ELABORAZIONE DI SEGNALI E IMMAGINI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ELABORAZIONE DI SEGNALI E IMMAGINI"

Transcript

1 Fltraggo d un segnale EABORAZIOE DI SEGAI E IAGII. Bertero P. Boccacc Al ne d glorare la qualtà d un segnale dgtale una tecnca d prara portanza è l ltraggo. Con l quale s possono enatzzare alcune caratterstce o ruoverne altre. Essenzalente l ltraggo è una unzone d ntorno, nel quale l valore ce assue un bn nel segnale n uscta è deternato dall applcazone d un operatore ce agsce su valor de bns ad esso crcostant nel segnale d ngresso. Per questo tale operatore vene detto operatore locale. Il ltro agsce su una nestra, soltaente d apezza olto pù pccola della durata del segnale. S dtnguono due class d ltr: lnear e non lnear. e pr l operatore dento sulla nestra dà n uscta un valore ce è una cobnazone lneare de valor de bn copres nella nestra. S possono denre ltr lnear ce pulscono l segnale dal ruore oppure ce esaltano le dscontnutà. e second non è possble denre un operatore lneare; soltaente sono operator d rango, coè operator ce agscono su valor de bn dopo averl ordnat. Vedreo ce la derenza sostanzale tra due tp d ltr è ce, entre per pr s può applcare la trasorata d Fourer con tutte le sue propretà, ne second questa operazone non è possble. Fltr lnear D 5 Fnora abbao parato a caponare un segnale e abbao sulato l ruore ce, nevtablente lo algge, n sura pù o eno portante a seconda delle caratterstce dello struento. Una sura d quanto è portante l segnale è data dal rapporto segnale ruore. Questa sura, soltaente è valutata n Decbel ed è denta coe: varanza del segnale SR log db varanza del ruore 5 SR Sgnal to ose Rato Studao ora coe pulre un segnale dal ruore attraverso ltr lnear e non lnear. Il pù seplce ltro lneare è quello ce vene caato eda oble. In pratca s a scorrere una nestra d apezza olto pccola (e soltaente dspar) sul segnale e s sosttusce al valore del bn corrspondente al centro della nestra l valore ce derva dalla eda de bn copres nella nestra Foralente se è l segnale e valor de pes sulla nestra, w la largezza della nestra, w (w-)/ (w dspar) ltrato w w w w w

2 Alcune consderazon E caro ce quando la nestra s trova agl estre dell ntervallo d caponaento del segnale, la soa s estende al d uor del segnale stesso. Per ovvare a questo nconvenente s possono operare alcune scelte derent ) on calcolare valor de bord. Il segnale n uscta è dento n un nuero d punt -w ) Aggungere degl zer: zero-paddng 3) Pensare l segnale prolungato per perodctà. Coe vedreo quest ulta soluzone perette d estendere l utlzzo della trasorata d Fourer al ltraggo. Esep ltr D / /5 ltrato w w w w w Un altra consderazone va atta nell osservare ce l ltro agsce, n pratca, rbaltato rspetto al punto centrale della nestra natt, se w3,w : w w 3 ( ) ltrato + w 3 Esep ltr D / - Prodotto d convoluzone Date due successon perodce, d perodo, l loro prodotto d convoluzone ndcato con *, è la successone perodca d perodo denta da: g ( * ) Vedao ora le derenze e le analoge con ll ltraggo dento precedenteente ltrato w w e unce derenze sono l estensone della soatora a tutto l ntervallo e lo scabo tra e. Se ora no pensao al ltro, ce era ltato alla nestra d apezza w, coe parte d un vettore perodco d perodo (dove gl eleent ancant sono stat rept con zer) possao estendere la soatora a tutto,-.

3 Se ora dostrao ce l prodotto d convoluzone è coutatvo, abbao nterpretato la orula del prodotto d convoluzone d due successon perodce coe un ltraggo. (ovvero l ltraggo coe l prodotto d convoluzone) Il prodotto d convoluzone è coutatvo coè: * * Dostrazone: Posto - s a: ( ) * + ( ) * el caso precedente s avrebbe -/3, Rportando tal valor n un vettore perodco d lungezza, s a / , -/3. Altre propretà del prodotto d convoluzone ) Se g* allora g è perodca con perodo : g g ± ± ) Propretà coutatva a*bb*a 3) Propretà assocatva a*(b*c)(a*b)*c 4) Propretà dstrbutva a*(b+c)a*b+b*c Teorea d convoluzone Il teorea d convoluzone perette d utlzzare la trasorata d Fourer. Inatt aera: Posto g* vale la seguente relazone tra le DFT GHF Dostrazone: Dalla denzone d DFT: ( ) F H e e e e e G + π π π π π pongo - scabo le soatore Esep ltr D-Fourer Utlzzao la trasorata d Fourer per rpulre un segnale dal ruore. Pensao l ruore coe guassano banco. Vedao nelle dapostve seguent l sgncato d questo aggettvo.

4 Esep ltr D-Fourer Calcolao la trasorata d Fourer del segnale e ne vsualzzao l odulo n scala lneare e logartca Esep ltr D-Fourer Calcolao la trasorata d Fourer del ruore e ne vsualzzao l odulo n scala lneare e logartca Esep ltr D-Fourer Ora vsualzzao l segnale con l ruore e la sua trasorata n odulo (scala logartca) Esep ltr D-Fourer Provao a ltrare l ruore oltplcando la trasorata d Fourer del segnale ruoroso per una nestra. Dove l segnale è pù basso l ruore è predonante

5 . E accao l anttrasorata. Esep ltr D-Fourer Esep ltr D-Fourer non basta restrngao la nestra portando l cuto a 5 PSF del ltro egl esep ora ostrat abbao progettato l ltro analzzando l segnale ruoroso n Fourer. Se s guarda l anttrasorata del ltro s evdenzano le sue caratterstce nello spazo del segnale. Questa unzone è detta ance PSF (Pont Spread Functon) o ernel del ltro. Altr ltr Quello ce abbao appena vsto è detto ltro passa basso deale, con lo stesso crtero s possono denre altr tp d ltr: Passa alto Passa banda Elna banda (elna coponente)

6 Il ltro passa basso deale non è utlzzato n pratca percè la PSF ostra oscllazon ce possono creare arteatt. Provao ad applcare l ltro passa basso deale ad un segnale con dscontnutà. Altr ltr Esstono altr ltr eno rpd : Hang, Hann, Parzen, Butterwort, tutt dsegnat sulla banda. Hang.5 + πω.5 cos Ω per per ω Ω ω > Ω Hann.5 + πω.46 cos Ω per ω Ω per ω > Ω Altr ltr Altr ltr Parzen ω ω Ω Ω ω - Ω 3 per ω Ω / per Ω / < ω Ω per ω > Ω Butterwort ω ω + ω s n

7 Fltr D Al ne d glorare l ntellgbltà d una agne dgtale una tecnca d prara portanza è l ltraggo. Con l quale s possono enatzzare alcune caratterstce o ruoverne altre. Essenzalente l ltraggo è una unzone d ntorno, nel quale l valore ce assue un pxel nell agne d uscta è deternato dall applcazone d un operatore ce agsce su valor de pxels a lu crcostant nell agne d ngresso. Per questo tale operatore vene detto operatore locale. Interpretando l agne coe una atrce, l operatore agsce su una nestra d punt nell ntorno del pxel a cu è applcato. Questa operazone vene rpetuta per tutt pxel esplorando l agne dall alto verso l basso e da snstra verso destra. Fltr D - II Foralente possao denre un ltro generco D coe un operatore ce perette d assocare l valore nuerco d un pxel dell agne ltrata g,n a quell d IxJ pxels (soltaete s prende I e J dspar) n un ntorno del corrspondente pxel nell agne n ngresso,n. g, n ( ( I ) /, n ( J ) /,...,. + ( J ) /, n + ( I ) -I,n-J / ),n I (I-)/ J (J-)/ +I,n+J FITRO (5x5) Fltr lnear a nestra con suo pes è caata nucleo d convoluzone (convoluton ernel) ed la sua ora deterna l tpo d ltraggo sull agne. Descvendo ltr basat sulla convoluzone s usano le seguent convenzon. Dato un ltro,j d denson I x J, consderao l centro della atrce nelle coordnate,j (questo è senz altro vero se I e J sono dspar) coe ostrato n gura: Il ltraggo lneare rporta coe rsultato un valore dato dalla cobnazone lneare de valor de pxel dell ntorno del pxel d ngresso. I pes della cobnazone lneare sono valor assegnat dal ltro ad ogn pxel della nestra. Consderando l operatore applcato con una nestra d denson I J su una agne, l ltraggo avvene trate la unzone: I J /5 g, n Fltr lnear II I j J, j, n j Esepo nestra 5x5, eda oble, ovvero tutt pes sono ugual e sono noralzzat n odo ce la soa sa. I, J, I, J O,,,, J,,,, J,,, O I, J, I, J Σ,n g,n g, n j, j, n j /5

8 Scrvao la orula della convoluzone tenendo sso l centro del ltro coè l punto,, e consderao l pro pxel dell agne ltrata. I J I g,, j, j I J I j J J a orula così scrtta ette n evdenza ce al valore de pxel vcno al bordo nell agne ltrata contrbuscono pxel dell agne d partenza ce sono uor dal dono dell agne stessa. Qund rsultat ce s ottengono dalla scansone della nestra del ltro su pxel d bordo agne, sono aett da un errore, prodotto dal atto ce parte della nestra del ltro non copre pxel dell agne. Esstono var etod per ovvare questo nconvenente. Un etodo consste nell evtare d calcolare quest valor, partendo dal pro pxel ce perette alla nestra d coprre pxel dell agne, cò, tuttava produce un agne n uscta un pò pù pccola d quella orgnale. Fltragg ulteror dnuscono ulterorente la densone... C sono essenzalente due tecnce ce perettono d avere l agne n uscta delle stesse denson d quella n ngresso: -Zero-paddng -Prolungaento perodco el pro caso valor ancant sono sosttut con valor zero (Zero paddng), e cò può produrre errore su pxel d bordo soprattutto se quest non anno valor nuerc vcn allo zero. a regone d bordo aetta da questo errore sarà tanto pù larga quanto pù è grande la nestra del ltro. Questa tecnca è consglata solo nel caso d agn con ondo nero. el secondo caso, valor ancant sono sosttut da quell dell agne stessa per prolungaento perodco. In pratca s pastrella l pano con l agne e quando l ltro passa su bord s consderano pxel dell agne adacente.,n bordo laterale FITRO (5x5) bordo superore Eett d bordo Convoluzone D In copleta analoga con quello atto n una densone s può arontare la convoluzone con ltr lnear attraverso la trasorata d Fourer. S estende l ltro alle stesse denson dell agne e po s scrve l prodotto d convoluzone nel seguente odo: g, n j, j, n dove la soatora s estende a tutta l agne e l ltro è traslato sopra ad essa j Zero paddng Prolungaento perodco

9 Consderazon sulla convoluzone Quando la convoluzone è scrtta nella ora standard per una agne,n d denson x g, n j, j, n vedao ce l nucleo d convoluzone,j è reso speculare rspetto a j per produrre -,-j pra d essere traslato d,n. onostante olt nucle d convoluzone sano setrc e qund,j-,-j, altr non lo sono e qund occorre porre attenzone all pleentazone degl algort. Il costo coputazonale d una convoluzone per un nucleo d denson JxJ e una agne d denson x è O(J ) per pxel, ovvero O( xj ). Se l agne d partenza a valor nter, l rsultato d un ltraggo n generale avrà valor real, qund occorre porre attenzone al tpo delle varabl n goco. j a coplesstà del prodotto d convoluzone s può rdurre nel caso d nucle separabl. Inatt se s può scrvere:, j j allora l prodotto d convoluzone s scrve g, n I r c J r j, n j c j questo sgnca, ce nvece d applcare un ltro b-densonale s applcano due ltr onodensonal, l pro nella drezone e l altro nella drezone j. a coplesstà passa da O(I*J) a O(I+J) per pxel. Per cert ltr è possble trovare una pleentazone ncreentale della convoluzone: entre la nestra d convoluzone s uove sopra l agne la colonna d snstra dell agne da elaborare è spostata uor dalla nestra, entre una nuova colonna entra a destra. Cò perette d scrvere algort con coplesstà per pxel O(costante). Il teorea d convoluzone e le sue applcazon Fltr D n Fourer Ovvaente l teorea d convoluzone vale ance n due denson: Sano e g due agn e l nucleo d convoluzone ovvero la PSF del ltro se g* vale la seguente relazone tra le DFT G,lH,lF,l applcazone d un ltro può essere qund arontata n due od: ) Il ltro è progettato n Fourer, s scrve qund drettaente H, s calcola la DFT dell agne da ltrare, s oltplcano le due trasorate e s calcola l anttrasorata del rsultato. ) Il ltro è scrtto attraverso l suo nucleo d convoluzone, po s calcola H, F e qund s applca l teorea d convoluzone coe nel caso precedente.

10 Fltr per estrazone d contorn: ltro d Sobel Il ltro d Sobel è un ltro separable e lneare ce vene usato per l estrazone de contorn, s esegue una convoluzone con le seguent ascere: X as Y as Operator d rango Gl operator d rango sono operator non lnear. I valor d grgo contenut nella nestra W del ltro sono dappra dspost n ordne crescente secondo l loro valore (rango), e qund soat con coecent a ce ndvduano la unzone del ltro (ved gura). S deve notare ce con tale operazone s perdono norazon d tpo spazale su pxel dell ntorno, pertanto non s deve cononderla con la soa pesata de ltr lnear ce nvece realzza una convoluzone spazale.,n g,n Esep d operator d rango sono gl operator d no e asso e l cosddetto ltro edano. a) Operatore d no: Ogn valore d grgo è sosttuto dal no valore nella nestra dell operatore. Dettagl n e car vengono cancellat, entre le zone pù scure s espandono. I coecent del ltro sono tal ce l unco coecente dverso da zero, e par ad uno è quello relatvo al no. b) Operatore d asso: Ogn valore d grgo, n questo caso, è nvece sosttuto dal asso valore nella nestra dell operatore. e zone pù care s espandono a danno d quelle scure, dettagl n e scur vengono cancellat. I coecent del ltro sono tal ce l unco coecente dverso da zero, e par ad uno è quello relatvo al asso. c) Fltro edano: Ogn valore d grgo è sosttuto dalla edana (non la eda) de valor nella nestra dell operatore. Se la nestra contene I eleent l valore d grgo n uscta sarà quello ce è nore o uguale a (I )/ e aggore o uguale a (I )/. Questo tpo d ltro s utlzza per sopprere un partcolare tpo d ruore, l ruore pulsvo o sale e pepe dove una certa percentuale d pxel è saturata (valore asso) oppure non rsponde (valore no). Tale ltro è olto ecace per toglere eett coe bad pxel o ragg cosc nelle agn astronoce. Un esepo del ltro edano

LE CARTE DI CONTROLLO

LE CARTE DI CONTROLLO ITIS OMAR Dpartento d Meccanca LE CARTE DI CONTROLLO Carte d Controllo Le carte d controllo rappresentano uno degl struent pù portant per l controllo statstco d qualtà. La carta d controllo è corredata

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli

Appendice B. B Elementi di Teoria dell Informazione 1. p k =P(X = x k ) ovviamente, valgono gli assiomi del calcolo della probabilità: = 1;

Appendice B. B Elementi di Teoria dell Informazione 1. p k =P(X = x k ) ovviamente, valgono gli assiomi del calcolo della probabilità: = 1; Appendce B Eleent d Teora dell Inforazone Appendce B B Eleent d Teora dell Inforazone B Introduzone E noto da tepo che fenoen percettv possono essere foralzzat e studat edante la Teora dell Inforazone

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

Richiami di Termodinamica Applicata

Richiami di Termodinamica Applicata Unverstà degl Stud d aglar ors d Studo n Ingegnera hca ed Elettrca Rcha d Terodnaca Applcata Il ro rncpo della Terodnaca, o rncpo d onservazone dell Energa, n tern dfferenzal e con rferento all untà d

Dettagli

Strutture deformabili torsionalmente: analisi in FaTA-E

Strutture deformabili torsionalmente: analisi in FaTA-E Strutture deformabl torsonalmente: anals n FaTA-E Il comportamento dsspatvo deale è negatvamente nfluenzato nel caso d strutture deformabl torsonalmente. Nelle Norme Tecnche cò vene consderato rducendo

Dettagli

Argomenti. Misure di corrente elettrica continua, di differenza di potenziale e di resistenza elettrica.

Argomenti. Misure di corrente elettrica continua, di differenza di potenziale e di resistenza elettrica. ppunt per l corso d Laboratoro d Fsca per le Scuole Superor rgoent Msure d corrente elettrca contnua, d dfferenza d potenzale e d resstenza elettrca. Struent d sura: prncp d funzonaento. Coe s effettuano

Dettagli

Introduzione al Machine Learning

Introduzione al Machine Learning Introduzone al Machne Learnng Note dal corso d Machne Learnng Corso d Laurea Magstrale n Informatca aa 2010-2011 Prof Gorgo Gambos Unverstà degl Stud d Roma Tor Vergata 2 Queste note dervano da una selezone

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

1atm = 760 torr (o anche mmhg) = 101325 Pa = 1.01325 bar

1atm = 760 torr (o anche mmhg) = 101325 Pa = 1.01325 bar ressone: tendenza del gas ad espanders densonalente è Forza superce ewton L'untà d sura usata n pratca è l'atosera (at) a (ascal) at 760 torr (o anche Hg) 05 a.05 bar olue: sura d una porzone d spazo densonalente

Dettagli

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007 Fondament d Vsone Artfcale (Seconda Parte PhD. Ing. Mchele Folgherater Corso d Robotca Prof.ssa Guseppna Gn Anno Acc.. 006/007 Caso Bdmensonale el caso bdmensonale, per ndvduare punt d contorno degl oggett

Dettagli

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca Eserctazon del corso d Relazon tra varabl Gancarlo Manz Facoltà d Socologa Unverstà degl Stud d Mlano-Bcocca e-mal: gancarlo.manz@statstca.unmb.t Terza eserctazone Mlano, 8 febbrao 7 SOMMARIO TERZA ESERCITAZIONE

Dettagli

Fondamenti di Fisica Acustica

Fondamenti di Fisica Acustica Fondament d Fsca Acustca Pro. Paolo Zazzn - DSSARR Archtettura Pescara Anals n requenza de segnal sonor, bande d ottava e terz d ottava. Rumore banco e rumore rosa. Lvello equvalente. Fsologa dell apparato

Dettagli

1 Laser Doppler Velocimetry

1 Laser Doppler Velocimetry Laer oppler Velocmetry 1 Laer oppler Velocmetry 1.1 Introduzone L anemometra laer (LV) è applcata nel campo dell aerodnamca permentale a partre da prm ann ettanta, ann n cu le apparecchature laer dvennero

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model Rcerca Operatva e Logstca Dott. F.Carrabs e Dott.ssa M.Gentl Modell per la Logstca: Sngle Flow One Level Model Mult Flow Two Level Model Modell d localzzazone nel dscreto Modell a Prodotto Sngolo e a Un

Dettagli

MODELLISTICA DI SISTEMI DINAMICI

MODELLISTICA DI SISTEMI DINAMICI CONTROLLI AUTOMATICI Ingegnera Gestonale http://www.automazone.ngre.unmore.t/pages/cors/controllautomatcgestonale.htm MODELLISTICA DI SISTEMI DINAMICI Ing. Federca Gross Tel. 059 2056333 e-mal: federca.gross@unmore.t

Dettagli

La retroazione negli amplificatori

La retroazione negli amplificatori La retroazone negl amplfcator P etroazonare un amplfcatore () sgnfca sottrarre (o sommare) al segnale d ngresso (S ) l segnale d retroazone (S r ) ottenuto dal segnale d uscta (S u ) medante un quadrpolo

Dettagli

Amplificatori operazionali

Amplificatori operazionali mplfcator operazonal Parte www.e.ng.unbo.t/pers/mastr/attca.htm (ersone el 9-5-0) mplfcatore operazonale L amplfcatore operazonale è un sposto, normalmente realzzato come crcuto ntegrato, otato tre termnal

Dettagli

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno Unverstà degl Stud d Cassno, Anno accademco 004-005 Corso d Statstca, Pro. M. Furno Eserctazone del 5//005 dott. Claudo Conversano Eserczo Ad un certo tavolo d un casnò s goca lancando un dado. Il goco

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Dati di tipo video. Indicizzazione e ricerca video

Dati di tipo video. Indicizzazione e ricerca video Corso d Laurea n Informatca Applcata Unverstà d Urbno Dat d tpo vdeo I dat vdeo sono generalmente rcch dal punto d vsta nformatvo. Sottottol (testo) Colonna sonora (audo parlato e/o musca) Frame (mmagn

Dettagli

Modelli di base per la politica economica

Modelli di base per la politica economica Marcella Mulno Modell d base per la poltca economca Corso d Poltca economca a.a. 22-23 Captolo 2 Modello - e poltche scal e monetare In questo captolo rchamamo brevemente l modello macroeconomco a prezz

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

Tutti gli strumenti vanno tarati

Tutti gli strumenti vanno tarati L'INCERTEZZA DI MISURA Anta Calcatell I.N.RI.M S eseguono e producono msure per prendere delle decson sulla base del rsultato ottenuto, come per esempo se bloccare l traffco n funzone d msure d lvello

Dettagli

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1 APAT Agenza per la Protezone dell Ambente e per Servz Tecnc Dpartmento Dfesa del Suolo / Servzo Geologco D Itala Servzo Tecnologe del sto e St Contamnat * * * Nota nerente l calcolo della concentrazone

Dettagli

CIRCUITI DI IMPIEGO DEI DIODI

CIRCUITI DI IMPIEGO DEI DIODI UT D MPEGO DE DOD addrzzare ad na seonda. l crcto pù seplce, che pega l dodo coe raddrzzatore d na tensone alternata, è rappresentato n Fg.. n esso n generatore deale d tensone alternata l c valore stantaneo

Dettagli

Lavoro, Energia e stabilità dell equilibrio II parte

Lavoro, Energia e stabilità dell equilibrio II parte Lavoro, Energa e stabltà dell equlbro II parte orze conservatve e non conservatve Il concetto d Energa potenzale s aanca per mportanza a quello d Energa cnetca, perché c permette d passare dallo studo

Dettagli

Circuiti di ingresso differenziali

Circuiti di ingresso differenziali rcut d ngresso dfferenzal - rcut d ngresso dfferenzal - Il rfermento per potenzal Gl stad sngle-ended e dfferenzal I segnal elettrc prodott da trasduttor, oppure preleat da un crcuto o da un apparato elettrco,

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

VA TIR - TA - TAEG Introduzione

VA TIR - TA - TAEG Introduzione VA TIR - TA - TAEG Introduzone La presente trattazone s pone come obettvo d analzzare due prncpal crter d scelta degl nvestment e fnanzament per valutare la convenenza tra due o pù operazon fnanzare. S

Dettagli

Motore ad induzione: modelli matematici e modelli per la simulazione. 1.1 Modelli matematici del motore ad induzione

Motore ad induzione: modelli matematici e modelli per la simulazione. 1.1 Modelli matematici del motore ad induzione OTOE AD INDUZIONE ODEI ATEATICI E ODEI PE A IUAZIONE otore ad nduzone: odell ateatc e odell per la sulazone. odell ateatc del otore ad nduzone Nello studo degl azonaent ndustral è necessaro rappresentare

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

STATISTICA DESCRITTIVA CON EXCEL

STATISTICA DESCRITTIVA CON EXCEL STATISTICA DESCRITTIVA CON EXCEL Corso d CPS - II parte: Statstca Laurea n Informatca Sstem e Ret 2004-2005 1 Obettv della lezone Introduzone all uso d EXCEL Statstca descrttva Utlzzo dello strumento:

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO GLI ERRORI SPERIMETALI ELLE MISURE DI LABORATORIO MISURA DI UA GRADEZZA FISICA S defnsce grandezza fsca una propretà de corp sulla quale possa essere eseguta un operazone d msura. Msurare una grandezza

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

Computers subacquei, software ed algoritmi decompressivi nella didattica subacquea italiana

Computers subacquei, software ed algoritmi decompressivi nella didattica subacquea italiana Computers subacque, sotware ed algortm decompressv nella ddattca subacquea talana La grande partecpazone d subacque a congress d Medcna Iperbarca testmona lnteresse crescente per lapproondmento delle conoscenze

Dettagli

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013 Modul su un domno a deal prncpal Maurzo Cornalba versone 15/5/2013 Sa A un anello commutatvo con 1. Indchamo con A k l modulo somma dretta d k cope d A. Un A-modulo fntamente generato M s dce lbero se

Dettagli

Calibrazione. Lo strumento idealizzato

Calibrazione. Lo strumento idealizzato Calbrazone Come possamo fdarc d uno strumento? Abbamo bsogno d dentfcare l suo funzonamento n condzon controllate. L dentfcazone deve essere razonalmente organzzata e condvsa n termn procedural: s tratta

Dettagli

DATA MINING E CLUSTERING

DATA MINING E CLUSTERING Captolo 4 DATA MINING E CLUSTERING 4. Che cos'è l Data Mnng Per Data Mnng s'ntende quel processo d estrazone d conoscenza da banche dat, tramte l'applcazone d algortm che ndvduano le assocazon non mmedatamente

Dettagli

Elementi di Chimica. Lezione 02

Elementi di Chimica. Lezione 02 Element d Chmca Lezone 02 La tavola perodca degl element I 92 element chmc esstent n natura, pur essendo dvers gl un dagl altr, presentano a volte propretà chmche sml. Gà nella prma metà del I secolo molt

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura orma UI CEI EV 3005: Guda all'espressone dell'ncertezza d msura L obettvo d una msurazone è quello d determnare l valore del msurando, n altre parole della grandezza da msurare. In generale, però, l rsultato

Dettagli

Lezione n.13. Regime sinusoidale

Lezione n.13. Regime sinusoidale Lezone 3 Regme snusodale Lezone n.3 Regme snusodale. Rcham sulle funzon snusodal. etodo de fasor e fasor. mpedenza ed ammettenza. Dagramm fasoral 3. Potenza n regme snusodale 3. Potenza attva e reattva

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Unverstà d Napol Parthenope acoltà d Ingegnera Corso d Metod Probablstc Statstc e Process Stocastc docente: Pro. Vto Pascazo 20 a Lezone: /2/2003 Sommaro Dstrbuzon condzonate: CD, pd, pm Teorema della

Dettagli

INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA

INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA Lezone 7 - Indc statstc: meda, moda, medana, varanza INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS - 2007

Dettagli

Mauro Vettorello. Vi veneto. come Calcolare la Rata di un Finanziamento o di un Leasing senza calcolatrice STUDIO VETTORELLO

Mauro Vettorello. Vi veneto. come Calcolare la Rata di un Finanziamento o di un Leasing senza calcolatrice STUDIO VETTORELLO Mauro Vettorello V veneto come Calcolare la Rata d un Fnanzamento o d un Leasng senza calcolatrce STUDIO VETTORELLO V veneto come Calcolare la Rata d un Fnanzamento o d un Leasng senza calcolatrce Mauro

Dettagli

La taratura degli strumenti di misura

La taratura degli strumenti di misura La taratura degl strument d msura L mportanza dell operazone d taratura nasce dall esgenza d rendere l rsultato d una msura rferble a campon nazonal od nternazonal del msurando n questone affnché pù msure

Dettagli

Valore attuale di una rendita. Valore attuale in Excel: funzione VA

Valore attuale di una rendita. Valore attuale in Excel: funzione VA Valore attuale d una rendta Nella scorsa lezone c samo concentrat sul problema del calcolo del alore attuale d una rendta S che è dato n generale da V ( S) { R ; t, 0,,,..., n,... } n 0 R ( t ), doe (t

Dettagli

CAPITOLO 3 Incertezza di misura Pagina 26

CAPITOLO 3 Incertezza di misura Pagina 26 CAPITOLO 3 Incertezza d msura Pagna 6 CAPITOLO 3 INCERTEZZA DI MISURA Le operazon d msurazone sono tutte nevtablmente affette da ncertezza e coè da un grado d ndetermnazone con l quale l processo d msurazone

Dettagli

MODELLI DI SISTEMI. Principi di modellistica. Considerazioni energetiche. manca

MODELLI DI SISTEMI. Principi di modellistica. Considerazioni energetiche. manca ONTOI UTOMTII Ingegnera della Gestone Industrale e della Integrazone d Impresa http://www.automazone.ngre.unmore.t/pages/cors/ontrollutomatcgestonale.htm MODEI DI SISTEMI Ing. ug Bagott Tel. 05 0939903

Dettagli

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi ESEMPIO N. Anals d mercuro n matrc solde medante spettrometra d assorbmento atomco a vapor fredd 0 Introduzone La determnazone del mercuro n matrc solde è effettuata medante trattamento termco del campone

Dettagli

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI MATEMATICA FINANZIARIA Pro. Andre Berrd 999 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 PROGETTO ECONOMICO-FINANZIARIO Un progetto economco-nnzro è un

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

PARENTELA e CONSANGUINEITÀ di Dario Ravarro

PARENTELA e CONSANGUINEITÀ di Dario Ravarro Introduzone PARENTELA e CONSANGUINEITÀ d Daro Ravarro 1 gennao 2010 Lo studo della genealoga d un ndvduo è necessaro al fne d valutare la consangunetà dell ndvduo stesso e la sua parentela con altr ndvdu

Dettagli

Analisi dei flussi 182

Analisi dei flussi 182 Programmazone e Controllo Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Anals de fluss 82 Programmazone e Controllo Teora delle

Dettagli

Per il seminario di cultura formale - Dottorato GIA

Per il seminario di cultura formale - Dottorato GIA Per l semnaro d cultura formale - Dottorato GIA Luca Mar, dcembre 003 Lezone 1: la matematca come strumento per pensare Cnque ncontr, da 1 ora e mezza cascuno. Con questo tempo complessvo a dsposzone,

Dettagli

Misure su sistemi trifasi

Misure su sistemi trifasi Msure su sstem trfas - Msure su sstem trfas - Tp d collegamento Collegamento a stella Un sstema trfase è caratterzzato n generale da tre fl d lnea (L L L ) pù un eventuale quarto conduttore L detto conduttore

Dettagli

Questo è il secondo di una serie di articoli, di

Questo è il secondo di una serie di articoli, di DENTRO LA SCATOLA Rubrca a cura d Fabo A. Schreber Il Consglo Scentfco della rvsta ha pensato d attuare un nzatva culturalmente utle presentando n ogn numero d Mondo Dgtale un argomento fondante per l

Dettagli

CURVE & SUPERFICI. C g. Scopo: fornire una rappresentazione matematica per rappresentare 2D e 3D degli oggetti. Grafica Computerizzata

CURVE & SUPERFICI. C g. Scopo: fornire una rappresentazione matematica per rappresentare 2D e 3D degli oggetti. Grafica Computerizzata Grafca opterzzata URVE & UPERFII copo: fornre na rappresentazone ateatca per rappresentare 2D e 3D del oett Unversty of Ferrara opter slaton rop http://www.d.nfe.t/~cs Grafca opterzzata Bsona scelere na

Dettagli

Dai circuiti ai grafi

Dai circuiti ai grafi Da crcut a graf Il grafo è una schematzzazone grafca semplfcata che rappresenta le propretà d nterconnessone del crcuto ad esso assocato Il grafo è costtuto da un nseme d nod e d lat Se lat sono orentat

Dettagli

Concetti principale della lezione precedente

Concetti principale della lezione precedente Corso d Statstca medca e applcata 6 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone precedente I concett prncpal che sono stat presentat sono: I fenomen probablstc RR OR ROC-curve Varabl

Dettagli

Costruzioni in c.a. Metodi di analisi

Costruzioni in c.a. Metodi di analisi Corso d formazone n INGEGNERIA SISICA Verres, 11 Novembre 16 Dcembre, 2011 Costruzon n c.a. etod d anals Alessandro P. Fantll alessandro.fantll@polto.t Verres, 18 Novembre, 2011 Gl argoment trattat 1.

Dettagli

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard Corso d Statstca (canale P-Z) A.A. 2009/0 Prof.ssa P. Vcard VALORI MEDI Introduzone Con le dstrbuzon e le rappresentazon grafche abbamo effettuato le prme sntes de dat. E propro osservando degl stogramm

Dettagli

Cenni di matematica finanziaria Unità 61

Cenni di matematica finanziaria Unità 61 Prerequst: - Rsolvere equazon algebrche d 1 grado ed equazon esponenzal Questa untà è rvolta al 2 benno del seguente ndrzzo dell Isttuto Tecnco, settore Tecnologco: Agrara, Agroalmentare e Agrondustra.

Dettagli

Modelli di Schedulazione

Modelli di Schedulazione EW Modell d Schedulazoe Idce Maccha Sgola Tepo d Copletaeto Totale Tepo d Copletaeto Totale Pesato Tepo d Rtardo Totale Maespa co set-up dpedete dalla sequeza Tepo d Copletaeto Totale co vcolo d precedeza

Dettagli

Capitolo 2 Dati e Tabelle

Capitolo 2 Dati e Tabelle Captolo 2 Dat e Tabelle La Descrzone della Popolazone La descrzone d una popolazone passa attraverso due fas: 1. la formazone de dat statstc 2. la sntes de dat La formazone del dato statstco prevede: ()

Dettagli

Sensori Segnali Rumore - Prof. S. Cova - appello 22/06/2011 P1-1

Sensori Segnali Rumore - Prof. S. Cova - appello 22/06/2011 P1-1 ensor egnal Rumore - ro.. Cova - appello /06/011 1-1 ROBLEM 1 Quadro de dat egnale otto: rettangolare a durata T 00 µs; otenza ; lunghezza d onda λ 1 800 nm oppure λ 60 nm. p--n otododo n lo: oeente d

Dettagli

Il pendolo di torsione

Il pendolo di torsione Unverstà degl Stud d Catana Facoltà d Scenze MM.FF.NN. Corso d aurea n FISICA esna d ABORAORIO DI FISICA I Il pendolo d torsone (sezone costante) Moreno Bonaventura Anno Accademco 005/06 Introduzone. I

Dettagli

MODULO 1 GLI AMPLIFICATORI OPERAZIONALI

MODULO 1 GLI AMPLIFICATORI OPERAZIONALI MODULO GL AMPLFCATO OPEAZONAL. PAAMET CAATTESTC D UN AMPLFCATOE OPEAZONALE Per la corretta utlzzazone un A.O. reale bsogna nterpretare at caratterstc fornt al costruttore e conoscere termn pù comunemente

Dettagli

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM)

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM) Identfcazone: SIT/Tec-012/05 Revsone: 0 Data 2005-06-06 Pagna 1 d 7 Annotazon: Il presente documento fornsce comment e lnee guda sull applcazone della ISO 7500-1 COPIA CONTROLLATA N CONSEGNATA A: COPIA

Dettagli

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione Captolo 6 Rsultat pag. 468 a) Osmannoro b) Case Passern c) Ponte d Maccone Fgura 6.189. Confronto termovalorzzatore-sorgent dffuse per l PM 10. Il contrbuto del termovalorzzatore alle concentrazon d PM

Dettagli

La verifica delle ipotesi

La verifica delle ipotesi La verfca delle potes In molte crcostanze l rcercatore s trova a dover decdere quale, tra le dverse stuazon possbl rferbl alla popolazone, è quella meglo sostenuta dalle evdenze emprche. Ipotes statstca:

Dettagli

Modellazione e calibrazione del traffico autostradale per la rete di Eindhoven

Modellazione e calibrazione del traffico autostradale per la rete di Eindhoven Modellazone e calbrazone del traffco autostradale per la rete d Endhoen Freeway traffc odelng and calbraton for the Endhoen networ Relatore: Prof. Alessandro Gua Supersor: Prof. Bart De Schutter DCSC TUDelft

Dettagli

Soluzione esercizio Mountbatten

Soluzione esercizio Mountbatten Soluzone eserczo Mountbatten I dat fornt nel testo fanno desumere che la Mountbatten utlzz un sstema d Actvty Based Costng. 1. Calcolo del costo peno ndustrale de tre prodott Per calcolare l costo peno

Dettagli

Parametri e protocolli di riferimento

Parametri e protocolli di riferimento Parametr e protocoll d rfermento P. Isoard - O. Rampado - R. Ropolo S.C. Fsca Santara A.S.O. San Govann Battsta d Torno Document d rfermento general Gudelnes for Acceptance Testng and Qualty Control, Techcal

Dettagli

Hansard OnLine. Unit Fund Centre Guida

Hansard OnLine. Unit Fund Centre Guida Hansard OnLne Unt Fund Centre Guda Sommaro Pagna Introduzone al Unt Fund Centre (UFC) 3 Uso de fltr per la selezone de fond 4-5 Lavorare con rsultat del fltro 6 Lavorare con rsultat del fltro - Prezz 7

Dettagli

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE GIOVANNI CRUPI, ANDREA DONATO SUMMARY. We characterze a set of

Dettagli

UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA

UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA FACOLTÀ DI SCIENZE MATEMATICHE FISICHE E NATURALI Dpartmento d Informatca Sstemstca e Comuncazone Corso d Laurea n Informatca ALGORITMI DI MORPHING FACCIALE PER

Dettagli

Analizzata: - Nei livelli Prezzi - Nelle differenze Rendimenti. Rendimento al tempo t: Variabile finanziaria

Analizzata: - Nei livelli Prezzi - Nelle differenze Rendimenti. Rendimento al tempo t: Variabile finanziaria Varable fnanzara Analzzata: - Ne lvell Prezz - Nelle dfferenze endent endento al tepo t: t ( P P ) t P t 1 t 1 1 Unverstà d Terao - Teora del portafoglo fnanzaro - Prof. Paolo D Antono endento atteso:

Dettagli

FORMAZIONE ALPHAITALIA

FORMAZIONE ALPHAITALIA ALPHAITALIA PAG. 1 DI 13 FORMAZIONE ALPHAITALIA IL SISTEMA DI GESTIONE PER LA QUALITA Quadro ntroduttvo ALPHAITALIA PAG. 2 DI 13 1. DEFINIZIONI QUALITA Grado n cu un nseme d caratterstche ntrnseche soddsfa

Dettagli

9.6 Struttura quaternaria

9.6 Struttura quaternaria 9.6 Struttura quaternara L'ultmo lvello strutturale é la struttura quaternara. Non per tutte le protene è defnble una struttura quaternara. Infatt l esstenza d una struttura quaternara é condzonata alla

Dettagli

Misura di frequenza di segnali periodici in condizioni critiche di rumore

Misura di frequenza di segnali periodici in condizioni critiche di rumore UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II POLO DELLE SCIENZE E DELLE TECNOLOGIE FACOLTÀ DI INGEGNERIA Dpartmento d Ingegnera Elettrca Msura d frequenza d segnal perodc n condzon crtche d rumore DOMENICANTONIO

Dettagli

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri Artmetca de calcolator Rappresentazone de numer natural e relatv Addzone e sommator: : a propagazone d rporto, veloce, con segno Moltplcazone e moltplcator: senza segno, con segno e algortmo d Booth Rappresentazone

Dettagli

Fig.1.2.1 Schema a blocchi di un PMSM isotropo con ingressi ed uscite del controllo digitale.

Fig.1.2.1 Schema a blocchi di un PMSM isotropo con ingressi ed uscite del controllo digitale. . ll metodo del fattore d scala globale Il progetto d un sstema d controllo dgtale può avvalers del cosddetto metodo del fattore d scala globale (FSG), attraverso l quale è possble stablre una corrspondenza

Dettagli

Scelta dell Ubicazione. di un Impianto Industriale. Corso di Progettazione Impianti Industriali Prof. Sergio Cavalieri

Scelta dell Ubicazione. di un Impianto Industriale. Corso di Progettazione Impianti Industriali Prof. Sergio Cavalieri Scelta dell Ubcazone d un Impanto Industrale Corso d Progettazone Impant Industral Prof. Sergo Cavaler I fattor ubcazonal Cost d Caratterstche del Mercato Costruzone Energe Manodopera Trasport Matere Prme

Dettagli

Fotonica per telecomunicazioni Ottica guidata Pagina 1 di 7 ESERCIZI

Fotonica per telecomunicazioni Ottica guidata Pagina 1 di 7 ESERCIZI Fotonca per telecouncazon Ottca udata Pana d 7 ESERCIZI. Una fbra ottca a salto d'ndce ha un nucleo d rao a= 3µ ed ndce d rfrazone n=.5, un antello d ndce d rfrazone n =.5 e lunhezza L= K. In essa vene

Dettagli

Stage estivo 2004 L. Lucci, A. Giacomini, R. Botti, R. Vaccaro, L. Contiguglia, U. Sassi, M. Battisti Penta

Stage estivo 2004 L. Lucci, A. Giacomini, R. Botti, R. Vaccaro, L. Contiguglia, U. Sassi, M. Battisti Penta Stage estvo 4 L. Lucc, A. Gacomn, R. Bott, R. accaro, L. Contgugla, U. Sass, M. Battst Penta Tutor LNF G. Corrad & D. Lenc I programm d smulazone crcutale costtuscono uno strumento d fondamentale utltà

Dettagli

Soluzioni per lo scarico dati da tachigrafo innovativi e facili da usare. http://dtco.it

Soluzioni per lo scarico dati da tachigrafo innovativi e facili da usare. http://dtco.it Soluzon per lo scarco dat da tachgrafo nnovatv e facl da usare http://dtco.t Downloadkey II Moble Card Reader Card Reader Downloadtermnal DLD Short Range and DLD Wde Range Qual soluzon ho a dsposzone per

Dettagli

RETI TELEMATICHE Lucidi delle Lezioni Capitolo VII

RETI TELEMATICHE Lucidi delle Lezioni Capitolo VII Prof. Guseppe F. Ross E-mal: guseppe.ross@unpv.t Homepage: http://www.unpv.t/retcal/home.html UNIVERSITA' DEGLI STUDI DI PAVIA Facoltà d Ingegnera A.A. 2011/12 - I Semestre - Sede PV RETI TELEMATICHE Lucd

Dettagli

Analisi dei Segnali. Sergio Frasca. Dipartimento di Fisica Università di Roma La Sapienza

Analisi dei Segnali. Sergio Frasca. Dipartimento di Fisica Università di Roma La Sapienza Sergo Frasca Anals de Segnal Dpartmento d Fsca Unverstà d Roma La Sapenza Versone 13 dcembre 011 Versone aggornata n http://grwavsf.roma1.nfn.t/sp/sp.pdf Sommaro 1 Introduzone: segnal e sstem... 7 1.1

Dettagli

Verifica termoigrometrica delle pareti

Verifica termoigrometrica delle pareti Unverstà Medterranea d Reggo Calabra Facoltà d Archtettura Corso d Tecnca del Controllo Ambentale A.A. 2009-200 Verfca termogrometrca delle paret Prof. Marna Mstretta ANALISI IGROTERMICA DEGLI ELEMENTI

Dettagli

Generatori di Numeri Pseudocasuali

Generatori di Numeri Pseudocasuali CORSO DI LAUREA MAGISTRALE INGEGNERIA DELLE TECNOLOGIE DELLA COMUNICAZIONE E DELL INFORMAZIONE Generator d Numer Pseudocasual Dego Belvedere, Alessandro Brugnola, Alessa Vennarn Prof. Francesca Merola

Dettagli

Induzione elettromagnetica

Induzione elettromagnetica Induzone elettromagnetca L esperenza d Faraday L'effetto d produzone d corrente elettrca n un crcuto prvo d generatore d tensone fu scoperto dal fsco nglese Mchael Faraday nel 83. Egl studò la relazone

Dettagli

Fotogrammetria. O centro di presa. fig.1 Geometria della presa fotogrammetrica

Fotogrammetria. O centro di presa. fig.1 Geometria della presa fotogrammetrica Fotogrammetra Scopo della fotogrammetra è la determnazone delle poszon d punt nello spazo fsco a partre dalla msura delle poszon de punt corrspondent su un mmagne fotografca. Ovvamente, affnché questo

Dettagli

Simulazione seconda prova Tema assegnato all esame di stato per l'abilitazione alla professione di geometra, 2006

Simulazione seconda prova Tema assegnato all esame di stato per l'abilitazione alla professione di geometra, 2006 Smulazone seconda prova Tema assegnato all esame d stato per l'abltazone alla professone d geometra, 006 roposte per lo svolgmento pubblcate sul ollettno SIFET (Socetà Italana d Fotogrammetra e Topografa)

Dettagli

INOSTRISPORTELLIASCOLTO: OSSEREVATORIO ON-LINE

INOSTRISPORTELLIASCOLTO: OSSEREVATORIO ON-LINE Assoc az one A N G E LI CENTROANTI VI OLENZA, ANTI STALKI NG EANTI STUPRO Pr oget t o:rete ANGELI BandoPer c or s nret e2013 A N G E LI Cent r oant v ol enz a, Ant s t al k ngeant s t upr o Gu da al l

Dettagli