Metodi matematici II 15 luglio 2003

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Metodi matematici II 15 luglio 2003"

Transcript

1 MM.II Prova Generale - Test Vecchio Ordinamento, 5 luglio Metodi matematici II 5 luglio TEST (Vecchio ordinamento) Cognome Nome Matricola Rispondere alle dodici domande sbarrando la casella che si ritiene corretta nel caso di risposta multipla (una sola risposta è corretta). Si indichi la risposta ma non il procedimento in caso di risposta aperta. Nel caso si intenda annullare una risposta cerchiare la corrispondente casella. Risposte corrette altrimenti 6 min. Punteggio 4 8 INS DOMANDA Un progetto è caratterizzato da un esborso immediato di da un altro esborso dopo un mese di e da flussi positivi di mensili posticipati per i successivi 8 anni. Il VAN del progetto, dato un costo opportunità dell % composto annuo è: DOMANDA In un piano di ammortamento francese, di un debito di ammontare, l importo dellaratacostanteincasodiduratadiunanno, pagamenti mensili anticipati e tasso composto annuo i =5%è: DOMANDA Il seguente progetto: tempo flussi - 7 ha un TIR annuo pari a: DOMANDA 4 Un progetto è caratterizzato da un VAN pari a. Si può ricorrere ad un finanziamento che se attivato completamente ha VAN pari a -. L APV del progetto congiunto in cui si attiva del finanziamento è: a ; b ; c 6; d ; DOMANDA 5 Un BOT avente vita residua di 5 gg (anno solare) ha una quotazione pari a 8. Allora il tasso di interesse semplice che esso garantisce è pari a: a 5.4%; b 4.7%; c 4.87%; d 4.78%; DOMANDA 6 Un gestore con un capitale di e in presenza di un solo fattore di rischio, deve costruire un portafoglio con sensibilità pari ad.5. Se i due titoli hanno sensibilità al fattore di rischio pari a e e che i loro prezzi sono pari a 4 e 4, le quantità da acquistare dei due titoli sono: DOMANDA 7 La matrice A =,k R, ha: k k a r (A) =se k =; b r (A), k; c r (A) =se k =; d r (A) =, k; DOMANDA 8 La matrice A raccoglie il costo in Euro per unità di diversi semilavorati (S, S) classificati a seconda del fornitore (F, F ). I prodotti sono le etichette di S S colonna, i fornitori di riga: A = F. Nella matrice B si raccolgono F 4 tre diverse possibilità di utilizzo dei due semilavorati per la produzione di un unità di un certo bene (B ha in colonna le quantità acquistate di ciascun semilavorato): p p p B = S 4 6. Col vincolo che non è possibile ripartire tra i due fornitori S 5 4 l acquisto dei due semilavorati, quale combinazione produttiva associata a quale fornitore garantisce il minor costo di produzione? a p con F ; b p con F ; c p con F ; d p con F ; DOMANDA 7 Sia P = una matrice di transizione per un sistema con elementi. 8 Allora lo stato stazionario del sistema è descritto dal vettore: [ ] DOMANDA Il sistema lineare Ax = b, con A = 4, b = terza componente del vettore soluzione:, ammette come DOMANDA La seguente funzione f (x, y) =ln(y x) ha vettore gradiente nel punto (, ) dato da: f(, ) = [ ] DOMANDA La seguente funzione f : R n R, f (x) =x T Cx + a T x dove C R n,n simmetrica einvertibileeda R n, ha un punto stazionario dato da: a x =; b non ha punti stazionari; c x = C a; d x = A b;

2 MM.II Prova Generale - Test Studenti ex-saa, 5 luglio MM.II Prova Generale - Test Studenti ex-saa, 5 luglio 4 Metodi matematici II 5 luglio TEST (Studenti ex SAA) Cognome Nome Matricola Rispondere alle sei domande sbarrando la casella che si ritiene corretta nel caso di risposta multipla (una sola risposta è corretta). Si indichi la risposta ma non il procedimento in caso di risposta aperta. Nel caso si intenda annullare una risposta cerchiare la corrispondente casella. Risposte corrette altrimenti Punteggio 8 INS TEMPO a disposizione: min. DOMANDA 5 Una funzione f : R R èduevoltedifferenziabile ed ammette in x R un punto di massimo locale forte. Quale delle seguenti affermazione è vera? a f è superiormente limitata; b f (x ) è diverso dal vettore nullo; c H f (x ) risulta definita o semidefinita negativa; d f può essere discontinua in x ; DOMANDA 6 h Sia data f (x, y) =exp (x y) i.allora: f(x, y) = y DOMANDA La seguente funzione f (x, y) =ln(xy) x, ha curve di livello date da: a y = ek+x x ; b y = ek x x ; c y = xek+x ; d y =x; DOMANDA In un problema di PL la funzione obiettivo è f (x, y) =x +y sub x,y,x+ y 4,x 5. Stabilire se il problema ammette minimo e se si minimo (crocettare se si pensa p =... è punto di min vincolato DOMANDA In un punto stazionario, x, di una funzione due volte differenziabile è stata calcolata la seguente matrice Hessiana. Allora è possibile stabilire che: 4 a x èptdimax; b x èptdimin; c x può essere pt di max; d x è punto di sella; DOMANDA 4 In un problema di estremo vincolato con vincoli e 4 variabili si è determinata la matrice hessiana orlata i cui m.p. di NW sono:,, -,. Allora il punto stazionario della f. Lagrangiana, per il pb di estremo rappresenta: a un pto di sella; b un pto di max; c non si può dire; d un pto di min;

3 MM.II Prova Generale - Test Nuovo Ordinamento, 5 luglio 5 MM.II Prova Generale - Test Nuovo Ordinamento, 5 luglio 6 Metodi matematici II 5 luglio TEST (Nuovo ordinamento) Cognome Nome Matricola Rispondere alle dodici domande sbarrando la casella che si ritiene corretta nel caso di risposta multipla (una sola risposta è corretta) o indicando la risposta ma non il procedimento in caso di risposta aperta. Nel caso si intenda annullare una risposta cerchiare la corrispondente casella. Risposte corrette altrimenti 6 min. Punteggio 4 8 INS DOMANDA Un progetto è caratterizzato da un esborso immediato di da un altro esborso dopo un mese di e da flussi positivi di mensili posticipati per i successivi 8 anni. Il VAN del progetto, dato un costo opportunità dell % composto annuo è: DOMANDA In un piano di ammortamento francese, di un debito di ammontare, l importo dellaratacostanteincasodiduratadiunanno, pagamenti mensili anticipati e tasso composto annuo i =5%è: DOMANDA Il seguente progetto: tempo flussi - 7 ha un TIR annuo pari a: DOMANDA 4 Un progetto è caratterizzato da un VAN pari a. Si può ricorrere ad un finanziamento che se attivato completamente ha VAN pari a -. L APV del progetto congiunto in cui si attiva del finanziamento è: a ; b ; c 6; d ; DOMANDA 5 Un BOT avente vita residua di 5 gg (anno solare) ha una quotazione pari a 8. Allora il tasso di interesse semplice che esso garantisce è pari a: a 5.4%; b 4.7%; c 4.87%; d 4.78%; DOMANDA 6 Un gestore con un capitale di e in presenza di un solo fattore di rischio, deve costruire un portafoglio con sensibilità pari ad.5. Se i due titoli hanno sensibilità al fattore di rischio pari a e e che i loro prezzi sono pari a 4 e 4, le quantità da acquistare dei due titoli sono: DOMANDA 7 La matrice A =,k R, ha: k k a r (A) =se k =; b r (A), k; c r (A) =se k =; d r (A) =, k; DOMANDA 8 La matrice A raccoglie il costo in Euro per unità di diversi semilavorati (S, S) classificati a seconda del fornitore (F, F ). I prodotti sono le etichette di S S colonna, i fornitori di riga: A = F. Nella matrice B si raccolgono F 4 tre diverse possibilità di utilizzo dei due semilavorati per la produzione di un unità di un certo bene (B ha in colonna le quantità acquistate di ciascun semilavorato): p p p B = S 4 6. Col vincolo che non è possibile ripartire tra i due fornitori S 5 4 l acquisto dei due semilavorati, quale combinazione produttiva associata a quale fornitore garantisce il minor costo di produzione? a p con F ; b p con F ; c p con F ; d p con F ; DOMANDA Sia P = 7 una matrice di transizione per un sistema con elementi. 8 Allora lo stato stazionario del sistema è descritto dal vettore: [ ] DOMANDA Il sistema lineare Ax = b, con A = 4, b = terza componente del vettore soluzione: DOMANDA Sia A =. L inversa di A è:...., ammette come DOMANDA Sia d =.5%; in regime di sconto commerciale gli anni necessari affinchè il v.a. di una rendita annua, posticipata, con rata pari a, sia 5., è: a n =6; b n =64; c n =6; d n =5;

4 MM.II Prova Generale - Soluzioni Test, 5 luglio 7 Metodi matematici II 5 luglio Soluzioni Test MM.II Prova Generale - Soluzioni Test, 5 luglio 8. Domanda V.O. Fila A Ex-SAA 668,6 a 7,4 (, ) 6,% c 4 a d 5 b c 6, 5 4, 5 (x y)exp ³(x y) 7 b - 8 a - [4 6] - x =7/ - [ ] - c - Domanda N.O. Fila A 668, 6 7,4 6,% 4 a 5 b 6, 5 4, 5 7 b 8 a [4 6] x =7/

5 MM.II Prova Generale - Parte B, 5 luglio MM.II Prova Generale - Parte B, 5 luglio Metodi Matematici 5 luglio Parte B Per gli studenti del nuovo ordinamento rispondere ai primi due esercizi. Per gli studenti del vecchio ordinamento a due esercizi a scelta tra i tre (ma non è possibile rispondere a più di due esercizi. Tempo a disposizione: 6 minuti). ESERCIZIO-AlgebraLineare a) Enunciare il Teorema di Rouchè-Capelli. b) Discutere l applicazione del Teorema di Rouchè-Capelli al caso di SL omogenei. c) Utilizzando i risultati del Teorema di R-C, discutere e risolvere il sistema lineare Ax = b, alvariaredelparametroα R, dove: A =,b= α a) Risolvere il seguente problema di estremo vincolato, verificando che siano rispettate le ipotesi alla base dei teoremi utilizzati: x T Ax sub : Dx = b dove x R, A R,,D R,, b R : 4 A = ; D = ; b = (suggerimento: il determinante dell hessiana orlata è pari a 78). b) Valutare la convenienza relativa delle due seguenti alternative: aumentare la disponibilità del secondo vincolo da a.. ridurre la disponibilità del secondo vincolo da a -.. ESERCIZIO - Matematica Finanziaria Un imprenditore decide di attuare un progetto di investimento caratterizzato dai seguenti flussi in Euro: Tempo Flussi Dato che per l attivazione del progetto è necessario un finanziamento pari all intero importo del progetto, decide di valutare la convenienza delle due seguenti alternative: accensione di un prestito da ripagare con 4 rate semestrali costanti secondo il regimedelloscontocommercialeal tasso annuo di sconto del 7%. accensione di un prestito in valuta straniera di durata biennale, con rate annue costanti in regime di interesse composto al tasso annuo del 6%, tenuto conto di una svalutazione annua del cambio dollaro/euro del % e dato che il tasso di cambio corrente è.$/e (quindi se oggi S t =. allora S t+ =. ( +.) ). Applicando il criterio dell APV, quale tra le due proposte l investitore decide di attivare dato che il suo costo opportunità pari al 4%? ESERCIZIO - Ottimizzazione

6 MM.II Prova Generale - Soluzioni Parte B, 4 giugno MM.II Prova Generale - Soluzioni Parte B, 4 giugno Metodi Matematici II 5 luglio SOLUZIONE Parte B ESERCIZIO-AlgebraLineare c) Utilizzando i risultati del Teorema di R-C, discutere e risolvere il sistema lineare Ax = b, alvariaredelparametroα R, dove: A =,b= Si ha che r (A) =, poichè det (A) = 6=. Il r (A b) non dipende dal valore di α ed è ancora pari a. Il sistema ammette un unica soluzione data da: α x = =. α α + ESERCIZIO - Matematica Finanziaria Determiniamo l importo delle rate utilizzando l espressione del valore attuale di una rendita di rata r pagata m volte l anno e durata n anni al tasso di sconto d, data da: µ nm + A = nmr d m α Nell es. in questione A rappresenta l ammontare del debito, cioè. Inoltre n =, m =e d =.7 per cui: A r = nm d nm+ = m.7 + =7. 7 risulta la rata d ammortamento del debito. Quindi se si adotta questa scelta i flussi di cassa del progetto sarebbero dati da: t Inv.to Debito Flussi Netti V.A. (i =5%) (+.5) (+.5) APV = Per valutare la convenienza della scelta, determiniamo l APV che risulta essere: AP V = + 8a a 4 i con Quindi: i =(+.4) =.8 4. APV = + 8a a 4 i ( +.4) ( +.8 4) 4 = = Nel secondo caso, occorre determinare innanzitutto l importo del debito in valuta straniera che è Euro =.$ = $. E/$ La rata di rimborso in dollari è ottenuta risolvendo $=Ra.6,dacuisiottiene l ammontare della rata in dollari: R $ = a.6 $= (+.6).6 $=5. 8$ Per determinare le corrispondenti rate in Euro, occorre tenere conto della svalutazione del tasso di cambio. Si avrebbe quindi t Flussi Debito in $ Tasso Cambio E/$ Flussi Debito in E (+.) = = = = (+.) Di conseguenza i flussi del progetto in questo secondo caso sono dati da: t Inv.to Debito Flussi Netti V.A. (i =4%) (+.4) (+.4) APV = Poichè l APV nel secondo caso risulta essere maggiore, l imprenditore preferirà accedere al secondo finanziamento. ESERCIZIO - Ottimizzazione. a) La funzione in esame è differenziabile e definita su tutto R n e quindi per applicare le c.n. e le c.s. per la ricerca di un estremo, occorre anche verificare che sia soddisfatta la condizione di regolarità dei vincoli. In questo caso, la matrice Jacobiana dei vincoli è la matrice D cheharangoparia,ilnumerodeivincoli: quindi la c.r.v. è soddisfatta.

7 MM.II Prova Generale - Soluzioni Parte B, 4 giugno MM.II Prova Generale - Soluzioni Parte B, 4 giugno 4 In tal caso si può costruire la funzione Lagrangiana: L (x, λ) =x T Ax + λ (b Dx) dove λ = λ λ. La condizione necessaria del primo ordine richiede che il gradiente di L (x, λ) si annulli, cioé Dalla prima condizione si ottiene: x L (x, λ) = Ax (λd) T = λ L (x, λ) = b Dx = Ax = (λd)t Poichè la matrice A ha determinante non nullo, ha rango pieno e risulta invertibile. Si ottiene quindi: x = A (λd) T = A D T λ T = 4 = 4 λ λ λ λ e sostituendo nella seconda condizione (b Dx = ) si ottiene:: 4 λ λ = da cui: esiottiene: λ λ = λ λ 8 = = 7 8 e quindi: x = 4 = 4 = 8 8 λ λ 7 8 Per determinare la natura del punto estremo si fa ricorso alla condizione sufficiente del secondo ordine costruendo la matrice hessiana orlata che nel caso in esame ha la seguente struttura: H = m m D m n D T n m A n n = 8 8 e si indagano gli ultimi n m minori principali di NW. Essendo n =, m =si deve calcolare il segno del determinante dell orlata che dal suggerimento risulta pari a 78 e quindi è positivo. Il vettore x individua così un punto di minimo per il problema di estremo vincolato. b) Trattandosi di un problema di minimo si sceglie la variazione del vincolo che determina la maggiore riduzione nella funzione obiettivo. La variazione della funzione obiettivo a fronte di una variazione del vettore dei vincoli è approssimata da: µ 4f x (b) '< λ, 4b >= λ 4b + λ 4b Nel nostro caso, 4b =e quindi: caso a : 4b =. 4f ' 8 8. = =.54 caso b : 4b =. 4f ' 8 8 (.) = + =+.54 Di conseguenza è preferibile aumentare la disponibilità del secondo vincolo a.. In questo caso si assiste ad una maggiore riduzione del valore della funzione obiettivo nel punto di ottimo.

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

FUNZIONI DI DUE VARIABILI: graöci 3D e curve di livello

FUNZIONI DI DUE VARIABILI: graöci 3D e curve di livello FUNZIONI DI DUE VARIABILI: graöci 3D e curve di livello Una funzione di due variabili Ë una funzione in cui per ottenere un valore numerico bisogna speciöcare il valore di 2 variabili x e y, non pi di

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

Corso di Matematica finanziaria

Corso di Matematica finanziaria Corso di Matematica finanziaria modulo "Fondamenti della valutazione finanziaria" Eserciziario di Matematica finanziaria Università degli studi Roma Tre 2 Esercizi dal corso di Matematica finanziaria,

Dettagli

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz:

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz: FUNZIONI DI PIU VARIABILI Esercizi svolti. Determinare il dominio delle seguenti funzioni e rappresentarlo graficamente : (a) f log( x y ) (b) f log(x + y ) (c) f y x 4 (d) f sin(x + y ) (e) f log(xy +

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Tassi a pronti ed a termine (bozza)

Tassi a pronti ed a termine (bozza) Tassi a pronti ed a termine (bozza) Mario A. Maggi a.a. 2006/2007 Indice 1 Introduzione 1 2 Valutazione dei titoli a reddito fisso 2 2.1 Titoli di puro sconto (zero coupon)................ 3 2.2 Obbligazioni

Dettagli

Cosa sono gli esoneri?

Cosa sono gli esoneri? Cosa sono gli esoneri? Per superare l esame di Istituzioni di Matematiche è obbligatorio superare una prova scritta. Sono previsti due tipi di prova scritta: gli esoneri e gli appelli. Gli esoneri sono

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2))

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2)) Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Applicazioni Lineari 1. Sia f : R 3 R 3 l applicazione lineare definita da f(x, y, z) = (x + ky + z, x y + 2z, x + y z) per ogni (x,

Dettagli

SISTEMI LINEARI QUADRATI: METODI ITERATIVI

SISTEMI LINEARI QUADRATI: METODI ITERATIVI SISTEMI LINEARI QUADRATI: METODI ITERATIVI CALCOLO NUMERICO e PROGRAMMAZIONE SISTEMI LINEARI QUADRATI:METODI ITERATIVI p./54 RICHIAMI di ALGEBRA LINEARE DEFINIZIONI A R n n simmetrica se A = A T ; A C

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE - Matematica - Griglie di valutazione Materia: Matematica Obiettivi disciplinari Gli obiettivi indicati si riferiscono all intero percorso della classe quarta

Dettagli

Foglio informativo n. 178/003. Prestito personale Viaggia con Me.

Foglio informativo n. 178/003. Prestito personale Viaggia con Me. Informazioni sulla banca. Foglio informativo n. 178/003. Prestito personale Viaggia con Me. Intesa Sanpaolo S.p.A. Sede legale e amministrativa: Piazza San Carlo 156-10121 Torino. Tel.: 800.303.306 (Privati),

Dettagli

Università di Pavia - Facoltà di Economia

Università di Pavia - Facoltà di Economia 0 Università di Pavia - Facoltà di Economia Il calcolo imprenditoriale per la trasformazione «finanziaria» Michela Pellicelli Le imprese possono essere considerate trasformatori finanziari in quanto: a)

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

Programmazione Non Lineare Ottimizzazione vincolata

Programmazione Non Lineare Ottimizzazione vincolata DINFO-Università di Palermo Programmazione Non Lineare Ottimizzazione vincolata D. Bauso, R. Pesenti Dipartimento di Ingegneria Informatica Università di Palermo DINFO-Università di Palermo 1 Sommario

Dettagli

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i NA. Operatore nabla Consideriamo una funzione scalare: f : A R, A R 3 differenziabile, di classe C (2) almeno. Il valore di questa funzione dipende dalle tre variabili: Il suo differenziale si scrive allora:

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

CONTABILITA GENERALE

CONTABILITA GENERALE CONTABILITA GENERALE 5 SCRITTURE DI RETTIFICA SU ACQUISTI e SCRITTURE RELATIVE AL REGOLAMENTO DEI DEBITI 24 ottobre 2010 Ragioneria Generale e Applicata - Parte seconda - La contabilità generale 1 3) Rettifiche

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

MUTUO CHIROGRAFARIO OPERATORI ECONOMICI TASSO FISSO

MUTUO CHIROGRAFARIO OPERATORI ECONOMICI TASSO FISSO FOGLIO INFORMATIVO NORME PER LA TRASPARENZA DELLE OPERAZIONI E DEI SERVIZI BANCARI E FINANZIARI MUTUO CHIROGRAFARIO OPERATORI ECONOMICI TASSO FISSO INFORMAZIONI SULLA BANCA UNIPOL BANCA S.p.A. SEDE LEGALE

Dettagli

FINANZIAMENTI IMPORT IN EURO

FINANZIAMENTI IMPORT IN EURO Data release 1/07/2014 N release 0009 Pagina 1 di 6 INFORMAZIONI SULLA BANCA Denominazione Sede legale: BANCA CARIM Cassa di Risparmio di Rimini S.p.A. P.za Ferrari 15 47921 Rimini Nr. di iscriz. Albo

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Capitolo Dodicesimo CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI

Capitolo Dodicesimo CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI Capitolo Dodicesimo CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI CAMPI SCALARI Sono dati: un insieme aperto A Â n, un punto x = (x, x 2,, x n )T A e una funzione f : A Â Si pone allora il PROBLEMA

Dettagli

. analisi teorica (studio di esistenza, unicità della soluzione, sensitività rispetto ai dati, regolarità, comportamento qualitativo).

. analisi teorica (studio di esistenza, unicità della soluzione, sensitività rispetto ai dati, regolarità, comportamento qualitativo). 1 Modelli matematici Un modello è un insieme di equazioni e altre relazioni matematiche che rappresentano fenomeni fisici, spiegando ipotesi basate sull osservazione della realtà. In generale un modello

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f.

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f. FUNZIONI CONTINUE - ALCUNI ESERCIZI SVOLTI SIMONE ALGHISI 1. Continuità di una funzione Dati un insieme D R, una funzione f : D R e x 0 R, si è detto che f è continua in x 0 se sono soddisfatte le seguenti

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

L. Pandolfi. Lezioni di Analisi Matematica 2

L. Pandolfi. Lezioni di Analisi Matematica 2 L. Pandolfi Lezioni di Analisi Matematica 2 i Il testo presenta tre blocchi principali di argomenti: A Successioni e serie numeriche e di funzioni: Cap., e 2. B Questa parte consta di due, da studiarsi

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc.

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. Classi Numeriche 1 1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. In questo breve capitolo richiamiamo le definizioni delle classi numeriche fondamentali, già note al lettore,

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

Capitolo 10. Analisi degli investimenti in beni strumentali

Capitolo 10. Analisi degli investimenti in beni strumentali Capitolo 10 Analisi degli investimenti in beni strumentali 1 I criteri tradizionali di valutazione degli investimenti 1. Il tempo di recupero (payback period) 2. Il payback period attualizzato 3. Il rendimento

Dettagli

Minimizzazione di Reti Logiche Combinatorie Multi-livello

Minimizzazione di Reti Logiche Combinatorie Multi-livello Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni:

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

FORWARD RATE AGREEMENT

FORWARD RATE AGREEMENT FORWARD RATE AGREEMENT FLAVIO ANGELINI. Definizioni In generale, un contratto a termine o forward permette una compravendita di una certa quantità di un bene differita a una data futura a un prezzo fissato

Dettagli

FINANZIAMENTI ALTRI ESTERO

FINANZIAMENTI ALTRI ESTERO Data release 01/07/2014 N release 0009 Pagina 1 di 6 INFORMAZIONI SULLA BANCA Denominazione Sede legale: BANCA CARIM Cassa di Risparmio di Rimini S.p.A. P.za Ferrari 15 47921 Rimini Nr. di iscriz. Albo

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

LEZIONE 17. B : kn k m.

LEZIONE 17. B : kn k m. LEZIONE 17 17.1. Isomorfismi tra spazi vettoriali finitamente generati. Applichiamo quanto visto nella lezione precedente ad isomorfismi fra spazi vettoriali di dimensione finita. Proposizione 17.1.1.

Dettagli

GUIDA RAPIDA emagister-agora Edizione BASIC

GUIDA RAPIDA emagister-agora Edizione BASIC GUIDA RAPIDA emagister-agora Edizione BASIC Introduzione a emagister-agora Interfaccia di emagister-agora Configurazione dell offerta didattica Richieste d informazioni Gestione delle richieste d informazioni

Dettagli

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f).

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f). Due Matrici A,B. Ker f = ker g. 1- Ridurre a scala A e B e faccio il sistema. 2 Se Vengono gli stessi valori allora, i ker sono uguali. Cauchy 1 autovalore, 1- Metto a matrice x1(0),x2(0),x3(0) e la chiamo

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

FOGLIO INFORMATIVO. relativo alle operazioni di

FOGLIO INFORMATIVO. relativo alle operazioni di FOGLIO INFORMATIVO relativo alle operazioni di FINANZIAMENTI IMPORT, ANTICIPI E PREFINANZIAMENTI EXPORT, FINANZIAMENTI SENZA VINCOLO DI DESTINAZIONE (questi ultimi se non rientranti nel credito ai consumatori)

Dettagli

PRINCIPI BASILARI DI ELETTROTECNICA

PRINCIPI BASILARI DI ELETTROTECNICA PRINCIPI BASILARI DI ELETTROTECNICA Prerequisiti - Impiego di Multipli e Sottomultipli nelle equazioni - Equazioni lineari di primo grado e capacità di ricavare le formule inverse - nozioni base di fisica

Dettagli

risparmio, dove lo metto ora? le risposte alle domande che i risparmiatori si pongono sul mondo dei fondi

risparmio, dove lo metto ora? le risposte alle domande che i risparmiatori si pongono sul mondo dei fondi il risparmio, dove lo ora? metto le risposte alle domande che i risparmiatori si pongono sul mondo dei fondi Vademecum del risparmiatore le principali domande emerse da una recente ricerca di mercato 1

Dettagli

Rette e piani con le matrici e i determinanti

Rette e piani con le matrici e i determinanti CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.

Dettagli

CORSO DI CONTABILITA E BILANCIO 2

CORSO DI CONTABILITA E BILANCIO 2 CORSO DI CONTABILITA E BILANCIO 2 La valutazione delle IMMOBILIZZAZIONI MATERIALI Prima lezione di Alberto Bertoni 1 IMMOBILIZZAZIONI Definizione Cod. Civ. art. 2424-bis, 1 c. Le immobilizzazioni sono

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

Determinante e inversa di una matrice

Determinante e inversa di una matrice CPITOLO 6 Determinante e inversa di una matrice Esercizio 6.. Calcolare il determinante delle seguenti matrici: 3 3 = B = 0 3 7 C = 0 D = 0 F = 0 0 3 4 0 3 4 3 Esercizio 6.. Calcolare il determinante delle

Dettagli

OIC 10 RENDICONTO FINANZIARIO

OIC 10 RENDICONTO FINANZIARIO S.A.F. SCUOLA DI ALTA FORMAZIONE LUIGI MARTINO I NUOVI PRINCIPI CONTABILI. LA DISCIPLINA GENERALE DEL BILANCIO DI ESERCIZIO E CONSOLIDATO. OIC 10 RENDICONTO FINANZIARIO GABRIELE SANDRETTI MILANO, SALA

Dettagli

GESTIONE CENTRI DI COSTO

GESTIONE CENTRI DI COSTO GESTIONE CENTRI DI COSTO Basta attribuire un conto economico ad un solo centro di costo fisso, oppure ad un centro di costo generico che, a sua volta, ridistribuisce a percentuale fissa su altri centri

Dettagli

INDICAZIONI SULLA COMPILAZIONE DEI QUADRI DEL MOD. 730/2015 IN BASE ALLA CERTIFICAZIONE UNICA 2015

INDICAZIONI SULLA COMPILAZIONE DEI QUADRI DEL MOD. 730/2015 IN BASE ALLA CERTIFICAZIONE UNICA 2015 INDICAZIONI SULLA COMPILAZIONE DEI QUADRI DEL MOD. 730/2015 IN BASE ALLA CERTIFICAZIONE UNICA 2015 Di seguito, riepiloghiamo i principali campi della Certificazione Unica (CU) che DEVONO essere inseriti

Dettagli

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE 2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 INTRODUZIONE Il problema agli autovalori di un operatore La trattazione del problema agli autovalori di un operatore fatta negli spazi finitodimensionali

Dettagli

Calcolo differenziale per funzioni di più variabili reali

Calcolo differenziale per funzioni di più variabili reali CAPITOLO 3 Calcolo differenziale per funzioni di più variabili reali Scopo di questo capitolo è studiare le principali caratteristiche dei grafici di funzioni di più variabili, con particolare attenzione

Dettagli

Studio grafico-analitico delle funzioni reali a variabile reale

Studio grafico-analitico delle funzioni reali a variabile reale Studio grafico-analitico delle funzioni reali a variabile reale Sequenza dei passi Classificazione In pratica Classifica il tipo di funzione: Funzione razionale: intera / fratta Funzione irrazionale: intera

Dettagli

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b :

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b : Forme bilineari e prodotti scalari Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione b : { V V K ( v, w) b( v, w), si dice forma bilineare su V se per ogni u, v, w V e per ogni k K:

Dettagli

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Anello commutativo. Un anello è commutativo se il prodotto è commutativo.

Anello commutativo. Un anello è commutativo se il prodotto è commutativo. Anello. Un anello (A, +, ) è un insieme A con due operazioni + e, dette somma e prodotto, tali che (A, +) è un gruppo abeliano, (A, ) è un monoide, e valgono le proprietà di distributività (a destra e

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

del 23 marzo 2001 (Stato 10 dicembre 2002)

del 23 marzo 2001 (Stato 10 dicembre 2002) Legge federale sul credito al consumo (LCC) 221.214.1 del 23 marzo 2001 (Stato 10 dicembre 2002) L Assemblea federale della Confederazione Svizzera, visti gli articoli 97 e 122 della Costituzione federale

Dettagli

CONVENZIONE QUADRO TRA

CONVENZIONE QUADRO TRA PROVINCIA DI PESARO E URBINO CONVENZIONE QUADRO Espletamento dei servizi finanziari connessi all emissione di prestiti obbligazionari ed altri servizi finanziari accessori e servizio di advisory per la

Dettagli

Nota su Crescita e Convergenza

Nota su Crescita e Convergenza Nota su Crescita e Convergenza S. Modica 28 Ottobre 2007 Nella prima sezione si considerano crescita lineare ed esponenziale e le loro proprietà elementari. Nella seconda sezione si spiega la misura di

Dettagli

Autorità per la vigilanza sui contratti pubblici di lavori, servizi e forniture QUADERNO

Autorità per la vigilanza sui contratti pubblici di lavori, servizi e forniture QUADERNO Autorità per la vigilanza sui contratti pubblici di lavori, servizi e forniture QUADERNO IL CRITERIO DI AGGIUDICAZIONE DELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA Dicembre 2011 IL CRITERIO DI AGGIUDICAZIONE

Dettagli

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

IL TEOREMA FONDAMENTALE DELL ARITMETICA: FATTORIZZAZIONE IN NUMERI PRIMI.

IL TEOREMA FONDAMENTALE DELL ARITMETICA: FATTORIZZAZIONE IN NUMERI PRIMI. IL TEOREMA FONDAMENTALE DELL ARITMETICA: FATTORIZZAZIONE IN NUMERI PRIMI. PH. ELLIA Indice Introduzione 1 1. Divisori di un numero. 2 2. Numeri primi: definizioni. 4 2.1. Fare la lista dei numeri primi.

Dettagli

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI Prima di riuscire a scrivere un programma, abbiamo bisogno di conoscere un metodo risolutivo, cioè un metodo che a partire dai dati di ingresso fornisce i risultati attesi.

Dettagli

GLI INDICI DI BILANCIO PER LE ANALISI FINANZIARIE

GLI INDICI DI BILANCIO PER LE ANALISI FINANZIARIE GLI INDICI DI BILANCIO PER LE ANALISI FINANZIARIE GLI INDICI DI BILANCIO Gli indici sono rapporti tra grandezze economiche, patrimoniali e finanziarie contenute nello stato patrimoniale e nel conto economico

Dettagli

I contributi pubblici nello IAS 20

I contributi pubblici nello IAS 20 I contributi pubblici nello IAS 20 di Paolo Moretti Il principio contabile internazionale IAS 20 fornisce le indicazioni in merito alle modalità di contabilizzazione ed informativa dei contributi pubblici,

Dettagli

REGOLAMENTO COMUNALE PER LA CONCESSIONE DI ASSEGNI PER IL MIGLIORAMENTO DELLECONDIZIONI DI CURA ED EDUCAZIONE DI MINORI DI ETA DA 0 A 36 MESI.

REGOLAMENTO COMUNALE PER LA CONCESSIONE DI ASSEGNI PER IL MIGLIORAMENTO DELLECONDIZIONI DI CURA ED EDUCAZIONE DI MINORI DI ETA DA 0 A 36 MESI. COMUNE DI COLLOREDO DI MONTE ALBANO REGOLAMENTO COMUNALE PER LA CONCESSIONE DI ASSEGNI PER IL MIGLIORAMENTO DELLECONDIZIONI DI CURA ED EDUCAZIONE DI MINORI DI ETA DA 0 A 36 MESI. Approvato con deliberazione

Dettagli

Maturità Scientifica PNI, sessione ordinaria 2000-2001

Maturità Scientifica PNI, sessione ordinaria 2000-2001 Matematica per la nuova maturità scientifica A. Bernardo M. Pedone Maturità Scientifica PNI, sessione ordinaria 000-00 Problema Sia AB un segmento di lunghezza a e il suo punto medio. Fissato un conveniente

Dettagli

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani Ricerca Operativa Esercizi sul metodo del simplesso Luigi De Giovanni, Laura Brentegani 1 1) Risolvere il seguente problema di programmazione lineare. ma + + 3 s.t. 2 + + 2 + 2 + 3 5 2 + 2 + 6,, 0 Soluzione.

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

ANALISI DEGLI INVESTIMENTI INDUSTRIALI

ANALISI DEGLI INVESTIMENTI INDUSTRIALI ANALISI DEGLI INVESTIMENTI INDUSTRIALI Università degli Studi di Parma Dipartimento di Economia Testo di riferimento: Analisi Finanziaria, McGraw-Hill, 2002 Obiettivi della lezione Capire i profili di

Dettagli