Metodi matematici II 15 luglio 2003

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Metodi matematici II 15 luglio 2003"

Transcript

1 MM.II Prova Generale - Test Vecchio Ordinamento, 5 luglio Metodi matematici II 5 luglio TEST (Vecchio ordinamento) Cognome Nome Matricola Rispondere alle dodici domande sbarrando la casella che si ritiene corretta nel caso di risposta multipla (una sola risposta è corretta). Si indichi la risposta ma non il procedimento in caso di risposta aperta. Nel caso si intenda annullare una risposta cerchiare la corrispondente casella. Risposte corrette altrimenti 6 min. Punteggio 4 8 INS DOMANDA Un progetto è caratterizzato da un esborso immediato di da un altro esborso dopo un mese di e da flussi positivi di mensili posticipati per i successivi 8 anni. Il VAN del progetto, dato un costo opportunità dell % composto annuo è: DOMANDA In un piano di ammortamento francese, di un debito di ammontare, l importo dellaratacostanteincasodiduratadiunanno, pagamenti mensili anticipati e tasso composto annuo i =5%è: DOMANDA Il seguente progetto: tempo flussi - 7 ha un TIR annuo pari a: DOMANDA 4 Un progetto è caratterizzato da un VAN pari a. Si può ricorrere ad un finanziamento che se attivato completamente ha VAN pari a -. L APV del progetto congiunto in cui si attiva del finanziamento è: a ; b ; c 6; d ; DOMANDA 5 Un BOT avente vita residua di 5 gg (anno solare) ha una quotazione pari a 8. Allora il tasso di interesse semplice che esso garantisce è pari a: a 5.4%; b 4.7%; c 4.87%; d 4.78%; DOMANDA 6 Un gestore con un capitale di e in presenza di un solo fattore di rischio, deve costruire un portafoglio con sensibilità pari ad.5. Se i due titoli hanno sensibilità al fattore di rischio pari a e e che i loro prezzi sono pari a 4 e 4, le quantità da acquistare dei due titoli sono: DOMANDA 7 La matrice A =,k R, ha: k k a r (A) =se k =; b r (A), k; c r (A) =se k =; d r (A) =, k; DOMANDA 8 La matrice A raccoglie il costo in Euro per unità di diversi semilavorati (S, S) classificati a seconda del fornitore (F, F ). I prodotti sono le etichette di S S colonna, i fornitori di riga: A = F. Nella matrice B si raccolgono F 4 tre diverse possibilità di utilizzo dei due semilavorati per la produzione di un unità di un certo bene (B ha in colonna le quantità acquistate di ciascun semilavorato): p p p B = S 4 6. Col vincolo che non è possibile ripartire tra i due fornitori S 5 4 l acquisto dei due semilavorati, quale combinazione produttiva associata a quale fornitore garantisce il minor costo di produzione? a p con F ; b p con F ; c p con F ; d p con F ; DOMANDA 7 Sia P = una matrice di transizione per un sistema con elementi. 8 Allora lo stato stazionario del sistema è descritto dal vettore: [ ] DOMANDA Il sistema lineare Ax = b, con A = 4, b = terza componente del vettore soluzione:, ammette come DOMANDA La seguente funzione f (x, y) =ln(y x) ha vettore gradiente nel punto (, ) dato da: f(, ) = [ ] DOMANDA La seguente funzione f : R n R, f (x) =x T Cx + a T x dove C R n,n simmetrica einvertibileeda R n, ha un punto stazionario dato da: a x =; b non ha punti stazionari; c x = C a; d x = A b;

2 MM.II Prova Generale - Test Studenti ex-saa, 5 luglio MM.II Prova Generale - Test Studenti ex-saa, 5 luglio 4 Metodi matematici II 5 luglio TEST (Studenti ex SAA) Cognome Nome Matricola Rispondere alle sei domande sbarrando la casella che si ritiene corretta nel caso di risposta multipla (una sola risposta è corretta). Si indichi la risposta ma non il procedimento in caso di risposta aperta. Nel caso si intenda annullare una risposta cerchiare la corrispondente casella. Risposte corrette altrimenti Punteggio 8 INS TEMPO a disposizione: min. DOMANDA 5 Una funzione f : R R èduevoltedifferenziabile ed ammette in x R un punto di massimo locale forte. Quale delle seguenti affermazione è vera? a f è superiormente limitata; b f (x ) è diverso dal vettore nullo; c H f (x ) risulta definita o semidefinita negativa; d f può essere discontinua in x ; DOMANDA 6 h Sia data f (x, y) =exp (x y) i.allora: f(x, y) = y DOMANDA La seguente funzione f (x, y) =ln(xy) x, ha curve di livello date da: a y = ek+x x ; b y = ek x x ; c y = xek+x ; d y =x; DOMANDA In un problema di PL la funzione obiettivo è f (x, y) =x +y sub x,y,x+ y 4,x 5. Stabilire se il problema ammette minimo e se si minimo (crocettare se si pensa p =... è punto di min vincolato DOMANDA In un punto stazionario, x, di una funzione due volte differenziabile è stata calcolata la seguente matrice Hessiana. Allora è possibile stabilire che: 4 a x èptdimax; b x èptdimin; c x può essere pt di max; d x è punto di sella; DOMANDA 4 In un problema di estremo vincolato con vincoli e 4 variabili si è determinata la matrice hessiana orlata i cui m.p. di NW sono:,, -,. Allora il punto stazionario della f. Lagrangiana, per il pb di estremo rappresenta: a un pto di sella; b un pto di max; c non si può dire; d un pto di min;

3 MM.II Prova Generale - Test Nuovo Ordinamento, 5 luglio 5 MM.II Prova Generale - Test Nuovo Ordinamento, 5 luglio 6 Metodi matematici II 5 luglio TEST (Nuovo ordinamento) Cognome Nome Matricola Rispondere alle dodici domande sbarrando la casella che si ritiene corretta nel caso di risposta multipla (una sola risposta è corretta) o indicando la risposta ma non il procedimento in caso di risposta aperta. Nel caso si intenda annullare una risposta cerchiare la corrispondente casella. Risposte corrette altrimenti 6 min. Punteggio 4 8 INS DOMANDA Un progetto è caratterizzato da un esborso immediato di da un altro esborso dopo un mese di e da flussi positivi di mensili posticipati per i successivi 8 anni. Il VAN del progetto, dato un costo opportunità dell % composto annuo è: DOMANDA In un piano di ammortamento francese, di un debito di ammontare, l importo dellaratacostanteincasodiduratadiunanno, pagamenti mensili anticipati e tasso composto annuo i =5%è: DOMANDA Il seguente progetto: tempo flussi - 7 ha un TIR annuo pari a: DOMANDA 4 Un progetto è caratterizzato da un VAN pari a. Si può ricorrere ad un finanziamento che se attivato completamente ha VAN pari a -. L APV del progetto congiunto in cui si attiva del finanziamento è: a ; b ; c 6; d ; DOMANDA 5 Un BOT avente vita residua di 5 gg (anno solare) ha una quotazione pari a 8. Allora il tasso di interesse semplice che esso garantisce è pari a: a 5.4%; b 4.7%; c 4.87%; d 4.78%; DOMANDA 6 Un gestore con un capitale di e in presenza di un solo fattore di rischio, deve costruire un portafoglio con sensibilità pari ad.5. Se i due titoli hanno sensibilità al fattore di rischio pari a e e che i loro prezzi sono pari a 4 e 4, le quantità da acquistare dei due titoli sono: DOMANDA 7 La matrice A =,k R, ha: k k a r (A) =se k =; b r (A), k; c r (A) =se k =; d r (A) =, k; DOMANDA 8 La matrice A raccoglie il costo in Euro per unità di diversi semilavorati (S, S) classificati a seconda del fornitore (F, F ). I prodotti sono le etichette di S S colonna, i fornitori di riga: A = F. Nella matrice B si raccolgono F 4 tre diverse possibilità di utilizzo dei due semilavorati per la produzione di un unità di un certo bene (B ha in colonna le quantità acquistate di ciascun semilavorato): p p p B = S 4 6. Col vincolo che non è possibile ripartire tra i due fornitori S 5 4 l acquisto dei due semilavorati, quale combinazione produttiva associata a quale fornitore garantisce il minor costo di produzione? a p con F ; b p con F ; c p con F ; d p con F ; DOMANDA Sia P = 7 una matrice di transizione per un sistema con elementi. 8 Allora lo stato stazionario del sistema è descritto dal vettore: [ ] DOMANDA Il sistema lineare Ax = b, con A = 4, b = terza componente del vettore soluzione: DOMANDA Sia A =. L inversa di A è:...., ammette come DOMANDA Sia d =.5%; in regime di sconto commerciale gli anni necessari affinchè il v.a. di una rendita annua, posticipata, con rata pari a, sia 5., è: a n =6; b n =64; c n =6; d n =5;

4 MM.II Prova Generale - Soluzioni Test, 5 luglio 7 Metodi matematici II 5 luglio Soluzioni Test MM.II Prova Generale - Soluzioni Test, 5 luglio 8. Domanda V.O. Fila A Ex-SAA 668,6 a 7,4 (, ) 6,% c 4 a d 5 b c 6, 5 4, 5 (x y)exp ³(x y) 7 b - 8 a - [4 6] - x =7/ - [ ] - c - Domanda N.O. Fila A 668, 6 7,4 6,% 4 a 5 b 6, 5 4, 5 7 b 8 a [4 6] x =7/

5 MM.II Prova Generale - Parte B, 5 luglio MM.II Prova Generale - Parte B, 5 luglio Metodi Matematici 5 luglio Parte B Per gli studenti del nuovo ordinamento rispondere ai primi due esercizi. Per gli studenti del vecchio ordinamento a due esercizi a scelta tra i tre (ma non è possibile rispondere a più di due esercizi. Tempo a disposizione: 6 minuti). ESERCIZIO-AlgebraLineare a) Enunciare il Teorema di Rouchè-Capelli. b) Discutere l applicazione del Teorema di Rouchè-Capelli al caso di SL omogenei. c) Utilizzando i risultati del Teorema di R-C, discutere e risolvere il sistema lineare Ax = b, alvariaredelparametroα R, dove: A =,b= α a) Risolvere il seguente problema di estremo vincolato, verificando che siano rispettate le ipotesi alla base dei teoremi utilizzati: x T Ax sub : Dx = b dove x R, A R,,D R,, b R : 4 A = ; D = ; b = (suggerimento: il determinante dell hessiana orlata è pari a 78). b) Valutare la convenienza relativa delle due seguenti alternative: aumentare la disponibilità del secondo vincolo da a.. ridurre la disponibilità del secondo vincolo da a -.. ESERCIZIO - Matematica Finanziaria Un imprenditore decide di attuare un progetto di investimento caratterizzato dai seguenti flussi in Euro: Tempo Flussi Dato che per l attivazione del progetto è necessario un finanziamento pari all intero importo del progetto, decide di valutare la convenienza delle due seguenti alternative: accensione di un prestito da ripagare con 4 rate semestrali costanti secondo il regimedelloscontocommercialeal tasso annuo di sconto del 7%. accensione di un prestito in valuta straniera di durata biennale, con rate annue costanti in regime di interesse composto al tasso annuo del 6%, tenuto conto di una svalutazione annua del cambio dollaro/euro del % e dato che il tasso di cambio corrente è.$/e (quindi se oggi S t =. allora S t+ =. ( +.) ). Applicando il criterio dell APV, quale tra le due proposte l investitore decide di attivare dato che il suo costo opportunità pari al 4%? ESERCIZIO - Ottimizzazione

6 MM.II Prova Generale - Soluzioni Parte B, 4 giugno MM.II Prova Generale - Soluzioni Parte B, 4 giugno Metodi Matematici II 5 luglio SOLUZIONE Parte B ESERCIZIO-AlgebraLineare c) Utilizzando i risultati del Teorema di R-C, discutere e risolvere il sistema lineare Ax = b, alvariaredelparametroα R, dove: A =,b= Si ha che r (A) =, poichè det (A) = 6=. Il r (A b) non dipende dal valore di α ed è ancora pari a. Il sistema ammette un unica soluzione data da: α x = =. α α + ESERCIZIO - Matematica Finanziaria Determiniamo l importo delle rate utilizzando l espressione del valore attuale di una rendita di rata r pagata m volte l anno e durata n anni al tasso di sconto d, data da: µ nm + A = nmr d m α Nell es. in questione A rappresenta l ammontare del debito, cioè. Inoltre n =, m =e d =.7 per cui: A r = nm d nm+ = m.7 + =7. 7 risulta la rata d ammortamento del debito. Quindi se si adotta questa scelta i flussi di cassa del progetto sarebbero dati da: t Inv.to Debito Flussi Netti V.A. (i =5%) (+.5) (+.5) APV = Per valutare la convenienza della scelta, determiniamo l APV che risulta essere: AP V = + 8a a 4 i con Quindi: i =(+.4) =.8 4. APV = + 8a a 4 i ( +.4) ( +.8 4) 4 = = Nel secondo caso, occorre determinare innanzitutto l importo del debito in valuta straniera che è Euro =.$ = $. E/$ La rata di rimborso in dollari è ottenuta risolvendo $=Ra.6,dacuisiottiene l ammontare della rata in dollari: R $ = a.6 $= (+.6).6 $=5. 8$ Per determinare le corrispondenti rate in Euro, occorre tenere conto della svalutazione del tasso di cambio. Si avrebbe quindi t Flussi Debito in $ Tasso Cambio E/$ Flussi Debito in E (+.) = = = = (+.) Di conseguenza i flussi del progetto in questo secondo caso sono dati da: t Inv.to Debito Flussi Netti V.A. (i =4%) (+.4) (+.4) APV = Poichè l APV nel secondo caso risulta essere maggiore, l imprenditore preferirà accedere al secondo finanziamento. ESERCIZIO - Ottimizzazione. a) La funzione in esame è differenziabile e definita su tutto R n e quindi per applicare le c.n. e le c.s. per la ricerca di un estremo, occorre anche verificare che sia soddisfatta la condizione di regolarità dei vincoli. In questo caso, la matrice Jacobiana dei vincoli è la matrice D cheharangoparia,ilnumerodeivincoli: quindi la c.r.v. è soddisfatta.

7 MM.II Prova Generale - Soluzioni Parte B, 4 giugno MM.II Prova Generale - Soluzioni Parte B, 4 giugno 4 In tal caso si può costruire la funzione Lagrangiana: L (x, λ) =x T Ax + λ (b Dx) dove λ = λ λ. La condizione necessaria del primo ordine richiede che il gradiente di L (x, λ) si annulli, cioé Dalla prima condizione si ottiene: x L (x, λ) = Ax (λd) T = λ L (x, λ) = b Dx = Ax = (λd)t Poichè la matrice A ha determinante non nullo, ha rango pieno e risulta invertibile. Si ottiene quindi: x = A (λd) T = A D T λ T = 4 = 4 λ λ λ λ e sostituendo nella seconda condizione (b Dx = ) si ottiene:: 4 λ λ = da cui: esiottiene: λ λ = λ λ 8 = = 7 8 e quindi: x = 4 = 4 = 8 8 λ λ 7 8 Per determinare la natura del punto estremo si fa ricorso alla condizione sufficiente del secondo ordine costruendo la matrice hessiana orlata che nel caso in esame ha la seguente struttura: H = m m D m n D T n m A n n = 8 8 e si indagano gli ultimi n m minori principali di NW. Essendo n =, m =si deve calcolare il segno del determinante dell orlata che dal suggerimento risulta pari a 78 e quindi è positivo. Il vettore x individua così un punto di minimo per il problema di estremo vincolato. b) Trattandosi di un problema di minimo si sceglie la variazione del vincolo che determina la maggiore riduzione nella funzione obiettivo. La variazione della funzione obiettivo a fronte di una variazione del vettore dei vincoli è approssimata da: µ 4f x (b) '< λ, 4b >= λ 4b + λ 4b Nel nostro caso, 4b =e quindi: caso a : 4b =. 4f ' 8 8. = =.54 caso b : 4b =. 4f ' 8 8 (.) = + =+.54 Di conseguenza è preferibile aumentare la disponibilità del secondo vincolo a.. In questo caso si assiste ad una maggiore riduzione del valore della funzione obiettivo nel punto di ottimo.

Metodi matematici 2 21 settembre 2006

Metodi matematici 2 21 settembre 2006 Metodi matematici 1 settembre 006 TEST (Nuovo ordinamento) Cognome Nome Matricola Rispondere alle dieci domande sbarrando la casella che si ritiene corretta nel caso di risposta multipla (una sola risposta

Dettagli

Metodi matematici 2 14 febbraio 2~~8

Metodi matematici 2 14 febbraio 2~~8 Metodi matematici febbraio ~~8 TEST Rispondere alle dieci domande sbarrando la casella che si ritiene corretta nel caso di risposta multipla (una sola risposta è corretta). Si indichi la risposta ma non

Dettagli

Metodi Matematici 2 B 28 ottobre 2010

Metodi Matematici 2 B 28 ottobre 2010 Metodi Matematici 2 B 28 ottobre 2010 1 Prova Parziale - Matematica Finanziaria TEST Cognome Nome Matricola Rispondere alle dieci domande sbarrando, nel caso di risposta multipla, la casella che si ritiene

Dettagli

MATEMATICA FINANZIARIA Appello del 6 luglio 2011. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 6 luglio 2011. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 6 luglio 2011 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014 MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Matematica Finanziaria Soluzione della prova scritta del 15/05/09

Matematica Finanziaria Soluzione della prova scritta del 15/05/09 Matematica Finanziaria Soluzione della prova scritta del 15/05/09 ESERCIZIO 1 Il valore in t = 60 semestri dei versamenti effettuati dall individuo è W (m) = R(1 + i 2 ) m + R(1 + i 2 ) m 1 +... R(1 +

Dettagli

MATEMATICA FINANZIARIA Appello del 28 gennaio 2002

MATEMATICA FINANZIARIA Appello del 28 gennaio 2002 MATEMATICA FINANZIARIA Appello del 28 gennaio 2002 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti 1 MODULO 1 1.1 Principali grandezze finanziarie 1. Si consideri una operazione finanziaria di provvista che prevede di ottenere

Dettagli

Determinare l ammontare x da versare per centrare l obiettivo di costituzione.

Determinare l ammontare x da versare per centrare l obiettivo di costituzione. Esercizi di matematica finanziaria 1 VAN - DCF - TIR Esercizio 1.1. Un investitore desidera disporre tra 3 anni d un capitale M = 10000 euro. Investe subito la somma c 0 pari a 1/4 di M. Farà poi un ulteriore

Dettagli

MATEMATICA FINANZIARIA Appello del 10 luglio 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 10 luglio 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 10 luglio 2013 Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 12 febbraio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR).

MATEMATICA FINANZIARIA Appello del 12 febbraio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR). MATEMATICA FINANZIARIA Appello del 12 febbraio 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 14 luglio 2015

MATEMATICA FINANZIARIA Appello del 14 luglio 2015 MATEMATICA FINANZIARIA Appello del 14 luglio 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 22 gennaio 2015

MATEMATICA FINANZIARIA Appello del 22 gennaio 2015 MATEMATICA FINANZIARIA Appello del 22 gennaio 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 24 marzo 2015

MATEMATICA FINANZIARIA Appello del 24 marzo 2015 MATEMATICA FINANZIARIA Appello del 24 marzo 2015 Cognome.................................. Nome.................................. C.d.L....................... Matricola n................................................

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Università degli Studi di Siena Facoltà di Economia Esercizi di Matematica Finanziaria relativi ai capitoli I-IV del testo Claudio Pacati a.a. 1998 99 c Claudio Pacati tutti i diritti riservati. Il presente

Dettagli

MATEMATICA FINANZIARIA Appello del 18 marzo 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 18 marzo 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 18 marzo 2013 Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 26 gennaio 2009. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli

MATEMATICA FINANZIARIA Appello del 26 gennaio 2009. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli MATEMATICA FINANZIARIA Appello del 26 gennaio 2009 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Epoca k Rata Rk Capitale Ck interessi Ik residuo Dk Ek 0 S 0 1 C1 Ik=i*S Dk=S-C1. n 0 S

Epoca k Rata Rk Capitale Ck interessi Ik residuo Dk Ek 0 S 0 1 C1 Ik=i*S Dk=S-C1. n 0 S L AMMORTAMENTO Gli ammortamenti sono un altra apllicazione delle rendite. Il prestito è un operazione finanziaria caratterizzata da un flusso di cassa positivo (mi prendo i soldi in prestito) seguito da

Dettagli

Ipotizzando una sottostante legge esponenziale e considerando l anno commerciale (360 gg), determinare:

Ipotizzando una sottostante legge esponenziale e considerando l anno commerciale (360 gg), determinare: MATEMATICA FINANZIARIA - 6 cfu Prova del 22 Gennaio 2015 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr... Anno di Corso... Firma... Scelta dell appello per l esame orale

MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr... Anno di Corso... Firma... Scelta dell appello per l esame orale MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

MATEMATICA FINANZIARIA Appello del 16 giugno 2014

MATEMATICA FINANZIARIA Appello del 16 giugno 2014 MATEMATICA FINANZIARIA Appello del 16 giugno 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 4

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 4 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi 4 Piani di ammortamento Esercizio 1. Un debito di 1000e viene rimborsato a tasso annuo i = 10%

Dettagli

MATEMATICA FINANZIARIA Appello del 20 gennaio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR).

MATEMATICA FINANZIARIA Appello del 20 gennaio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR). MATEMATICA FINANZIARIA Appello del 20 gennaio 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE Calcolo Finanziario Esercizi proposti Gli esercizi contrassegnati con (*) è consigliato svolgerli con il foglio elettronico, quelli

Dettagli

Matematica Finanziaria 11 luglio 2001

Matematica Finanziaria 11 luglio 2001 Matematica Finanziaria 11 luglio 2001 Prova Generale. ESERCIZIO 1: Algebra Lineare ² Enunciare il Teorema di Rouchè-Capelli. ² Dato il seguente sistema che descrive la dinamica del fatturato di due imprese

Dettagli

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008. Esercizio 1 (6 punti)

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008. Esercizio 1 (6 punti) MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008 Nome Cognome Matricola Esercizio 1 (6 punti) Dato un debito di 20 000, lo si voglia rimborsare mediante il pagamento di 12 rate mensili posticipate

Dettagli

Matematica Finanziaria A - corso part time prova d esame del 21 Aprile 2010 modalità A

Matematica Finanziaria A - corso part time prova d esame del 21 Aprile 2010 modalità A prova d esame del 21 Aprile 2010 modalità A 1. Un tizio ha bisogno di 600 euro che può chiedere, in alternativa, a due banche: A e B. La banca A propone un rimborso a quote capitale costanti mediante tre

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Matematica (prof. Paolo Pellizzari) Corso di laurea COMES 3 Novembre 2011 A

Matematica (prof. Paolo Pellizzari) Corso di laurea COMES 3 Novembre 2011 A Novembre 2011 A f (x) = ( 6 + 8 x ) x + 4. (2) Sia f definita in [0,5] come segue (x 2) 2 + 1 se 0 x x + 5 se < x 5 (c) Enunciate il teorema di Weierstrass. () Sia f (x) = log(2 + e x 4 ). (a) Calcolate

Dettagli

Esercizi svolti in aula

Esercizi svolti in aula Esercizi svolti in aula 23 maggio 2012 Esercizio 1 (Esercizio 1 del compito di matematica finanziaria 1 (CdL EA) del 16-02-10) Un individuo vuole accumulare su un conto corrente la somma di 10.000 Euro

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti 1. Un capitale d ammontare 100 viene investito, in regime di interesse semplice, al tasso annuo

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA MATEMATICA FINANZIARIA E. Michetti Esercitazioni in aula MOD. 2 E. Michetti (Esercitazioni in aula MOD. 2) MATEMATICA FINANZIARIA 1 / 18 Rendite Esercizi 2.1 1. Un flusso di cassa prevede la riscossione

Dettagli

Per motivi di bilancio, la Banca può scegliere di finanziare una sola delle due imprese. Quale sceglierà, e per quale motivo?

Per motivi di bilancio, la Banca può scegliere di finanziare una sola delle due imprese. Quale sceglierà, e per quale motivo? MATEMATICA FINANZIARIA Prova intermedia dell 11/11/2014 Pacati Renò non iscritto Cognome e Nome..................................................................... Matricola...................... Fornire

Dettagli

MATEMATICA FINANZIARIA Appello del 4 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 4 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 4 settembre 2013 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello dell 11 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello dell 11 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello dell 11 settembre 2013 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Nome e Cognome... Matricola...

Nome e Cognome... Matricola... Università degli Studi di Perugia Facoltà di Economia Corso di Laurea in Statistica e Informatica per la Gestione delle Imprese (SIGI) Anno accademico 2006-2007 Matematica Finanziaria (5 crediti) - Prova

Dettagli

MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario

MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

MATEMATICA FINANZIARIA Appello del 10 luglio 2000

MATEMATICA FINANZIARIA Appello del 10 luglio 2000 MATEMATICA FINANZIARIA Appello del 10 luglio 2000 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 26 febbraio 2009. Cognome e Nome... C.d.L... Matricola n... Firma...

MATEMATICA FINANZIARIA Appello del 26 febbraio 2009. Cognome e Nome... C.d.L... Matricola n... Firma... MATEMATICA FINANZIARIA Appello del 26 febbraio 2009 Cognome e Nome... C.d.L.... Matricola n.... Firma... Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli Fornire le risposte

Dettagli

Le Scelte Finanziarie. S. Corsaro Matematica Finanziaria a.a. 2007/08

Le Scelte Finanziarie. S. Corsaro Matematica Finanziaria a.a. 2007/08 Le Scelte Finanziarie 1 Tasso Interno di Rendimento Consideriamo un operazione finanziaria (t 0 =0): 0 x 0 t 1 t 2 t m...... x 1 x 2 x m Posto: x = x0, x1,, xm { } si definisce tasso interno di rendimento

Dettagli

Formulario. Legge di capitalizzazione dell Interesse semplice (CS)

Formulario. Legge di capitalizzazione dell Interesse semplice (CS) Formulario Legge di capitalizzazione dell Interesse semplice (CS) Il montante M è una funzione lineare del capitale iniziale P. Di conseguenza M cresce proporzionalmente rispetto al tempo. M = P*(1+i*t)

Dettagli

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

Appunti delle esercitazioni di Ricerca Operativa

Appunti delle esercitazioni di Ricerca Operativa Appunti delle esercitazioni di Ricerca Operativa a cura di P. Detti e G. Ciaschetti 1 Esercizi sulle condizioni di ottimalità per problemi di ottimizzazione non vincolata Esempio 1 Sia data la funzione

Dettagli

MATEMATICA GENERALE - (A-D) Prova d esame del 7 febbraio 2012 - FILA A

MATEMATICA GENERALE - (A-D) Prova d esame del 7 febbraio 2012 - FILA A MATEMATICA GENERALE - (A-D) Prova d esame del 7 febbraio 2012 - FILA A Nome e cognome Matricola I Parte OBBLIGATORIA (quesiti preliminari: 1 punto ciascuno). Riportare le soluzioni su questo foglio, mostrando

Dettagli

1 MATEMATICA FINANZIARIA

1 MATEMATICA FINANZIARIA 1 MATEMATICA FINANZIARIA 1.1 26.6.2000 Data la seguente operazione finanziaria: k = 0 1 2 3 4 F k = -800 200 300 300 400 a. determinare il TIR b. detreminare il VAN corrispondente ad un interesse periodale

Dettagli

1.a [3] Trovare quale importo può essere finanziato pagando una rata mensile posticipata di 1000e per 5 anni, al tasso semestrale del 5%.

1.a [3] Trovare quale importo può essere finanziato pagando una rata mensile posticipata di 1000e per 5 anni, al tasso semestrale del 5%. ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE PROVA DI COMPLETAMENTO 16 maggio 2008 Cognome Nome e matr..................................................................................

Dettagli

3b. [2] Dopo aver determinato la rata esatta, scrivere il piano di ammortamento.

3b. [2] Dopo aver determinato la rata esatta, scrivere il piano di ammortamento. MATEMATICA FINANZIARIA - 6 cfu Prova del 23 aprile 2014 - Riservata a studenti fuori corso Cognome Nome e matr.................................................................................. Anno di

Dettagli

Capitalizzazione composta, rendite, ammortamento

Capitalizzazione composta, rendite, ammortamento Capitalizzazione composta, rendite, ammortamento Paolo Malinconico 2 dicembre 2014 Montante Composto dove: C(t) = C(1+i) t C(t) = montante (o valore del capitale) al tempo t C = capitale impiegato (corrispondente

Dettagli

MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

2. Scomporre la seconda rata in quota di capitale e quota d interesse.

2. Scomporre la seconda rata in quota di capitale e quota d interesse. Esercizi di matematica finanziaria Rate e ammortamenti Esercizio.. Un finanziamento di 0000 euro deve essere rimborsato con tre rate annue costanti d ammontare R. Il tasso contrattuale è 2% annuo (composto)..

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Esercizi di Matematica Finanziaria Un utile premessa Negli esercizi di questo capitolo, tutti gli importi in euro sono opportunamente arrotondati al centesimo. Ad esempio,e2 589.23658 e2 589.24 (con un

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

1 Massimi e minimi liberi 1. 2 Massimi e minimi vincolati 7. 3 Soluzioni degli esercizi 12

1 Massimi e minimi liberi 1. 2 Massimi e minimi vincolati 7. 3 Soluzioni degli esercizi 12 UNIVR Facoltà di Economia Sede di Vicenza Corso di Matematica 1 Massimi e minimi delle funzioni di più variabili Indice 1 Massimi e minimi liberi 1 Massimi e minimi vincolati 7 3 Soluzioni degli esercizi

Dettagli

Applicazioni con EXCEL alle decisioni finanziarie

Applicazioni con EXCEL alle decisioni finanziarie Applicazioni con EXCEL alle decisioni finanziarie Appunti per il corso di Metodi decisionali per l'azienda B Corso di laurea in statistica e informatica per la gestione delle imprese a.a. 2001-2002 Stefania

Dettagli

DOMANDE PER LA PREPARAZIONE DELL ESAME DI STRUMENTI FINANZIARI

DOMANDE PER LA PREPARAZIONE DELL ESAME DI STRUMENTI FINANZIARI DOMANDE PER LA PREPARAZIONE DELL ESAME DI STRUMENTI FINANZIARI Cap. 1. La moneta e i bisogni di pagamento 1) Si illustrino i problemi che incontrano gli scambisti nel regolamento di uno scambio monetario.

Dettagli

CAPITALIZZAZIONE, VALORE ATTUALE, RENDITE

CAPITALIZZAZIONE, VALORE ATTUALE, RENDITE Esercitazione Finanza Aziendale n 1 : CAPITALIZZAZIONE, VALORE ATTUALE, RENDITE 1 Capitalizzazione: QUANTO VALE DOMANI IL CAPITALE CHE INVESTO OGGI? (determinazione del Montante) Attualizzazione: QUANTO

Dettagli

MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

Diagonalizzazione di matrici e applicazioni lineari

Diagonalizzazione di matrici e applicazioni lineari CAPITOLO 9 Diagonalizzazione di matrici e applicazioni lineari Esercizio 9.1. Verificare che v = (1, 0, 0, 1) è autovettore dell applicazione lineare T così definita T(x 1,x 2,x 3,x 4 ) = (2x 1 2x 3, x

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

1a 1b 2a 2b 3 4 5 6 6 5 4 3

1a 1b 2a 2b 3 4 5 6 6 5 4 3 MATEMATICA FINANZIARIA A e B - Prova scritta del 30 maggio 2000 1. (11 pti) Un tale deve pagare un debito di ammontare D. L ammortamento viene strutturato su 3 anni valutando gli interessi coi tassi variabili

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

Matrice Excel Calcolo rata con TASSO DI INTERESSE determinato dall'utente

Matrice Excel Calcolo rata con TASSO DI INTERESSE determinato dall'utente Matrice Excel Calcolo rata con TASSO DI INTERESSE determinato dall'utente L'acquisto di un immobile comporta un impegno finanziario notevole e non sempre è possibile disporre della somma di denaro sufficiente

Dettagli

Parte 6. Applicazioni lineari

Parte 6. Applicazioni lineari Parte 6 Applicazioni lineari A Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Applicazioni fra insiemi, 2 Applicazioni lineari tra spazi vettoriali, 2 3 Applicazioni lineari da R n a R

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. Prova del 23 giugno 2009. Cognome Nome e matr... Anno di Corso... Firma...

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. Prova del 23 giugno 2009. Cognome Nome e matr... Anno di Corso... Firma... ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE Prova del 23 giugno 2009 Cognome Nome e matr..................................................................................

Dettagli

POLITECNICO DI TORINO DIPLOMA UNIVERSITARIO TELEDIDATTICO Polo di Torino

POLITECNICO DI TORINO DIPLOMA UNIVERSITARIO TELEDIDATTICO Polo di Torino POLITECNICO DI TORINO DIPLOMA UNIVERSITARIO TELEDIDATTICO Polo di Torino COSTI DI PRODUZIONE E GESTIONE AZIENDALE A.A. 1999-2000 (Tutore: Ing. L. Roero) Scheda N. 10 ANALISI DEGLI INVESTIMENTI In questa

Dettagli

Ministero dell Economia e delle Finanze

Ministero dell Economia e delle Finanze Ministero dell Economia e delle Finanze Quale titolo di Stato per quale profilo di investitore? Forum della PA - 25 maggio 2007 Dott.ssa Maria Cannata Direttore Generale del Debito Pubblico -1- Introduzione

Dettagli

Matrice Excel Calcolo rata con DURATA DEL FINANZIAMENTO determinata dall'utente

Matrice Excel Calcolo rata con DURATA DEL FINANZIAMENTO determinata dall'utente Matrice Excel Calcolo rata con DURATA DEL FINANZIAMENTO determinata dall'utente L'acquisto di un immobile comporta un impegno finanziario notevole e non sempre è possibile disporre della somma di denaro

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. PROVA DI COMPLETAMENTO 27 maggio 2010

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. PROVA DI COMPLETAMENTO 27 maggio 2010 ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE PROVA DI COMPLETAMENTO 27 maggio 2010 Cognome Nome e matr..................................................................................

Dettagli

Esercitazione 24 marzo

Esercitazione 24 marzo Esercitazione 24 marzo Esercizio 1 Una persona contrae un prestito di 25000 e, che estinguerà pagando le seguenti quote capitale: 3000 e fra 6 mesi, 5000 e fra un anno, 8000 e fra 18 mesi, 4000 e fra 2

Dettagli

IL VALORE FINANZIARIO DEL TEMPO. Docente: Prof. Massimo Mariani

IL VALORE FINANZIARIO DEL TEMPO. Docente: Prof. Massimo Mariani IL VALORE FINANZIARIO DEL TEMPO Docente: Prof. Massimo Mariani 1 SOMMARIO Il concetto di tempo Il valore finanziario del tempo Le determinanti del tasso di interesse La formula di Fisher I flussi di cassa

Dettagli

MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Capitolo 1. Leggi di capitalizzazione. 1.1 Introduzione. 1.2 Richiami di teoria

Capitolo 1. Leggi di capitalizzazione. 1.1 Introduzione. 1.2 Richiami di teoria Indice 1 Leggi di capitalizzazione 5 1.1 Introduzione............................ 5 1.2 Richiami di teoria......................... 5 1.2.1 Regimi notevoli...................... 6 1.2.2 Tassi equivalenti.....................

Dettagli

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA...

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA... 15 febbraio 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura

Dettagli

Analisi 2. Argomenti. Raffaele D. Facendola

Analisi 2. Argomenti. Raffaele D. Facendola Analisi 2 Argomenti Successioni di funzioni Definizione Convergenza puntuale Proprietà della convergenza puntuale Convergenza uniforme Continuità e limitatezza Teorema della continuità del limite Teorema

Dettagli

3 Le operazioni finanziarie 21 3.1 Criteri di scelta in condizioni di certezza... 22 3.1.1 Il criterio del VAN... 22 3.1.2 Il criterio del TIR...

3 Le operazioni finanziarie 21 3.1 Criteri di scelta in condizioni di certezza... 22 3.1.1 Il criterio del VAN... 22 3.1.2 Il criterio del TIR... Indice 1 I tassi di interesse 1 1.1 Tasso di interesse Semplice.................... 2 1.2 Tasso di interesse Composto................... 3 1.3 Esempi tasso semplice...................... 4 1.4 Esempi tasso

Dettagli

1b. [2] Stessa richiesta del punto 1a., con gli stessi dati salvo che la valutazione deve essere fatta rispetto alla legge lineare.

1b. [2] Stessa richiesta del punto 1a., con gli stessi dati salvo che la valutazione deve essere fatta rispetto alla legge lineare. MATEMATICA FINANZIARIA - 6 cfu Prova del 14 aprile 2015 - Riservata a studenti fuori corso Cognome Nome e matr.................................................................................. Anno di

Dettagli

Ricerca Operativa 2. Introduzione al metodo del Simplesso

Ricerca Operativa 2. Introduzione al metodo del Simplesso Ricerca Operativa 2. Introduzione al metodo del Simplesso Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema di ottimizzazione vincolata è definito dalla massimizzazione

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 2012/2013 12 febbraio 2013

Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 2012/2013 12 febbraio 2013 Tempo massimo 2 ore. Consegnare solamente la bella copia. Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 212/213 12 febbraio 213 1. Disegnare il grafico della funzione: [1

Dettagli

Il calcolo finanziario è utilizzato per rendere epoche diverse.

Il calcolo finanziario è utilizzato per rendere epoche diverse. Economia delle Risorse Naturali A COSA SERVE? Il calcolo finanziario è utilizzato per rendere omogenei tra loro valori che si verificano in epoche diverse. L interesse è il prezzo d uso del capitale. Il

Dettagli

Notazione. S : som m a finanziata i : tasso d 'in teresse D : debito residuo E : d eb ito estin to I : q u o ta in teressi C : q u o t a capita l e R

Notazione. S : som m a finanziata i : tasso d 'in teresse D : debito residuo E : d eb ito estin to I : q u o ta in teressi C : q u o t a capita l e R Ammortamento t finanziarioi i Piani di rimborso prestiti MQ 186PP Notazione S : som m a finanziata i : tasso d 'in teresse D : debito residuo E : d eb ito estin to I : q u o ta in teressi C : q u o t a

Dettagli

MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

Matematica finanziaria: svolgimento della prova di esonero del 28 marzo 2007

Matematica finanziaria: svolgimento della prova di esonero del 28 marzo 2007 Matematica finanziaria: svolgimento della prova di esonero del 28 marzo 27. Bobo e Bubi affrontano la loro prima crisi familiare a causa della mancanza di una lavastoviglie. Decidono pertanto di acquistarne

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

(Come noto, il risultato finale dell importo dei capitali, espresso in euro, deve essere arrotondato al centesimo più prossimo)

(Come noto, il risultato finale dell importo dei capitali, espresso in euro, deve essere arrotondato al centesimo più prossimo) MATEMATICA FINANZIARIA ISTITUZIONI L - Z) Pavia 11/ 11/004 COGNOME e NOME:... n.dimatricola:... CODICE ESAME:... Come noto, il risultato finale dell importo dei capitali, espresso in euro, deve essere

Dettagli

IV Esercitazione di Matematica Finanziaria

IV Esercitazione di Matematica Finanziaria IV Esercitazione di Matematica Finanziaria 28 Ottobre 2010 Esercizio 1. Si consideri l acquisto di un titolo a cedola nulla con vita a scadenza di 85 giorni, prezzo di acquisto (lordo) P = 97.40 euro e

Dettagli

2 + (σ2 - ρσ 1 ) 2 > 0 [da -1 ρ 1] b = (σ 2. 2 - ρσ1 σ 2 ) = (σ 1

2 + (σ2 - ρσ 1 ) 2 > 0 [da -1 ρ 1] b = (σ 2. 2 - ρσ1 σ 2 ) = (σ 1 1 PORTAFOGLIO Portafoglio Markowitz (2 titoli) (rischiosi) due titoli rendimento/varianza ( μ 1, σ 1 ), ( μ 2, σ 2 ) Si suppone μ 1 > μ 2, σ 1 > σ 2 portafoglio con pesi w 1, w 2 w 1 = w, w 2 = 1- w 1

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (0/07/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/07/03) Università di Verona - Laurea in Biotecnologie

Dettagli

3. Determinare il rendimento effettivo di un BTP triennale con cedole al 5,2% acquistato a 100,35 e venduto a 99,95.

3. Determinare il rendimento effettivo di un BTP triennale con cedole al 5,2% acquistato a 100,35 e venduto a 99,95. Matematica finanziaria CLAMM 20/202, giugno 202 Secondo parziale. 20 000 d sono rimborsati con 72 rate mensili in progressione geometrica di ragione 0, 99 al tasso i 2 = 0, 0032. Determinare la somma degli

Dettagli

MATEMATICA FINANZIARIA Appello del 23 settembre 2015

MATEMATICA FINANZIARIA Appello del 23 settembre 2015 MATEMATICA FINANZIARIA Appello del 23 settembre 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

TEST FINANZA OTTOBRE 2013

TEST FINANZA OTTOBRE 2013 TEST FINANZA OTTOBRE 03. Si consideri la funzione f ( ) ln( e ). Determinare l espressione corretta della derivata seconda f ( ). e f( ) ( e ) A B f( ) e f( ) ln ( e ) C D f( ). Dati i tre vettori (, 3,

Dettagli

Le obbligazioni: misure di rendimento e rischio. Economia degli Intermediari Finanziari 4 maggio 2009 A.A. 2008-2009

Le obbligazioni: misure di rendimento e rischio. Economia degli Intermediari Finanziari 4 maggio 2009 A.A. 2008-2009 Le obbligazioni: misure di rendimento e rischio Economia degli Intermediari Finanziari 4 maggio 009 A.A. 008-009 Agenda 1. Introduzione ai concetti di rendimento e rischio. Il rendimento delle obbligazioni

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

ESERCIZI APPLICAZIONI LINEARI

ESERCIZI APPLICAZIONI LINEARI ESERCIZI APPLICAZIONI LINEARI PAOLO FACCIN 1. Esercizi sulle applicazioni lineari 1.1. Definizioni sulle applicazioni lineari. Siano V, e W spazi vettoriali, con rispettive basi B V := (v 1 v n) e B W

Dettagli