, combiazioe lieare Φ di base e approssimare la fuzioe Φ = a Φ = f data mediate ua loro opportua Per calcolare i coefficieti della combiazioe lieare di cui sopra è sufficiete imporre le + codizioi di iterpolazioe = ( i yi a Φ = per i =,,,, Φ a = ovvero risolvere il sistema lieare y. Tale sistema lieare ammetterà ua e ua sola soluzioe se e solo se la matrice Φ è o sigolare. Pertato: la fuzioe che iterpola i dati esiste ed è uica se e solo se il determiate della matrice Φ (detto determiate di Haar è diverso da zero. Φ = Φ Φ Φ ( Φ( Φ ( ( Φ ( Φ ( ( Φ ( Φ ( - 4 -

5 3. Iterpolazioe Poliomiale Le fuzioi utilizzate più di frequete come base per l iterpolazioe soo i poliomi. Tale scelta è giustificata dalla loro attitudie ad approssimare eccelletemete comportameti regolari. Il problema dell approssimazioe poliomiale viee affrotato costruedo, a partire dagli + puti P (, y co i,,,, i i i =, il poliomio P di grado espresso ella forma P = = Per quato scritto precedetemete, il sistema lieare che cosete di determiare i coefficieti del poliomio iterpolate sarà del tipo dove: ( y, y, y y a X a = y y =,, è il vettore delle ordiate X = Poiché la codizioe di uisolveza si traduce i è la matrice di Vadermode costruita a partire dai odi { i } det ( X = ( i i>, questo implica che il poliomio iterpolate esiste ed è uico se e solo se i odi di iterpolazioe soo tutti distiti. Tuttavia questo approccio o è umericamete coveiete per le segueti motivazioi:. la matrice X tede ad essere estremamete mal codizioata quado i odi { i } soo vicii; 3. il costo computazioale per la risoluzioe dell iterpolazioe è molto elevato ( o ; 3. la rappresetazioe caoica è istabile, cioè piccole perturbazioi ei coefficieti a possoo produrre gradi variazioi sui valori di P. Per ovviare a questi icoveieti, esistoo degli algoritmi che permettoo di rappresetare i altra forma il poliomio P

6 3. Poliomio Iterpolate ella Forma di Lagrage La forma di Lagrage è ua rappresetazioe dell uico poliomio iterpolate P i ua base, diversa da quella caoica {,,,, } (umericamete o coveiete per le motivazioi esposte precedetemete e costituita dai Poliomi caratteristici di Lagrage così defiiti: i geerale: ( ( ( L = ( ( ( ( ( ( L = ( ( ( M ( ( ( L = ( ( ( L = k k = k k È possibile osservare che ciascu poliomio caratteristico di Lagrage L è u poliomio di grado, co le ascisse di iterpolazioe distite i, che verifica la codizioe di iterpolazioe: L ( i = δ i = i = i cioè il valore del geerico poliomio di Lagrage L calcolato i u puto i vale se i, metre vale se viee calcolato i u puto i. Il poliomio di Lagrage assume, quidi, la forma ( i y L ( i = y i yi = = P = δ = per i =,,,, È evidete che ache i questo caso, il calcolo del poliomio iterpolate di Lagrage L può essere istabile quado due odi soo molto vicii tra loro poiché, i tal caso, almeo uo dei fattori a deomiatore risulterebbe prossimo allo zero

7 3.. Implemetazioe MATLAB La valutazioe del Poliomio Iterpolate di Lagrage può essere ricavata i MATLAB mediate poche e semplici righe di comado: la fuzioe ac_itlagr.m implemeta tale algoritmo, prededo i igresso i puti di iterpolazioe coteuti ei vettori i e yi e i odi di valutazioe del poliomio coteuti i. % ac_itlagr.m = legth(i; m = legth(; 3 y = zeros(m,; 4 for = :m 5 y( = ; 6 for k = : 7 space = [:k-, k+:]; 8 L = prod(( - i(space/prod(i(k - i(space; 9 y( = y( + yi(k * L; ed ed I riferimeto al listato precedete: le righe ( e ( iizializzao i cotatori m ed ecessari per l esecuzioe della sommatoria e della produttoria per il calcolo dei valori umerici dei poliomi caratteristici di Lagrage; la riga (3 iizializza il vettore y, el quale verrao memorizzati le ordiate iterpolate ei odi ; la riga (8 calcola, step dopo step, il valore del Poliomio Caratteristico di Lagrage ecessario alla riga successiva per il calcolo della -esima ordiata iterpolata; la riga (9 calcola, step dopo step, il valore dell ordiata iterpolata el -esimo odo di iterpolazioe memorizzato el vettore e lo memorizza ella posizioe -esima del vettore y

8 Esempio.5 y=cos( odi equispaziati poliomio iterpolate Figura - Iterpolazioe co Poliomio di Lagrage di y=cos( [4 odi di iterpolazioe]..5 y=cos( odi equispaziati poliomio iterpolate Figura - Iterpolazioe co Poliomio di Lagrage di y=cos( [8 odi di iterpolazioe] Erroeamete si potrebbe cocludere che al crescere del grado, il poliomio P si avvicii idefiitamete alla fuzioe f. Tuttavia questo o è vero i geerale. Esiste, ifatti, il classico - 8 -

9 cotroesempio di Ruge (Carle Ruge, : per la fuzioe ( f = il poliomio + iterpolatore, all aumetare del grado (e quidi dei puti i comue co f, preseta u comportameto patologico, e aziché avviciarsi a f se e allotaa idefiitamete, come mostrato dai grafici segueti..5 f( odi equispaziati poliomio iterpolate (= Figura 3 - Iterpolazioe co Poliomio di Lagrage di y= + [8 odi di iterpolazioe].5 f( odi equispaziati poliomio iterpolate (= Figura 4 - Iterpolazioe co Poliomio di Lagrage di y= + [ odi di iterpolazioe] - 9 -

10 3. Errore di Iterpolazioe Alla luce di quato emerso ei precedeti paragrafi, risulta evidete l importaza di valutare l errore di iterpolazioe ovvero la distaza tra la fuzioe f iterpolada e il poliomio iterpolatore puti i. P ei + Data ua fuzioe f derivabile parecchie volte (cioè f C [ a, b] e dato il poliomio iterpola P che f sulle ascisse {,,, }, è possibile dimostrare che per ogi esiste u puto apparteete al più piccolo itervallo che cotiee i puti {,,, } defiita come:, tale che la fuzioe errore è E = f P = f ( + ( ξ k ( +! ω Tale teorema implica ecessariamete due aspetti fodametali: la quatità f ( + ( ξ essedo la fuzioe di classe la preseza del termie iterpolazioe. k dipede dalla fuzioe f ed è certamete maggiorabile co ua costate, + C ; ω implica che la disposizioe dei odi iflueza l etità dell errore di Richiamiamo a questo puto tre risultati fodametali della teoria dell approssimazioe: - qualsiasi sia la distribuzioe dei odi esiste sempre almeo ua fuzioe cotiua per cui l errore tede all ifiito (Teorema di Faber. Perciò approssimado ua fuzioe co u poliomio può accadere che, pur aumetado i puti di iterpolazioe (e quidi il grado del poliomio, la distaza tra quest ultimo e la fuzioe o vada a zero; - scelta ua fuzioe cotiua esiste sempre ua distribuzioe di odi tale che madi l errore di iterpolazioe a zero; - se la fuzioe oltre ad essere cotiua è derivabile almeo ua volta e vegoo scelti come odi gli zeri del poliomio di Chebychev: k + π k = cos co k =,,,, + allora l errore di iterpolazioe tede a zero (Teorema di Berstei.. - -

11 Poiché i odi di Chebychev foriscoo la soluzioe del problema di miimizzazioe dell errore ell itervallo [, + ], per otteere la disposizioe di tali odi su di u geerico itervallo [ b] ecessario applicare la trasformazioe: a, è t k b a = k b + a - -

12 3.. Implemetazioe MATLAB La valutazioe dei Nodi di Chebychev può essere effettuata i MATLAB mediate la fuzioe ac_chebychev.m. % ac_chebychev.m k=legth(i; =zeros(,k; 3 % calcolo degli zeri del poliomio di Chebychev di grado k 4 for i=:k 5 (i=cos((((*i+/(k*(pi/; 6 ed 7 % calcolo i odi ell'itervallo [a,b] 8 for i=:k 9 t(i=((b-a/*(i-((a+b/; ed I riferimeto al listato precedete: la riga ( iizializza il cotatore k ecessario per il calcolo degli zeri del poliomio di Chebychev; la riga ( iizializza il vettore el quale verrao memorizzate le ascisse dei odi di Chebychev; le righe (4, (5 e (6 soo u loop per il calcolo dell i-esimo zero del poliomio di Chebychev; le righe (8, (9 e ( soo u loop per il calcolo del valore dell ascissa dell i-esimo odo di Chebychev, teuto coto che o soo disposti ell itervallo [-,] besì i u geerico itervallo [a,b]. - -

13 Esempio Cosideriamo uovamete la fuzioe ( el caso di odi equispaziati e el caso di odi di Chebychev. f = e valutiamo l adameto dell errore di iterpolazioe +.5 f( odi equispaziati poliomio iterpolate (odi equispaziati odi di chebychev Figura 4 Iterpolazioe di y= + [ odi equispaziati]. f( odi equispaziati odi di chebychev poliomio iterpolate (odi Chebychev Figura 5 - Iterpolazioe di y= + [ odi di Chebychev] - 3 -

14 -3 residuals poliomio iterpolate (odi equispaziati Figura 6 Errore di iterpolazioe [odi equispaziati] residuals poliomio iterpolate (odi di Chebychev Figura 7 Errore di iterpolazioe [odi di Chebychev] - 4 -

15 4. Approssimazioe el Seso dei Miimi Quadrati U problema di approssimazioe coivolge geeralmete casi i cui si posseggoo molti puti più o meo affetti da errori. I tal caso è scosigliabile affrotare u iterpolazioe dei dati dal mometo che è ota la preseza di forti errori sperimetali e la curva di iterpolazioe oscillerebbe per passare i tutti i puti. Ioltre calcolare il poliomio di migliore approssimazioe cosisterebbe el determiare quel poliomio P di grado che miimizzi ua orma dell errore, cioè mi P f p Poiché siamo i uo spazio a dimesioe ifiita, le orme o soo tutte equivaleti, pertato ua scelta razioale è quella di cosiderare la orma. Per le fuzioi essa è defiita come Siao {,,, } le ascisse degli f. Fissato u umero aturale m come: Se b ( ( ( f P = f P d a m puti per i quali soo oti i valori { y y,, }, y della fuzioe, per ogi P si cosidera la orma discreta defiita f P m ( ( = P i f i i= = m la soluzioe coicide co la soluzioe del poliomio iterpolate se ivece m > si ottiee la migliore approssimazioe el seso dei miimi quadrati rispetto alla orma scelta. Utilizzado la base caoica {,,,, } si ottiee: P ( i = a i = ( X a i = co i =,,,, dove: X = m m m è la matrice di Vadermode di dimesioe ( + ( + m - 5 -

16 Di cosegueza si ha: f P = m [ ( Xa i yi ] i= = X a y ovvero: mi P f P = mi + a R X a y Il problema risulta essere equivalete alla risoluzioe, el seso dei miimi quadrati, del sistema sovradetermiato lieari. X a = y che può essere risolto co uo dei metodi umerici per la risoluzioe dei sistemi - 6 -

17 Esempio Per la sperimetazioe umerica si è cosiderata la fuzioe trigoometrica f si( u vettore y di dati affetti da errore co distribuzioe gaussiaa: =. Si è ipotizzato.5 f(=si( (i,yi Figura 8 Grafico della fuzioe y= si [ π, +π ] Attraverso alcui semplici passaggi si è proceduto alla costruzioe della matrice di Vadermode, alla risoluzioe del sistema lieare sovradetermiato X a = y ed alla defiizioe del poliomio iterpolate f(=si( (i,yi iterpolate el seso dei miimi quadrati Figura 9 Poliomio Iterpolate ai Miimi Quadrati - 7 -

18 Esempio =. Si è + Nel secodo esempio umerico è stato cosiderato il caso della la fuzioe di Ruge ( ipotizzato u vettore y di dati affetti da errore gaussiao: f. f( (i,yi Figura Grafico della fuzioe y= f = [ 5, + 5] I risultati della risoluzioe del problema di approssimazioe el seso dei miimi quadrati soo mostrati ella figura seguete:. f( th degree (i,yi Figura Poliomio Iterpolate ai Miimi Quadrati - 8 -

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas ESAME DI MATEMATICA I Modulo di Aalisi Matematica Corso Ao Accademico 8/9 Docete: R Argiolas Cogome Matricola Febbraio 9 ore 9 Aula C Nome Corso voto Esercizio Assegata la fuzioe f ( arcta a Si determii

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi 2/II

Politecnico di Milano Ingegneria Industriale Analisi 2/II Politecico di Milao Igegeria Idustriale Aalisi /II Test di autovalutazioe. Sia S = ( artg +. (a Stabilire se la serie data coverge assolutamete. (b Stabilire se la serie data coverge.. Sia L lo spazio

Dettagli

Trasmissione del calore con applicazioni numeriche: informatica applicata

Trasmissione del calore con applicazioni numeriche: informatica applicata Corsi di Laurea i Igegeria Meccaica Trasmissioe del calore co applicazioi umerice: iformatica applicata a.a. 5/6 Teoria Parte IV Ig. Nicola Forgioe Dipartimeto di Igegeria Civile e Idustriale E-mail: icola.forgioe@ig.uipi.it;

Dettagli

Esperimentazioni di Fisica 1. Prova scritta del 1 febbraio 2016 SOLUZIONI

Esperimentazioni di Fisica 1. Prova scritta del 1 febbraio 2016 SOLUZIONI Esperimetazioi di Fisica 1 Prova scritta del 1 febbraio 2016 SOLUZIONI Esp-1 Prova di Esame Primo appello - Page 2 of 7 10/09/2015 1. (12 Puti) Quesito. La variabile casuale cotiua x ha ua distribuzioe

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

0.1 Esercitazioni V, del 18/11/2008

0.1 Esercitazioni V, del 18/11/2008 1 0.1 Esercitazioi V, del 18/11/2008 Esercizio 0.1.1. Risolvere usado Cramer il seguete sistema lieare x + y + z = 1 kx + y z = 0 x kz = 1 Soluzioe: Il determiate della matrice dei coefficieti è (k 2)(k

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

Analisi Matematica I modulo Soluzioni prova scritta preliminare n. 1

Analisi Matematica I modulo Soluzioni prova scritta preliminare n. 1 Aalisi Matematica I modulo Soluzioi prova scritta prelimiare 1 Corso di laurea i Matematica, aa 004-005 9 ovembre 004 1 (a) Calcolare il seguete limite: **A***** Soluzioe Si ha ( + log ) ( + log ) lim

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Aalisi e Geometria Politecico di Milao Igegeria Preparazioe al primo compito i itiere. Risolvere el campo complesso l equazioe z z = 4z.. Sia f la fuzioe a valori complessi defiita da f(z = per ogi z D,

Dettagli

Sviluppi di Taylor. Andrea Corli 1 settembre Notazione o 1. 3 Formula di Taylor 3. 4 Esempi ed applicazioni 5

Sviluppi di Taylor. Andrea Corli 1 settembre Notazione o 1. 3 Formula di Taylor 3. 4 Esempi ed applicazioni 5 Sviluppi di Taylor Adrea Corli settembre 009 Idice Notazioe o Liearizzazioe di ua fuzioe 3 Formula di Taylor 3 4 Esempi ed applicazioi 5 I questo capitolo aalizziamo l approssimazioe di ua fuzioe regolare

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova,

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova, Corsi di laurea i fisica ed astroomia Prova scritta di Aalisi Matematica 2 Padova, 28.8.29 Si svolgao i segueti esercizi facedo attezioe a giustificare le risposte. Delle affermazioi o motivate e giustificate

Dettagli

Trasmissione del calore con applicazioni numeriche: informatica applicata

Trasmissione del calore con applicazioni numeriche: informatica applicata Corsi di Laurea i Igegeria Meccaica Trasmissioe del calore co applicazioi umeriche: iformatica applicata a.a. 17/18 Teoria Parte I Prof. Nicola Forgioe Dipartimeto di Igegeria Civile e Idustriale E-mail:

Dettagli

11 Simulazione di prova d Esame di Stato

11 Simulazione di prova d Esame di Stato Simulazioe di prova d Esame di Stato Problema Risolvi uo dei due problemi e 5 dei quesiti i cui si articola il questioario I u sistema di riferimeto cartesiao ortogoale è assegata la seguete famiglia di

Dettagli

Esercitazione 3 Sistemi lineari

Esercitazione 3 Sistemi lineari Esercitazioe 3 Sistemi lieari a.a. 2018-19 Esercizio 1 (M) Scrivere ua M-fuctio che calcola l iversa di ua matrice triagolare iferiore L di ordie mediate ua tecica compatta, memorizzadola ella matrice

Dettagli

METODI NUMERICI CON ELEMENTI DI PROGRAMMAZIONE ESERCIZI DI AUTOVALUTAZIONE Ingegneria Aerospaziale A.A. 2015/2016

METODI NUMERICI CON ELEMENTI DI PROGRAMMAZIONE ESERCIZI DI AUTOVALUTAZIONE Ingegneria Aerospaziale A.A. 2015/2016 METODI NUMERICI CON ELEMENTI DI PROGRMMZIONE ESERCIZI DI UTOVLUTZIONE Igegeria erospaziale /6 ESERCIZIO Si cosiderio le segueti successioi dipedeti dal parametro reale Stabilire quate e quali di esse covergoo

Dettagli

Serie di potenze / Esercizi svolti

Serie di potenze / Esercizi svolti MGuida, SRolado, 204 Serie di poteze / Esercizi svolti Si cosideri la serie di poteze (a) Determiare il raggio di covergeza 2 + x (b) Determiare l itervallo I di covergeza putuale (c) Dire se la serie

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto Calcolo I - Corso di Laurea i Fisica - Geaio 08 Soluzioi Scritto Data la fuzioe f = 8 + / a Calcolare il domiio, puti di o derivabilità ed asitoti; b Calcolare, se esistoo, estremi relativi ed assoluti.

Dettagli

Prova scritta di Analisi Matematica I 15/09/2010

Prova scritta di Analisi Matematica I 15/09/2010 Prova scritta di Aalisi Matematica I VO 5/09/00 ) Data la fuzioe f ( ) + a) disegare il grafico illustrado i passaggi fodametali b) Euciare e dimostrare il Teorema di Rolle e se possibile applicarlo a

Dettagli

Lezione 4 Corso di Statistica. Francesco Lagona

Lezione 4 Corso di Statistica. Francesco Lagona Lezioe 4 Corso di Statistica Fracesco Lagoa Uiversità Roma Tre F. Lagoa (fracesco.lagoa@uiroma3.it) 1 / 23 obiettivi della lezioe familiarizzare co il calcolo e le proprietà della media aritmetica familiarizzare

Dettagli

INTERPOLAZIONE INTERPOLAZIONE

INTERPOLAZIONE INTERPOLAZIONE INTERPOLAZIONE Il problema dell'approssimazioe di ua fuzioe èdi importaza fodametale i diverse disciplie dell'igegeria Cosiste ella sostituzioe di ua fuzioe ota per puti (o troppo complicata) co ua più

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 21 Misura della dipedeza di u carattere

Dettagli

Funzioni continue. Definizione di limite e di funzione continua. Esercizio 1. x 0, 1 x 2, 3

Funzioni continue. Definizione di limite e di funzione continua. Esercizio 1. x 0, 1 x 2, 3 Fuzioi cotiue Defiizioe di limite e di fuzioe cotiua Esercizio. Dire quali delle segueti fuzioi soo cotiue. f : 0,, 3, f 0,, 3 Plot Piecewise,,,,, 0, 3.0 0.8 0.6 0.4 0. f è cotiua. Ifatti, fissiamo y [0,].

Dettagli

Analisi Matematica II

Analisi Matematica II Uiversità degli Studi di Udie Ao Accademico 016/017 Dipartimeto di Scieze Matematiche, Iformatiche e Fisiche Corso di Laurea i Matematica Aalisi Matematica II Prova parziale del 6 febbraio 017 NB: scrivere

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f x; = costate icogita Qual è il valore di? E verosimile

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f ( x; ϑ) θ = costate icogita Qual è il valore di θ? E verosimile

Dettagli

16 - Serie Numeriche

16 - Serie Numeriche Uiversità degli Studi di Palermo Facoltà di Ecoomia CdS Statistica per l Aalisi dei Dati Apputi del corso di Matematica 6 - Serie Numeriche Ao Accademico 03/04 M. Tummiello, V. Lacagia, A. Cosiglio, S.

Dettagli

Analisi Matematica A e B Soluzioni prova scritta n. 4

Analisi Matematica A e B Soluzioni prova scritta n. 4 Aalisi Matematica A e B Soluzioi prova scritta. 4 Corso di laurea i Fisica, 17-18 3 settembre 18 1. Scrivere le soluzioi dell equazioe differeziale ( u u + u = e x si x + 1 ). 1 + x Soluzioe. Si tratta

Dettagli

Esercizi sui numeri complessi per il dodicesimo foglio di esercizi

Esercizi sui numeri complessi per il dodicesimo foglio di esercizi Esercizi sui umeri complessi per il dodicesimo foglio di esercizi 6 dicembre 2010 1 Numeri complessi radici ed equazioi Ricordiamo iazitutto che dato u umero complesso z = x + iy, il suo coiugato, idicato

Dettagli

Analisi I - IngBM COMPITO B 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =...

Analisi I - IngBM COMPITO B 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =... Aalisi I - IgBM - 2014-15 COMPITO B 17 Geaio 2015 COGNOME........................ NOME............................. MATRICOLA....................... VALUTAZIONE..... +..... =...... 1. Istruzioi Gli esercizi

Dettagli

Appendice 2. Norme di vettori e matrici

Appendice 2. Norme di vettori e matrici Appedice 2. Norme di vettori e matrici La ozioe esseziale per poter defiire il cocetto di distaza e lughezza i uo spazio vettoriale lieare è quello di orma. Il cocetto di orma è ua geeralizzazioe del cocetto

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO 0. Itroduzioe Oggetto del calcolo combiatorio è quello di determiare il umero dei modi mediate i quali possoo essere associati, secodo prefissate regole, gli elemeti di uo stesso

Dettagli

STUDIO DEL LANCIO DI 3 DADI

STUDIO DEL LANCIO DI 3 DADI Leoardo Latella STUDIO DEL LANCIO DI 3 DADI Il calcolo delle probabilità studia gli eveti casuali probabili, cioè quegli eveti che possoo o o possoo verificarsi e che dipedoo uicamete dal caso. Tale studio

Dettagli

Analisi Matematica Soluzioni prova scritta parziale n. 1

Analisi Matematica Soluzioni prova scritta parziale n. 1 Aalisi Matematica Soluzioi prova scritta parziale. 1 Corso di laurea i Fisica, 018-019 3 dicembre 018 1. Dire per quali valori dei parametri α R, β R, α > 0, β > 0 coverge la serie + (!) α β. ( )! =1 Soluzioe.

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

Analisi I - IngBM COMPITO A 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =...

Analisi I - IngBM COMPITO A 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =... Aalisi I - IgBM - 2014-15 COMPITO A 17 Geaio 2015 COGNOME........................ NOME............................. MATRICOLA....................... VALUTAZIONE..... +..... =...... 1. Istruzioi Gli esercizi

Dettagli

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas ESAME DI MATEMATICA I Modulo di Aalisi Matematica Corso Ao Accademico 008/009 Docete: R Argiolas Cogome Matricola 6 Geaio 009 ore 9 Aula C Nome Corso voto Esercizio Assegata la uzioe a Si determii il suo

Dettagli

TEOREMA DELLA PROIEZIONE, DISUGUAGLIANZA DI BESSEL E COMPLEMENTI SULLE SERIE DI FOURIER

TEOREMA DELLA PROIEZIONE, DISUGUAGLIANZA DI BESSEL E COMPLEMENTI SULLE SERIE DI FOURIER TEOREMA DELLA PROIEZIONE, DISUGUAGLIANZA DI BESSEL E COMPLEMENTI SULLE SERIE DI FOURIER I uo spazio euclideo di dimesioe fiita, ad esempio R 3, cosideriamo u sottospazio, ad esempio u piao passate per

Dettagli

Successioni di funzioni

Successioni di funzioni Successioi di fuzioi Successioi di fuzioi: covergeza putuale Defiizioe Sia I u isieme di umeri reali e sia ua successioe di fuzioi reali defiite i I : I R, I R. Si dice che Cioè f : I R, risulta coverge

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,,, 3, 5, 8, 3,, 34, 55, 89, 44, 33, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi mesi i u allevameto! Si

Dettagli

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c)

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c) SERIE NUMERICHE Esercizi risolti. Calcolare la somma delle segueti serie telescopiche: a) b). Verificare utilizzado la codizioe ecessaria per la covergeza) che le segueti serie o covergoo: a) c) ) log

Dettagli

2T(n/2) + n se n > 1 T(n) = 1 se n = 1

2T(n/2) + n se n > 1 T(n) = 1 se n = 1 3 Ricorreze Nel caso di algoritmi ricorsivi (ad esempio, merge sort, ricerca biaria, ricerca del massimo e/o del miimo), il tempo di esecuzioe può essere descritto da ua fuzioe ricorsiva, ovvero da u equazioe

Dettagli

Tempo di calcolo. , per cui x è un caso più sfavorevole quando T. peggiore(

Tempo di calcolo. , per cui x è un caso più sfavorevole quando T. peggiore( Tempo di calcolo. Tempo di calcolo di u algoritmo La complessità computazioale è ua misura della difficoltà di risolvere problemi di calcolo co algoritmi. Per misurare la complessità di u algoritmo si

Dettagli

Pompa di calore a celle di Peltier. ( 3 ) Analisi dei dati

Pompa di calore a celle di Peltier. ( 3 ) Analisi dei dati Pompa di calore a celle di Peltier ( 3 ) Aalisi dei dati Scuola estiva di Geova 2 6 settembre 2008 1 Primo esperimeto : riscaldameto per effetto Joule Come descritto ella guida, misuriamo tesioe di alimetazioe

Dettagli

Programma di Istituzioni di Matematica II Corso di Laurea Triennale in Scienza dei Materiali (a.a ) Prof. Nicola Basile

Programma di Istituzioni di Matematica II Corso di Laurea Triennale in Scienza dei Materiali (a.a ) Prof. Nicola Basile Corso di Laurea Trieale i Scieza dei Materiali (a.a. 009-10) Prof. Nicola Basile 8--010 ( ore) Le somme itegrali di Cauchy. Ua prova euristica della formula di itegrazioe per sostituzioe. Il segale impulso

Dettagli

CAMBIAMENTO DI BASE IN UNO SPAZIO VETTORIALE

CAMBIAMENTO DI BASE IN UNO SPAZIO VETTORIALE CAMBIAMENTO DI BASE IN UNO SPAZIO VETTORIALE Sia V uo spazio vettoriale sul campo K. Siao v, v,..., v vettori dati apparteeti a V e siao, ioltre, assegati scalari k, k,..., k apparteeti a K. Si defiisce

Dettagli

a n (x x 0 ) n. (1.1) n=0

a n (x x 0 ) n. (1.1) n=0 Serie di poteze. Defiizioi Assegati ua successioe {a } di umeri reali e u puto x dell asse reale si dice serie di poteze u espressioe del tipo a (x x ). (.) Il puto x viee detto cetro della serie e i umeri

Dettagli

LABORATIORIO 3. Taratura statica

LABORATIORIO 3. Taratura statica LABORATIORIO 3 Taratura statica Obiettivi dell esercitazioe Obiettivo di questa esercitazioe è lo svolgimeto di ua serie di esperieze di laboratorio per verificare e applicare le coosceze relative alle

Dettagli

Analisi Matematica II

Analisi Matematica II Corso di Laurea i Matematica Aalisi Matematica II Esercizi sulla covergeza uiforme e sulle serie di fuzioi/poteze Versioe del 28//206 Esercizi tratti dal Giusti Esercizio Giusti 3. e 3.3) Calcolare il

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza ANALISI MATEMATICA Commissioe L. Caravea, V. Casario, S. occate Igegeria Gestioale, Meccaica e Meccatroica, Viceza Nome, Cogome, umero di matricola: Viceza, 6 Settembre 25 TEMA - parte B Esercizio ( puti).

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli

Ricorrenze. 3 1 Metodo iterativo

Ricorrenze. 3 1 Metodo iterativo 3 Ricorreze 31 Metodo iterativo Il metodo iterativo cosiste ello srotolare la ricorreza fio ad otteere ua fuzioe dipedete da (dimesioe dell iput). L idea è quella di reiterare ua data ricorreza T () u

Dettagli

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA IPSAA U. Patrizi Città di Castello (PG) Classe A Tecico Agrario Lezioe di martedì 0 ovembre 0 (4 e ora) Disciplia: MATEMATICA La derivata della fuzioe composta Fuzioe composta Df(g())f (g())g () Questa

Dettagli

Equazioni Differenziali

Equazioni Differenziali Equazioi Differeziali Nota itroduttiva: Lo scopo di queste dispese o è trattare la teoria riguardo alle equazioi differeziali, ma solo dare u metodo risolutivo pratico utilizzabile egli esercizi che richiedoo

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Uiversità degli Studi di Udie Ao Accademico 00/0 Facoltà di Scieze Matematiche Fisiche e Naturali Corso di Laurea i Iformatica Esercizi di Aalisi Matematica Dott. Paolo Baiti Esercizi del 5 Ottobre 00.

Dettagli

SECONDO ESONERO DI AM1 10/01/ Soluzioni

SECONDO ESONERO DI AM1 10/01/ Soluzioni Esercizio. Calcolare i segueti iti: Razioalizzado si ottiee SECONDO ESONERO DI AM 0/0/2008 - Soluzioi 2 + 2, 2 + 2 = 2 + 2 + 2 + 2 = Per il secodo ite ci soo vari modi, e mostro tre. Ora ( ) ( + si = +

Dettagli

Una funzione delle osservazioni campionarie è una statistica che, nel contesto della stima di un parametro, viene definita stimatore.

Una funzione delle osservazioni campionarie è una statistica che, nel contesto della stima di un parametro, viene definita stimatore. Stimatori e stime Teoria della stima Supporremo che sulla popolazioe sia defiita ua variabile X la cui distribuzioe, seppure icogita, è completamete caratterizzata da u parametro q o da u isieme di parametri

Dettagli

Lezioni del Corso di Fondamenti di Metrologia Meccanica

Lezioni del Corso di Fondamenti di Metrologia Meccanica Facoltà di Igegeria Lezioi del Corso di Fodameti di Metrologia Meccaica A.A. 005-006 Prof. Paolo Vigo Idice. Frequeza e Probabilità. 3. Curva di Gauss 4. Altre Distribuzioi Frequeza e Probabilità Me spiego:

Dettagli

REGRESSIONE LINEARE E POLINOMIALE

REGRESSIONE LINEARE E POLINOMIALE REGRESSIONE LINEARE E POLINOMIALE Nota ua tabella di dati relativi alle osservazioi di due gradezze X e Y, è aturale formulare ipotesi su quale possa essere ua ragioevole fuzioe che rappreseti o che approssimi

Dettagli

Elementi di calcolo combinatorio

Elementi di calcolo combinatorio Appedice A Elemeti di calcolo combiatorio A.1 Disposizioi, combiazioi, permutazioi Il calcolo combiatorio si occupa di alcue questioi iereti allo studio delle modalità secodo cui si possoo raggruppare

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

Esercizi svolti su successioni e serie di funzioni

Esercizi svolti su successioni e serie di funzioni Esercizi svolti su successioi e serie di fuzioi Esercizio. Calcolare il limite putuale di f ) = 2 +, [0, + ). Dimostrare che o si ha covergeza uiforme su 0, + ), metre si ha covergeza uiforme su [a, +

Dettagli

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova,

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova, Corsi di laurea i fisica ed astroomia Prova scritta di Aalisi Matematica Padova, 8.8.08 Si svolgao i segueti esercizi facedo attezioe a giustificare le risposte. Delle affermazioi o motivate e giustificate

Dettagli

7. Interpolazione e integrazione

7. Interpolazione e integrazione 7. Iterpolazioe e itegrazioe I questa Nota faremo u breve ceo al problema dell iterpolazioe di ua fuzioe e del calcolo degli itegrali defiiti. Per approfodimeti si riamada alle Refereze [7.1- [7.3]. 7.1

Dettagli

Esame di Stato di Liceo Scientifico- Sessione ordinaria 2003 Corso Sperimentale P.N.I. Tema di MATEMATICA

Esame di Stato di Liceo Scientifico- Sessione ordinaria 2003 Corso Sperimentale P.N.I. Tema di MATEMATICA L.Lecci\Sol. Problema 2\Esame di Stato di Liceo Scietifico\Sess. Ordiaria\Corso P.N.I.\ao23 Esame di Stato di Liceo Scietifico- Sessioe ordiaria 23 Corso Sperimetale P.N.I. Tema di MATEMATICA Problema

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Uiversità di Treto - Corso di Laurea i Igegeria Civile e Igegeria per l Ambiete e il Territorio - 07/8 Corso di Aalisi Matematica - professore Alberto Valli 8 foglio di esercizi - 5 ovembre 07 Taylor,

Dettagli

Soluzione del Problema di Natale.

Soluzione del Problema di Natale. Soluzioe del Problema di Natale. Idicheremo, per comodità, ua particella Mxyzptl co M(d, = (m + ; m 1,..., m, dove m+ è il puto di che rappreseta il suo ucleo mxyzptl +, e gli m i rappresetao le sue subparticelle

Dettagli

(x log x) n2. (14) n + log n

(x log x) n2. (14) n + log n Facoltà di Scieze Matematiche Fisiche e Naturali- Aalisi Matematica A (c.l.t. i Fisica) Prova parziale del 8 Novembre 20 Svolgere gli esercizi segueti. Studiare il domiio ed il comportameto della serie

Dettagli

Introduzione all Analisi di Fourier. Prof. Luigi Landini Ing. Nicola Vanello. (presentazione a cura di N. Vanello)

Introduzione all Analisi di Fourier. Prof. Luigi Landini Ing. Nicola Vanello. (presentazione a cura di N. Vanello) Itroduzioe all Aalisi di Prof. Luigi Ladii Ig. Nicola Vaello (presetazioe a cura di N. Vaello) ANALII DI FOURIER egali tempo cotiui: egali periodici egali aperiodici viluppo i serie di Itroduzioe alla

Dettagli

SERIE NUMERICHE FAUSTO FERRARI

SERIE NUMERICHE FAUSTO FERRARI SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioi di Aalisi Matematica per i corsi di Laurea i Igegeria Chimica e Igegeria per l Ambiete e il Territorio dell Uiversità di Bologa. Ao Accademico

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

. Motivando la risposta, dire qual è l ordine di infinitesimo di sinx Dati i numeri complessi z. e x lim x

. Motivando la risposta, dire qual è l ordine di infinitesimo di sinx Dati i numeri complessi z. e x lim x Prova scritta di Aalisi Matematica I () //5 Euciare e dimostrare il teorema della permaeza del sego Fare u esempio Defiizioe di fuzioe ifiitesima per Motivado la risposta, dire qual è l ordie di ifiitesimo

Dettagli

Soluzioni degli esercizi di Analisi Matematica I

Soluzioni degli esercizi di Analisi Matematica I Soluzioi degli esercizi di Aalisi Matematica I (Prof. Pierpaolo Natalii) Roberta Biachii 6 ovembre 2016 FOGLIO 1 1. Determiare il domiio e il sego della fuzioe ( ) f(x) = arccos x2 1 x + 1 π/3. 2. Dimostrare,

Dettagli

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii)

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii) Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi : Riferimeti: R.Adams, Calcolo Differeziale. -Si cosiglia vivamate di fare gli esercizi del testo. Cap. 9.5 - Serie di poteze,

Dettagli

Esame di Stato - Liceo Scientifico Prova scritta di Matematica - 21 giugno Problema 1 Soluzione a cura di L. Tomasi

Esame di Stato - Liceo Scientifico Prova scritta di Matematica - 21 giugno Problema 1 Soluzione a cura di L. Tomasi Esame di Stato - Liceo Scietifico Prova scritta di Matematica - giugo 08 Problema Soluzioe a cura di L. Tomasi Soluzioe Puto Co riferimeto all esempio semplice del mauale d uso della macchia che colora

Dettagli

5. Derivate. Derivate. Derivate di funzioni elementari. Regole di derivazione. Derivate di funzioni composte e di funzioni inverse

5. Derivate. Derivate. Derivate di funzioni elementari. Regole di derivazione. Derivate di funzioni composte e di funzioni inverse Di cosa parleremo Le derivate costituiscoo, per la maggioraza degli studeti, l argometo più semplice di questa parte dell aalisi matematica. I questo capitolo e daremo il cocetto assieme al sigificato

Dettagli

Calcolo Combinatorio

Calcolo Combinatorio Uiversità degli Studi di Palermo Facoltà di Ecoomia Dip. di Scieze Ecoomiche, Aziedali e Statistiche Apputi del corso di Matematica Geerale Calcolo Combiatorio Ao Accademico 2013/201 V. Lacagia - S. Piraio

Dettagli

Cenni di calcolo combinatorio

Cenni di calcolo combinatorio Appedice B Cei di calcolo combiatorio B Disposizioi, combiazioi, permutazioi Il calcolo combiatorio si occupa di alcue questioi iereti allo studio delle modalità secodo cui si possoo raggruppare degli

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Igegeria dell Iformazioe Appello del 7.9.8 Esercizio Si cosideri la fuzioe f() := TEMA {e 3 per per =. i) Determiare il domiio D, le evetuali simmetrie e studiare il sego di

Dettagli

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma 1 Serie di poteze È stato dimostrato che la serie geometrica x (1.1) coverge se e solo se la ragioe x soddisfa la disuguagliaza 1 < x < 1. I realtà c è covergeza assoluta i ] 1, 1[. Per x 1 la serie diverge

Dettagli

Intervalli di Fiducia

Intervalli di Fiducia di Fiducia Itroduzioe per la media Caso variaza ota per la media Caso variaza o ota per i coefficieti di regressioe per la risposta media i per i coefficieti i di regressioe multilieare - Media aritmetica

Dettagli

Esercitazione n 3. 1 Successioni di funzioni. Esercizio 1: Studiare la convergenza in (0, 1) della successione {f n } dove f n (x) =

Esercitazione n 3. 1 Successioni di funzioni. Esercizio 1: Studiare la convergenza in (0, 1) della successione {f n } dove f n (x) = Esercitazioe 3 Successioi di fuzioi Esercizio : Studiare la covergeza i (0, ) della successioe {f } dove f (x) = metre Sol.: Si verifica facilmete che lim f (x) = 0 x (0, ) lim sup f (x) = lim = + (0,)

Dettagli

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica I del c.1.

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica I del c.1. Prova scritta di Aalisi Matematica I del 25-5-1998 - c.1 1) Per ogi umero N, 2, siao dati 2 umeri reali positivi a 1, a 2,...a, b 1, b 2,...b. Provare, usado il Pricipio di Iduzioe, che a 1 + a 2 +...

Dettagli

Tutorato di Probabilità 1, foglio I a.a. 2007/2008

Tutorato di Probabilità 1, foglio I a.a. 2007/2008 Tutorato di Probabilità, foglio I a.a. 2007/2008 Esercizio. Siao A, B, C, D eveti.. Dimostrare che P(A B c ) = P(A) P(A B). 2. Calcolare P ( A (B c C) ), sapedo che P(A) = /2, P(A B) = /4 e P(A B C) =

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57 Tracce di soluzioi di alcui esercizi di matematica - gruppo 42-57 4. Limiti di successioi Soluzioe dell Esercizio 42.. Osserviamo che a = a +6 e duque la successioe prede valori i {a,..., a 6 } e ciascu

Dettagli

Realizzazione, Raggiungibilità e Osservabilità

Realizzazione, Raggiungibilità e Osservabilità Prof. Carlo Cosetio Fodameti di Automatica, A.A. 26/7 Corso di Fodameti di Automatica A.A. 26/7 Realizzazioe, Raggiugiilità e Osservailità Prof. Carlo Cosetio Dipartimeto di Medicia Sperimetale e Cliica

Dettagli

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge.

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge. Le successioi A parole ua successioe é u isieme ifiito di umeri disposti i u particolare ordie. Piú rigorosamete, ua successioe é ua legge che associa ad ogi umero aturale u altro umero (ache o aturale):

Dettagli

Il Teorema di Markov. 1.1 Analisi spettrale della matrice di transizione. Il teorema di Markov afferma che

Il Teorema di Markov. 1.1 Analisi spettrale della matrice di transizione. Il teorema di Markov afferma che 1 Il Teorema di Marov 1.1 Aalisi spettrale della matrice di trasizioe Il teorema di Marov afferma che Teorema 1.1 Ua matrice di trasizioe regolare P su u isieme di stati fiito E ha ua uica distribuzioe

Dettagli

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

ASINTOTI COME LIMITI DI TANGENTI

ASINTOTI COME LIMITI DI TANGENTI ASINTOTI COME LIMITI DI TANGENTI ANDREA DI LORENZO SILVIA FEDI VALERIO STINCO RICCARDO VIGNOLI. UN ESEMPIO Nel piao cartesiao è riportato il grafico della fuzioe: 3 + 6 + 6 + e il suo asitoto obliquo di

Dettagli

Cosa vogliamo imparare?

Cosa vogliamo imparare? Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come

Dettagli

SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 2015/16, FOGLIO 2. se x [n, 3n]

SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 2015/16, FOGLIO 2. se x [n, 3n] SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 05/6, FOGLIO Sia f : R R defiita da f x { se x [, 3] 0 altrimeti Studiare la covergeza putuale, uiforme e uiforme sui compatti della successioe f e della

Dettagli

Universitá di Roma Tor Vergata Analisi 1, Ingegneria (CIO-FR), Prof. A. Porretta Esame del 19 febbraio 2018

Universitá di Roma Tor Vergata Analisi 1, Ingegneria (CIO-FR), Prof. A. Porretta Esame del 19 febbraio 2018 Uiversitá di Roma Tor Vergata Aalisi, Igegeria CIO-FR), Prof. A. Porretta Esame del 9 febbraio 08 Esame orale : Esercizio [7 puti] Studiare la fuzioe f) = + 4 ) disegadoe u grafico qualitativo e idicado:

Dettagli

Circuiti a tempo discreto Raffaele Parisi

Circuiti a tempo discreto Raffaele Parisi Uiversità di Roma La Sapieza Laurea specialistica i Igegeria Elettroica Circuiti a tempo discreto Raffaele Parisi : Esempi di Sequeze e di Circuiti TD Sequeze otevoli, periodicità delle sequeze, esempi

Dettagli

Nozioni preliminari: sia R n lo spazio n-dimensionale dell algebra vettoriale. Un punto in R n e una n-pla di numeri reali (x 1, x 2 x n )

Nozioni preliminari: sia R n lo spazio n-dimensionale dell algebra vettoriale. Un punto in R n e una n-pla di numeri reali (x 1, x 2 x n ) SPAZI TOPOLOGICI: topologia locale (a cui siamo iteressati topologia globale (proprieta a larga scala, come quelle che distiguoo ua sfera da u coo Nozioi prelimiari: sia R lo spazio -dimesioale dell algebra

Dettagli

Prove d'esame a.a

Prove d'esame a.a Prove d'esame aa Adrea Corli dicembre Soo qui raccolti i testi delle prove d'esame assegati ell'aa, relativi al Corso di Aalisi Matematica I (semestrale, crediti), Laurea i Igegeria Civile e Ambietale,

Dettagli