ELABORAZIONE DI SEGNALI E IMMAGINI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ELABORAZIONE DI SEGNALI E IMMAGINI"

Transcript

1 Fltraggo d un segnale EABORAZIOE DI SEGAI E IAGII. Bertero P. Boccacc Al ne d glorare la qualtà d un segnale dgtale una tecnca d prara portanza è l ltraggo. Con l quale s possono enatzzare alcune caratterstce o ruoverne altre. Essenzalente l ltraggo è una unzone d ntorno, nel quale l valore ce assue un bn nel segnale n uscta è deternato dall applcazone d un operatore ce agsce su valor de bns ad esso crcostant nel segnale d ngresso. Per questo tale operatore vene detto operatore locale. Il ltro agsce su una nestra, soltaente d apezza olto pù pccola della durata del segnale. S dtnguono due class d ltr: lnear e non lnear. e pr l operatore dento sulla nestra dà n uscta un valore ce è una cobnazone lneare de valor de bn copres nella nestra. S possono denre ltr lnear ce pulscono l segnale dal ruore oppure ce esaltano le dscontnutà. e second non è possble denre un operatore lneare; soltaente sono operator d rango, coè operator ce agscono su valor de bn dopo averl ordnat. Vedreo ce la derenza sostanzale tra due tp d ltr è ce, entre per pr s può applcare la trasorata d Fourer con tutte le sue propretà, ne second questa operazone non è possble. Fltr lnear D 5 Fnora abbao parato a caponare un segnale e abbao sulato l ruore ce, nevtablente lo algge, n sura pù o eno portante a seconda delle caratterstce dello struento. Una sura d quanto è portante l segnale è data dal rapporto segnale ruore. Questa sura, soltaente è valutata n Decbel ed è denta coe: varanza del segnale SR log db varanza del ruore 5 SR Sgnal to ose Rato Studao ora coe pulre un segnale dal ruore attraverso ltr lnear e non lnear. Il pù seplce ltro lneare è quello ce vene caato eda oble. In pratca s a scorrere una nestra d apezza olto pccola (e soltaente dspar) sul segnale e s sosttusce al valore del bn corrspondente al centro della nestra l valore ce derva dalla eda de bn copres nella nestra Foralente se è l segnale e valor de pes sulla nestra, w la largezza della nestra, w (w-)/ (w dspar) ltrato w w w w w

2 Alcune consderazon E caro ce quando la nestra s trova agl estre dell ntervallo d caponaento del segnale, la soa s estende al d uor del segnale stesso. Per ovvare a questo nconvenente s possono operare alcune scelte derent ) on calcolare valor de bord. Il segnale n uscta è dento n un nuero d punt -w ) Aggungere degl zer: zero-paddng 3) Pensare l segnale prolungato per perodctà. Coe vedreo quest ulta soluzone perette d estendere l utlzzo della trasorata d Fourer al ltraggo. Esep ltr D / /5 ltrato w w w w w Un altra consderazone va atta nell osservare ce l ltro agsce, n pratca, rbaltato rspetto al punto centrale della nestra natt, se w3,w : w w 3 ( ) ltrato + w 3 Esep ltr D / - Prodotto d convoluzone Date due successon perodce, d perodo, l loro prodotto d convoluzone ndcato con *, è la successone perodca d perodo denta da: g ( * ) Vedao ora le derenze e le analoge con ll ltraggo dento precedenteente ltrato w w e unce derenze sono l estensone della soatora a tutto l ntervallo e lo scabo tra e. Se ora no pensao al ltro, ce era ltato alla nestra d apezza w, coe parte d un vettore perodco d perodo (dove gl eleent ancant sono stat rept con zer) possao estendere la soatora a tutto,-.

3 Se ora dostrao ce l prodotto d convoluzone è coutatvo, abbao nterpretato la orula del prodotto d convoluzone d due successon perodce coe un ltraggo. (ovvero l ltraggo coe l prodotto d convoluzone) Il prodotto d convoluzone è coutatvo coè: * * Dostrazone: Posto - s a: ( ) * + ( ) * el caso precedente s avrebbe -/3, Rportando tal valor n un vettore perodco d lungezza, s a / , -/3. Altre propretà del prodotto d convoluzone ) Se g* allora g è perodca con perodo : g g ± ± ) Propretà coutatva a*bb*a 3) Propretà assocatva a*(b*c)(a*b)*c 4) Propretà dstrbutva a*(b+c)a*b+b*c Teorea d convoluzone Il teorea d convoluzone perette d utlzzare la trasorata d Fourer. Inatt aera: Posto g* vale la seguente relazone tra le DFT GHF Dostrazone: Dalla denzone d DFT: ( ) F H e e e e e G + π π π π π pongo - scabo le soatore Esep ltr D-Fourer Utlzzao la trasorata d Fourer per rpulre un segnale dal ruore. Pensao l ruore coe guassano banco. Vedao nelle dapostve seguent l sgncato d questo aggettvo.

4 Esep ltr D-Fourer Calcolao la trasorata d Fourer del segnale e ne vsualzzao l odulo n scala lneare e logartca Esep ltr D-Fourer Calcolao la trasorata d Fourer del ruore e ne vsualzzao l odulo n scala lneare e logartca Esep ltr D-Fourer Ora vsualzzao l segnale con l ruore e la sua trasorata n odulo (scala logartca) Esep ltr D-Fourer Provao a ltrare l ruore oltplcando la trasorata d Fourer del segnale ruoroso per una nestra. Dove l segnale è pù basso l ruore è predonante

5 . E accao l anttrasorata. Esep ltr D-Fourer Esep ltr D-Fourer non basta restrngao la nestra portando l cuto a 5 PSF del ltro egl esep ora ostrat abbao progettato l ltro analzzando l segnale ruoroso n Fourer. Se s guarda l anttrasorata del ltro s evdenzano le sue caratterstce nello spazo del segnale. Questa unzone è detta ance PSF (Pont Spread Functon) o ernel del ltro. Altr ltr Quello ce abbao appena vsto è detto ltro passa basso deale, con lo stesso crtero s possono denre altr tp d ltr: Passa alto Passa banda Elna banda (elna coponente)

6 Il ltro passa basso deale non è utlzzato n pratca percè la PSF ostra oscllazon ce possono creare arteatt. Provao ad applcare l ltro passa basso deale ad un segnale con dscontnutà. Altr ltr Esstono altr ltr eno rpd : Hang, Hann, Parzen, Butterwort, tutt dsegnat sulla banda. Hang.5 + πω.5 cos Ω per per ω Ω ω > Ω Hann.5 + πω.46 cos Ω per ω Ω per ω > Ω Altr ltr Altr ltr Parzen ω ω Ω Ω ω - Ω 3 per ω Ω / per Ω / < ω Ω per ω > Ω Butterwort ω ω + ω s n

7 Fltr D Al ne d glorare l ntellgbltà d una agne dgtale una tecnca d prara portanza è l ltraggo. Con l quale s possono enatzzare alcune caratterstce o ruoverne altre. Essenzalente l ltraggo è una unzone d ntorno, nel quale l valore ce assue un pxel nell agne d uscta è deternato dall applcazone d un operatore ce agsce su valor de pxels a lu crcostant nell agne d ngresso. Per questo tale operatore vene detto operatore locale. Interpretando l agne coe una atrce, l operatore agsce su una nestra d punt nell ntorno del pxel a cu è applcato. Questa operazone vene rpetuta per tutt pxel esplorando l agne dall alto verso l basso e da snstra verso destra. Fltr D - II Foralente possao denre un ltro generco D coe un operatore ce perette d assocare l valore nuerco d un pxel dell agne ltrata g,n a quell d IxJ pxels (soltaete s prende I e J dspar) n un ntorno del corrspondente pxel nell agne n ngresso,n. g, n ( ( I ) /, n ( J ) /,...,. + ( J ) /, n + ( I ) -I,n-J / ),n I (I-)/ J (J-)/ +I,n+J FITRO (5x5) Fltr lnear a nestra con suo pes è caata nucleo d convoluzone (convoluton ernel) ed la sua ora deterna l tpo d ltraggo sull agne. Descvendo ltr basat sulla convoluzone s usano le seguent convenzon. Dato un ltro,j d denson I x J, consderao l centro della atrce nelle coordnate,j (questo è senz altro vero se I e J sono dspar) coe ostrato n gura: Il ltraggo lneare rporta coe rsultato un valore dato dalla cobnazone lneare de valor de pxel dell ntorno del pxel d ngresso. I pes della cobnazone lneare sono valor assegnat dal ltro ad ogn pxel della nestra. Consderando l operatore applcato con una nestra d denson I J su una agne, l ltraggo avvene trate la unzone: I J /5 g, n Fltr lnear II I j J, j, n j Esepo nestra 5x5, eda oble, ovvero tutt pes sono ugual e sono noralzzat n odo ce la soa sa. I, J, I, J O,,,, J,,,, J,,, O I, J, I, J Σ,n g,n g, n j, j, n j /5

8 Scrvao la orula della convoluzone tenendo sso l centro del ltro coè l punto,, e consderao l pro pxel dell agne ltrata. I J I g,, j, j I J I j J J a orula così scrtta ette n evdenza ce al valore de pxel vcno al bordo nell agne ltrata contrbuscono pxel dell agne d partenza ce sono uor dal dono dell agne stessa. Qund rsultat ce s ottengono dalla scansone della nestra del ltro su pxel d bordo agne, sono aett da un errore, prodotto dal atto ce parte della nestra del ltro non copre pxel dell agne. Esstono var etod per ovvare questo nconvenente. Un etodo consste nell evtare d calcolare quest valor, partendo dal pro pxel ce perette alla nestra d coprre pxel dell agne, cò, tuttava produce un agne n uscta un pò pù pccola d quella orgnale. Fltragg ulteror dnuscono ulterorente la densone... C sono essenzalente due tecnce ce perettono d avere l agne n uscta delle stesse denson d quella n ngresso: -Zero-paddng -Prolungaento perodco el pro caso valor ancant sono sosttut con valor zero (Zero paddng), e cò può produrre errore su pxel d bordo soprattutto se quest non anno valor nuerc vcn allo zero. a regone d bordo aetta da questo errore sarà tanto pù larga quanto pù è grande la nestra del ltro. Questa tecnca è consglata solo nel caso d agn con ondo nero. el secondo caso, valor ancant sono sosttut da quell dell agne stessa per prolungaento perodco. In pratca s pastrella l pano con l agne e quando l ltro passa su bord s consderano pxel dell agne adacente.,n bordo laterale FITRO (5x5) bordo superore Eett d bordo Convoluzone D In copleta analoga con quello atto n una densone s può arontare la convoluzone con ltr lnear attraverso la trasorata d Fourer. S estende l ltro alle stesse denson dell agne e po s scrve l prodotto d convoluzone nel seguente odo: g, n j, j, n dove la soatora s estende a tutta l agne e l ltro è traslato sopra ad essa j Zero paddng Prolungaento perodco

9 Consderazon sulla convoluzone Quando la convoluzone è scrtta nella ora standard per una agne,n d denson x g, n j, j, n vedao ce l nucleo d convoluzone,j è reso speculare rspetto a j per produrre -,-j pra d essere traslato d,n. onostante olt nucle d convoluzone sano setrc e qund,j-,-j, altr non lo sono e qund occorre porre attenzone all pleentazone degl algort. Il costo coputazonale d una convoluzone per un nucleo d denson JxJ e una agne d denson x è O(J ) per pxel, ovvero O( xj ). Se l agne d partenza a valor nter, l rsultato d un ltraggo n generale avrà valor real, qund occorre porre attenzone al tpo delle varabl n goco. j a coplesstà del prodotto d convoluzone s può rdurre nel caso d nucle separabl. Inatt se s può scrvere:, j j allora l prodotto d convoluzone s scrve g, n I r c J r j, n j c j questo sgnca, ce nvece d applcare un ltro b-densonale s applcano due ltr onodensonal, l pro nella drezone e l altro nella drezone j. a coplesstà passa da O(I*J) a O(I+J) per pxel. Per cert ltr è possble trovare una pleentazone ncreentale della convoluzone: entre la nestra d convoluzone s uove sopra l agne la colonna d snstra dell agne da elaborare è spostata uor dalla nestra, entre una nuova colonna entra a destra. Cò perette d scrvere algort con coplesstà per pxel O(costante). Il teorea d convoluzone e le sue applcazon Fltr D n Fourer Ovvaente l teorea d convoluzone vale ance n due denson: Sano e g due agn e l nucleo d convoluzone ovvero la PSF del ltro se g* vale la seguente relazone tra le DFT G,lH,lF,l applcazone d un ltro può essere qund arontata n due od: ) Il ltro è progettato n Fourer, s scrve qund drettaente H, s calcola la DFT dell agne da ltrare, s oltplcano le due trasorate e s calcola l anttrasorata del rsultato. ) Il ltro è scrtto attraverso l suo nucleo d convoluzone, po s calcola H, F e qund s applca l teorea d convoluzone coe nel caso precedente.

10 Fltr per estrazone d contorn: ltro d Sobel Il ltro d Sobel è un ltro separable e lneare ce vene usato per l estrazone de contorn, s esegue una convoluzone con le seguent ascere: X as Y as Operator d rango Gl operator d rango sono operator non lnear. I valor d grgo contenut nella nestra W del ltro sono dappra dspost n ordne crescente secondo l loro valore (rango), e qund soat con coecent a ce ndvduano la unzone del ltro (ved gura). S deve notare ce con tale operazone s perdono norazon d tpo spazale su pxel dell ntorno, pertanto non s deve cononderla con la soa pesata de ltr lnear ce nvece realzza una convoluzone spazale.,n g,n Esep d operator d rango sono gl operator d no e asso e l cosddetto ltro edano. a) Operatore d no: Ogn valore d grgo è sosttuto dal no valore nella nestra dell operatore. Dettagl n e car vengono cancellat, entre le zone pù scure s espandono. I coecent del ltro sono tal ce l unco coecente dverso da zero, e par ad uno è quello relatvo al no. b) Operatore d asso: Ogn valore d grgo, n questo caso, è nvece sosttuto dal asso valore nella nestra dell operatore. e zone pù care s espandono a danno d quelle scure, dettagl n e scur vengono cancellat. I coecent del ltro sono tal ce l unco coecente dverso da zero, e par ad uno è quello relatvo al asso. c) Fltro edano: Ogn valore d grgo è sosttuto dalla edana (non la eda) de valor nella nestra dell operatore. Se la nestra contene I eleent l valore d grgo n uscta sarà quello ce è nore o uguale a (I )/ e aggore o uguale a (I )/. Questo tpo d ltro s utlzza per sopprere un partcolare tpo d ruore, l ruore pulsvo o sale e pepe dove una certa percentuale d pxel è saturata (valore asso) oppure non rsponde (valore no). Tale ltro è olto ecace per toglere eett coe bad pxel o ragg cosc nelle agn astronoce. Un esepo del ltro edano

Strutture deformabili torsionalmente: analisi in FaTA-E

Strutture deformabili torsionalmente: analisi in FaTA-E Strutture deformabl torsonalmente: anals n FaTA-E Il comportamento dsspatvo deale è negatvamente nfluenzato nel caso d strutture deformabl torsonalmente. Nelle Norme Tecnche cò vene consderato rducendo

Dettagli

Argomenti. Misure di corrente elettrica continua, di differenza di potenziale e di resistenza elettrica.

Argomenti. Misure di corrente elettrica continua, di differenza di potenziale e di resistenza elettrica. ppunt per l corso d Laboratoro d Fsca per le Scuole Superor rgoent Msure d corrente elettrca contnua, d dfferenza d potenzale e d resstenza elettrca. Struent d sura: prncp d funzonaento. Coe s effettuano

Dettagli

CIRCUITI DI IMPIEGO DEI DIODI

CIRCUITI DI IMPIEGO DEI DIODI UT D MPEGO DE DOD addrzzare ad na seonda. l crcto pù seplce, che pega l dodo coe raddrzzatore d na tensone alternata, è rappresentato n Fg.. n esso n generatore deale d tensone alternata l c valore stantaneo

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri Artmetca de calcolator Rappresentazone de numer natural e relatv Addzone e sommator: : a propagazone d rporto, veloce, con segno Moltplcazone e moltplcator: senza segno, con segno e algortmo d Booth Rappresentazone

Dettagli

Leggere i dati da file

Leggere i dati da file Esempo %soluzon d una equazone d secondo grado dsp('soluzon d a^+b+c') anput('damm l coeffcente a '); bnput('damm l coeffcente b '); cnput('damm l coeffcente c '); deltab^-4*a*c; f delta0 dsp('soluzon

Dettagli

Unità Didattica N 25. La corrente elettrica

Unità Didattica N 25. La corrente elettrica Untà Ddattca N 5 : La corrente elettrca 1 Untà Ddattca N 5 La corrente elettrca 01) Il problema dell elettrocnetca 0) La corrente elettrca ne conduttor metallc 03) Crcuto elettrco elementare 04) La prma

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

Corrente elettrica e circuiti

Corrente elettrica e circuiti Corrente elettrca e crcut Generator d forza elettromotrce Intenstà d corrente Legg d Ohm esstenza e resstvtà esstenze n sere e n parallelo Effetto termco della corrente Legg d Krchhoff Corrente elettrca

Dettagli

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE UNA RASSEGNA SUI METODI DI STIMA DEL VALUE at RISK (VaR) Chara Pederzol - Costanza Torrcell Dpartmento d Economa Poltca - Unverstà degl Stud d Modena e Reggo Emla Marzo 999 INDICE Introduzone. Il concetto

Dettagli

Progetto Lauree Scientifiche. La corrente elettrica

Progetto Lauree Scientifiche. La corrente elettrica Progetto Lauree Scentfche La corrente elettrca Conoscenze d base Forza elettromotrce Corrente Elettrca esstenza e resstvtà Legge d Ohm Crcut 2 Una spra d rame n equlbro elettrostatco In un crcuto semplce

Dettagli

Misure elettriche circuiti a corrente continua

Misure elettriche circuiti a corrente continua Misure elettriche circuiti a corrente continua Legge di oh Dato un conduttore che connette i terinali di una sorgente di forza elettrootrice si osserva nel conduttore stesso un passaggio di corrente elettrica

Dettagli

Misura della distanza focale. di una lente convergente. Metodo di Bessel

Misura della distanza focale. di una lente convergente. Metodo di Bessel Zuccarello Francesco Laboratoro d Fsca II Msura della dstanza focale d una lente convergente Metodo d Bessel A.A. 003-004 Indce Introduzone..pag. 3 Presuppost Teorc.pag. 4 Anals de dat.pag. 8. Modo d operare...pag.

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

1. Integrazione di funzioni razionali fratte

1. Integrazione di funzioni razionali fratte . Integazone d fnzon azonal fatte P S songa d vole calcolae n ntegale del to: d Q ove P e Q sono olno nell ndetenata d gado assegnato. Sonao ce: P a n n a n n a a Q b b b b oleent s etod d ntegazone I

Dettagli

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO.

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO. elazoe d laboratoro d Fsca corso M-Z Laboratoro d Fsca del Dpartmeto d Fsca e Astrooma dell Uverstà degl Stud d Cataa. Scala Stefaa. AGOMENTO: MSUA DELLA ESSTENZA ELETTCA CON L METODO OLT-AMPEOMETCO. NTODUZONE:

Dettagli

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso. I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess

Dettagli

come si tiene conto della limitazione d ampiezza e di velocità come si tiene conto della limitazione di frequenza come si tiene conto degli offset

come si tiene conto della limitazione d ampiezza e di velocità come si tiene conto della limitazione di frequenza come si tiene conto degli offset 8a resentazone della lezone 8 /6 Obettv come s tene conto della lmtazone d ampezza e d veloctà come s tene conto della lmtazone d reqenza come s tene conto degl oset 8a saper preved. col calcolo l nlenza

Dettagli

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno Idc d Poszoe Gl dc s poszoe soo msure stetche ( valor caratterstc ) che descrvoo la tedeza cetrale d u feomeo La tedeza cetrale è, prma approssmazoe, la modaltà della varable verso la quale cas tedoo a

Dettagli

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,

Dettagli

Dai numeri naturali ai numeri reali

Dai numeri naturali ai numeri reali .1 Introduzione Dai nueri naturali ai nueri reali In questa unità didattica vogliao riprendere rapidaente le nostre conoscenze sugli insiei nuerici (N, Z e Q), e successivaente apliarle a coprendere i

Dettagli

Nota metodologica Strategia di campionamento e livello di precisione dei risultati

Nota metodologica Strategia di campionamento e livello di precisione dei risultati Nota etodologica Strategia di capionaento e livello di precisione dei risultati 1. Obiettivi conoscitivi La popolaione di interesse dell indagine in oggetto, ossia l insiee delle unità statistiche intorno

Dettagli

CompitoTotale_21Feb_tutti_2011.nb 1

CompitoTotale_21Feb_tutti_2011.nb 1 CopitoTotale_2Feb_tutti_20.nb L Sia data una distribuzione di carica positiva, disposta su una seicirconferenza di raggio R con densità lineare di carica costante l. Deterinare : al l espressione del capo

Dettagli

Impianti di Condizionamento: Impianti a tutt'aria e misti

Impianti di Condizionamento: Impianti a tutt'aria e misti Facoltà di Ingegneria - Polo di Rieti Corso di " Ipianti Tecnici per l'edilizia" Ipianti di Condizionaento: Ipianti a tutt'aria e isti Prof. Ing. Marco Roagna INTRODUZIONE Una volta noti i carichi sensibili

Dettagli

5. Il lavoro di un gas perfetto

5. Il lavoro di un gas perfetto 5. Il lavoro d un gas perfetto ome s esprme l energa nterna d un gas perfetto? Un gas perfetto è l sstema pù semplce che possamo mmagnare: le nterazon a dstanza fra le molecole sono così debol da essere

Dettagli

Nadia Garbellini. L A TEX facile. Guida all uso

Nadia Garbellini. L A TEX facile. Guida all uso Nada Garbelln L A TEX facle Guda all uso 2010 Nada Garbelln L A TEX facle Guda all uso seconda edzone rveduta e corretta 2010 PRESENTAZIONE L amca e brava Nada Garbelln, autrce d questa bella e semplce

Dettagli

Metodologia di controllo. AUTORIMESSE (III edizione) Codice attività: 63.21.0. Indice

Metodologia di controllo. AUTORIMESSE (III edizione) Codice attività: 63.21.0. Indice Metodologa d controllo AUTORIMESSE (III edzone) Codce attvtà: 63.21.0 Indce 1. PREMESSA... 2 2. ATTIVITÀ PREPARATORIA AL CONTROLLO... 3 2.1 Interrogazon dell Anagrafe Trbutara... 3 2.2 Altre nterrogazon

Dettagli

PROCESSI CASUALI. Segnali deterministici e casuali

PROCESSI CASUALI. Segnali deterministici e casuali POCESSI CASUALI POCESSI CASUALI Segnal deermnsc e casual Un segnale () s dce DEEMIISICO se è una funzone noa d, coè se, fssao un qualunque sane d empo o, l valore ( o ) assuno dal segnale è noo con esaezza

Dettagli

La probabilità di avere non più di un maschio, significa la probabilità di averne 0 o 1: ( 0) P( 1)

La probabilità di avere non più di un maschio, significa la probabilità di averne 0 o 1: ( 0) P( 1) Esercizi sulle distribuzioni binoiale e poissoniana Esercizio n. Una coppia ha tre figli. Calcolare la probabilità che abbia non più di un aschio se la probabilità di avere un aschio od una feina è sepre

Dettagli

COMUNICAZIONE AI GRUPPI DI LAVORO SIDEA (13/09/02) LE CONDIZIONI DI OTTIMALITÀ PER LA DETERMINAZIONE DELLE CATTURE DI PESCE

COMUNICAZIONE AI GRUPPI DI LAVORO SIDEA (13/09/02) LE CONDIZIONI DI OTTIMALITÀ PER LA DETERMINAZIONE DELLE CATTURE DI PESCE COMUNICAZIONE AI GRUPPI DI LAVORO SIDEA (13/9/2) ECONOMIA E POLITICA DEL SETTORE ITTICO 1.INTRODUZIONE. LE CONDIZIONI DI OTTIMALITÀ PER LA DETERMINAZIONE DELLE CATTURE DI PESCE (una applcazone ad un contesto

Dettagli

PRINCIPIO DI INDUZIONE. k =. 2. k 2 n(n + 1)(2n + 1) 6

PRINCIPIO DI INDUZIONE. k =. 2. k 2 n(n + 1)(2n + 1) 6 PRINCIPIO DI INDUZIONE LORENZO BRASCO Esercizio. Diostrare che per ogni n si ha nn. 2 Esercizio 2. Diostrare che per ogni n si ha 2 2 nn 2n. Soluzione Procediao per induzione: la 2 è ovviaente vera per

Dettagli

Liste di specie e misure di diversità

Liste di specie e misure di diversità Lte d pece e mure d dvertà Carattertche delle lte d pece I dat ono par, coè hanno molt valor null (a volte la maggoranza!) La gran parte delle pece preent è rara. I fattor ambental che nfluenzano la dtrbuzone

Dettagli

4. Metodo semiprobabilistico agli stati limite

4. Metodo semiprobabilistico agli stati limite 4. Metodo seiprobabilistico agli stati liite Tale etodo cosiste el verificare che le gradezze che ifluiscoo i seso positivo sulla, valutate i odo da avere ua piccolissia probabilità di o essere superate,

Dettagli

r~~f~~. --r-~r-r ---- _[::=_~- r-l

r~~f~~. --r-~r-r ---- _[::=_~- r-l In tutti i problei si userà coe velocità del suono in aria il valore 340 /s (valido per una teperatura dell'aria di circa 18 C), salvo diversa indicazione. La propagazione ondosa La figura seguente ostra

Dettagli

GLI INDICI DEI COSTI DI COSTRUZIONE DI UN FABBRICATO RESIDENZIALE

GLI INDICI DEI COSTI DI COSTRUZIONE DI UN FABBRICATO RESIDENZIALE 21 arzo 2013 GLI INDICI DEI COSTI DI COSTRUZIONE DI UN FABBRICATO RESIDENZIALE La nuova base 2010 A partire dal ese di arzo 2013, l Istituto nazionale di statistica avvia la pubblicazione dei nuovi indici

Dettagli

CINEMATICA DEL CORPO RIGIDO

CINEMATICA DEL CORPO RIGIDO INEMTI DE ORPO RIGIDO o tudo della geometra degl potament de punt d un tema materale potzzato come rgdo rentra n quella parte della Meccanca laca che è la nematca. a cnematca tuda pobl movment d un corpo

Dettagli

Lorenzo Pistocchini RICERCA DI SISTEMA ELETTRICO. Agenzia Nazionale per le Nuove Tecnologie, l Energia e lo Sviluppo Economico Sostenibile

Lorenzo Pistocchini RICERCA DI SISTEMA ELETTRICO. Agenzia Nazionale per le Nuove Tecnologie, l Energia e lo Sviluppo Economico Sostenibile Agenza Nazonale per le Nuove Tecnologe, l Energa e lo Svluppo Economco Sostenble RICERCA DI SISTEMA ELETTRICO Ottmzzazone termofludodnamca e dmensonamento d uno scambatore d calore n controcorrente con

Dettagli

ALCUNI ELEMENTI DI TEORIA DELLA STIMA

ALCUNI ELEMENTI DI TEORIA DELLA STIMA ALCUNI ELEMENTI DI TEORIA DELLA STIMA Quado s vuole valutare u parametro θ ad esempo: meda, varaza, proporzoe, oeffete d regressoe leare, oeffete d orrelazoe leare, e) d ua popolazoe medate u ampoe asuale,

Dettagli

4. RISPOSTA SISMICA DI SISTEMI MDOF

4. RISPOSTA SISMICA DI SISTEMI MDOF Corso Igegera Ssca - a.a. 9/ ott. g. Isaa Cleete ott. g. Chara Beo 4. RISPOSA SISICA DI SISEI DO Ottobre 9 v.. - Pag. 4. - Rsposta ssca sste DO 4. attore strttra Secoo le NC8 l fattore strttra q che tee

Dettagli

PREFAZIONE. di Giuseppe Berto

PREFAZIONE. di Giuseppe Berto , PREFAZIONE d Guseppe Berto RICORDO DEL TERRAGLIO Quand'ero govane, e la vogla d grare l mondo m spngeva n terre lontane, a ch m chedeva notze del mo paese, rspondevo: l mo paese è una strada. In effett,

Dettagli

6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI

6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI 6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI Consdeao un sstea d n unt ateal con n > nteagent ta loo e con l esto dell unveso. Nello studo d un tale sstea sulta convenente scooe la foza agente ( et) sull

Dettagli

LA LEGGE DI OHM La verifica sperimentale della legge di Ohm

LA LEGGE DI OHM La verifica sperimentale della legge di Ohm Laboratorio di.... Scheda n. 2 Livello: Base A.S.... Classe. NOME..... DATA... Prof.... LA LEGGE D OHM La verifica sperimentale della legge di Ohm Conoscenze - Conoscere la legge di Ohm - Conoscere lo

Dettagli

TIP Aerotermi TIP. Aerotermi come apparecchi a parete e soffitto Catalogo tecnico

TIP Aerotermi TIP. Aerotermi come apparecchi a parete e soffitto Catalogo tecnico TIP Aeroteri TIP Aeroteri coe apparecchi a parete e soffitto Catalogo tecnico Indice 01 Inforazioni sul prodotto 6 Panoraica 7 Dati sul prodotto 8 Guida alla scelta: Panoraica delle versioni 9 TIP in un

Dettagli

Confronto fra valore del misurando e valore di riferimento (1 di 2)

Confronto fra valore del misurando e valore di riferimento (1 di 2) Confronto fra valore del isurando e valore di riferiento (1 di 2) Talvolta si deve espriere un parere sulla accettabilità o eno di una caratteristica fisica del isurando ediante il confronto fra il valore

Dettagli

CONTO CONSUNTIVO PER L'ESERCIZIO FINANZIARIO 2012 RELAZIONE ILLUSTRATIVA DEL DIRIGENTE SCOLASTICO

CONTO CONSUNTIVO PER L'ESERCIZIO FINANZIARIO 2012 RELAZIONE ILLUSTRATIVA DEL DIRIGENTE SCOLASTICO DIREZIONE DIDATTICA DEL 4 CIRCOLO DI FORLI' Va Gorgna Saff, n.12 Tel 0543/33345 fax 0543/458861 C.F. 80004560407 CM FOEE00400B e-mal foee00400b@struzone.t - posta cert.: foee00400b@pec.struzone.t sto web:

Dettagli

tramite della Segreteria della scuola), trasmissione dei verbali e degli atti al

tramite della Segreteria della scuola), trasmissione dei verbali e degli atti al L verbae n"..8j... Ogg, se marzo duemaqundc, ae ore 13.00, s è runta nea sede d questa sttuzone Scoastca a commssone Eettorae così composta RBEZZO ASSUNTA Presdente; VAL SABNA Segretaro, FATORELLO GAMPETRO

Dettagli

Alberi di copertura minimi

Alberi di copertura minimi Albr d coprtur mnm Sommro Albr d coprtur mnm pr grf pst Algortmo d Kruskl Algortmo d Prm Albro d coprtur mnmo Un problm d notvol mportnz consst nl dtrmnr com ntrconnttr fr d loro dvrs lmnt mnmzzndo crt

Dettagli

DIODO E RADDRIZZATORI DI PRECISIONE

DIODO E RADDRIZZATORI DI PRECISIONE OO E AZZATO PECSONE raddrzzar ( refcar) sn crcu mpega per la rasfrmazne d segnal bdreznal n segnal undreznal. Usand, però, dd per raddrzzare segnal, s avrà l svanagg d nn per raddrzzare segnal la cu ampezza

Dettagli

MASSICCIO. INNOVATIVO. CONTROLLATO. MANUALE PER LE COSTRUZIONI DI LEGNO MASSICCIO

MASSICCIO. INNOVATIVO. CONTROLLATO. MANUALE PER LE COSTRUZIONI DI LEGNO MASSICCIO www.senft-partner.at MASSICCIO. INNOVATIVO. CONTROLLATO. MANUALE PER LE COSTRUZIONI DI LEGNO MASSICCIO È tepo di riscoprire l essenza del legno su un apia base. La costruzione con questo ateriale sano

Dettagli

INTRODUZIONE AL RUMORE NEI CIRCUITI ELETTRONICI RAPPRESENTAZIONE DEL RUMORE

INTRODUZIONE AL RUMORE NEI CIRCUITI ELETTRONICI RAPPRESENTAZIONE DEL RUMORE INTODUZIONE A UMOE NEI CICUITI EETTONICI Se prendiao n qalsiasi circito elettronico ed andiao ad analizzare il valore di na grandezza elettrica (tensione o corrente in n pnto, vediao che non è stabile

Dettagli

METODO VOLTAMPEROMETRICO

METODO VOLTAMPEROMETRICO METODO OLTAMPEOMETCO Tle etodo consente di isrre indirettente n resistenz elettric ed ipieg l definizione stess di resistenz : doe rppresent l tensione i cpi dell resistenz e l corrente che l ttrers coe

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

Limiti e continuità di funzioni reali di una variabile

Limiti e continuità di funzioni reali di una variabile di funzioni reali di una variabile Corso di Analisi Matematica - capitolo VI Facoltà di Economia, UER Maria Caterina Bramati Université Libre de Bruxelles ECARES 22 Novembre 2006 Intuizione di ite di funzione

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

._~zio/ei,o, ck//jg~~e~ Y~ CIRCOLARE N. 21. MEF - RGS - Prot. 47613 del 09/06/2015 ID: 382320. Roma.

._~zio/ei,o, ck//jg~~e~ Y~ CIRCOLARE N. 21. MEF - RGS - Prot. 47613 del 09/06/2015 ID: 382320. Roma. D: 382320 MEF - RGS - Prot. 47613 del 09/06/2015 CRCOLARE N. 21 Roma.._~zio/ei,o, ck//jg~~e~ Y~ DPARTMENTO DELLA RAGONERA GENERALE DELLO STATO SPETTORATO GENERALE PER GL ORDNAMENT DEL PERSONALE UFFCO V

Dettagli

DVR Icatch serie X11 e X11Z iwatchdvr applicazione per iphone /ipad

DVR Icatch serie X11 e X11Z iwatchdvr applicazione per iphone /ipad DVR Icatch serie X11 e X11Z iwatchdvr applicazione per iphone /ipad Attraverso questo applicativo è possibile visualizzare tutti gli ingressi del DVR attraverso il cellulare. Per poter visionare le immagini

Dettagli

Appunti sulle disequazioni

Appunti sulle disequazioni Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Appunti sulle disequazioni Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire

Dettagli

SISTEMA CIRCOLATORIO. Permette, attraverso il sangue, il trasporto di O 2. , sostanze nutritizie ed ormoni ai tessuti e la rimozione di CO 2

SISTEMA CIRCOLATORIO. Permette, attraverso il sangue, il trasporto di O 2. , sostanze nutritizie ed ormoni ai tessuti e la rimozione di CO 2 SISTEMA CIRCOLATORIO Permette, attraverso il sangue, il trasporto di O 2, sostanze nutritizie ed ormoni ai tessuti e la rimozione di CO 2 e cataboliti, per mantenere costante la composizione del liquido

Dettagli

Guida rapida Vodafone Internet Key K4607-Z. Progettata da Vodafone

Guida rapida Vodafone Internet Key K4607-Z. Progettata da Vodafone Guida rapida Vodafone Internet Key K4607-Z Progettata da Vodafone Benvenuti nel mondo della comunicazione in mobilità 1 Benvenuti 2 Impostazione della Vodafone Internet Key 4 Windows 7, Windows Vista,

Dettagli

GIRO DELLA MORTE PER UN CORPO CHE ROTOLA

GIRO DELLA MORTE PER UN CORPO CHE ROTOLA 0. IL OETO D IERZIA GIRO DELLA ORTE ER U CORO CHE ROTOLA ell approfondimento «Giro della morte per un corpo che scivola» si esamina il comportamento di un punto materiale che supera il giro della morte

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Lo studio di unzione Ing. Alessandro Pochì Appunti di analisi Matematica per la Classe VD (a.s. 011/01) Schema generale per lo studio di una unzione Premessa Per Studio unzione si intende, generalmente,

Dettagli

I COLORI DEL CIELO: COME SI FORMANO LE IMMAGINI ASTRONOMICHE

I COLORI DEL CIELO: COME SI FORMANO LE IMMAGINI ASTRONOMICHE I COLORI DEL CIELO: COME SI FORMANO LE IMMAGINI ASTRONOMICHE Nell ultima notte di osservazione abbiamo visto bellissime immagini della Galassia, delle sue stelle e delle nubi di gas che la compongono.

Dettagli

Il MINISTRO DELLA GIUSTIZIA di concerto con IL MINISTRO DEI LAVORI PUBBLICI

Il MINISTRO DELLA GIUSTIZIA di concerto con IL MINISTRO DEI LAVORI PUBBLICI Corrispettivi delle attività di progettazione e delle altre attività ai sensi dell articolo 17, comma 14 bis, della legge 11 febbraio 1994 n.109 e successive modifiche. l MNSTRO DELLA GUSTZA di concerto

Dettagli

HORIZON SQL PREVENTIVO

HORIZON SQL PREVENTIVO 1/7 HORIZON SQL PREVENTIVO Preventivo... 1 Modalità di composizione del testo... 4 Dettaglia ogni singola prestazione... 4 Dettaglia ogni singola prestazione raggruppando gli allegati... 4 Raggruppa per

Dettagli

STATISTICA Lezioni ed esercizi

STATISTICA Lezioni ed esercizi Uverstà d Toro QUADERNI DIDATTICI del Dpartmeto d Matematca MARIA GARETTO STATISTICA Lezo ed esercz Corso d Laurea Botecologe A.A. / Quadero # Novembre M. Garetto - Statstca Prefazoe I questo quadero

Dettagli

AVVER. Si raccomanda, dopo la prima ora di allenamento, di controllare tutti i serraggi, con particolare attenzione a:

AVVER. Si raccomanda, dopo la prima ora di allenamento, di controllare tutti i serraggi, con particolare attenzione a: EVO Grazie per la fiducia accordata e buon divertimento. Con questo libretto abbiamo voluto darle le informazioni necessarie per un corretto uso e una buona manutenzione della Sua moto. dati e le caratteristiche

Dettagli

CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE

CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE Consideriamo adesso un corpo esteso, formato da più punti, e che abbia un asse fisso, attorno a cui il corpo può ruotare. In questo caso l

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

Leica Lino L360, L2P5, L2+, L2, P5, P3

Leica Lino L360, L2P5, L2+, L2, P5, P3 Leica Lino L360, L25, L2+, L2, 5, 3 Manuale d'uso Versione 757665g Italiano Congratulazioni per aver acquistato Leica Lino. Le ore di sicurezza sono allegate al Manuale d'uso. Leggere attentaente le ore

Dettagli

Lezione 12: La visione robotica

Lezione 12: La visione robotica Robotica Robot Industriali e di Servizio Lezione 12: La visione robotica L'acquisizione dell'immagine L acquisizione dell immagine Sensori a tubo elettronico (Image-Orthicon, Plumbicon, Vidicon, ecc.)

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

I Grafici. La creazione di un grafico

I Grafici. La creazione di un grafico I Grafici I grafici servono per illustrare meglio un concetto o per visualizzare una situazione di fatto e pertanto la scelta del tipo di grafico assume notevole importanza. Creare grafici con Excel è

Dettagli

Elettronica delle Telecomunicazioni Esercizi cap 2: Circuiti con Ampl. Oper. 2.1 Analisi di amplificatore AC con Amplificatore Operazionale reale

Elettronica delle Telecomunicazioni Esercizi cap 2: Circuiti con Ampl. Oper. 2.1 Analisi di amplificatore AC con Amplificatore Operazionale reale 2. Analisi di amplificatore AC con Amplificatore Operazionale reale Un amplificatore è realizzato con un LM74, con Ad = 00 db, polo di Ad a 0 Hz. La controreazione determina un guadagno ideale pari a 00.

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

LIMITI E CONFRONTO LOCALE Esercizi svolti. b) lim. d) lim. h) lim x x + 1 x. l) lim. b) lim x cos x. x 0 sin 2 3x cos x p) lim.

LIMITI E CONFRONTO LOCALE Esercizi svolti. b) lim. d) lim. h) lim x x + 1 x. l) lim. b) lim x cos x. x 0 sin 2 3x cos x p) lim. LIMITI E CONFRONTO LOCALE Esercizi svolti. Calcolare i seguenti iti: a + 4 + b + 4 + 4 c 5 e ± g i + + sin 4 m sin o π q sin π + 4 + 7 d + 4 + + 5 4 + f 4 4 + 5 4 + 4 h + + l + + cos n sin cos p π π +

Dettagli

AUDIOSCOPE Mod. 2813-E - Guida all'uso. Rel. 1.0 DESCRIZIONE GENERALE.

AUDIOSCOPE Mod. 2813-E - Guida all'uso. Rel. 1.0 DESCRIZIONE GENERALE. 1 DESCRIZIONE GENERALE. DESCRIZIONE GENERALE. L'analizzatore di spettro Mod. 2813-E consente la visualizzazione, in ampiezza e frequenza, di segnali musicali di frequenza compresa tra 20Hz. e 20KHz. in

Dettagli

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente 1.1 Il motore a corrente continua Il motore a corrente continua, chiamato così perché per funzionare deve essere alimentato con tensione e corrente costante, è costituito, come gli altri motori da due

Dettagli

Na (T 1/2 =15 h), che a sua volta decade β - in 24 12

Na (T 1/2 =15 h), che a sua volta decade β - in 24 12 Esercizio 1 Il 24 10 Ne (T 1/2 =3.38 min) decade β - in 24 11 Na (T 1/2 =15 h), che a sua volta decade β - in 24 12 Mg. Dire quali livelli sono raggiungibili dal decadimento beta e indicare lo schema di

Dettagli

w w w. a x i o s i t a l i a. c o m

w w w. a x i o s i t a l i a. c o m w w w. a x o t a l a. c o m SISSIWEB AXIOS SIDI INVIO SMS INVIO EMAIL ACQUISIZIONE ASSENZE - DA SCANNER - DA PALMARE C/C POSTALE E BANCARIO DICHIARAZIONE DEI SERVIZI GESTIONE ORARIA DEL PERSONALE PRIVACY

Dettagli

tanhαl + i tan(ωl/v) 1 + i tanh αl tan(ωl/v). (10.1)

tanhαl + i tan(ωl/v) 1 + i tanh αl tan(ωl/v). (10.1) 10 - La voce umana Lo strumento a fiato senz altro più importante è la voce, ma è anche il più difficile da trattare in modo esauriente in queste brevi note, a causa della sua complessità. Vediamo innanzitutto

Dettagli

ISTITUTO COMPRENSIVO UGO FOSCOLO VESCOVATO SCUOLA SECONDARIA DI 1 GRADO PIANO ANNUALE DELLE ATTIVITA' A.S. 2013/14

ISTITUTO COMPRENSIVO UGO FOSCOLO VESCOVATO SCUOLA SECONDARIA DI 1 GRADO PIANO ANNUALE DELLE ATTIVITA' A.S. 2013/14 STTUTO COMPRENSVO UGO FOSCOLO SCUOLA SECONDARA D 1 GRADO PANO ANNUALE DELLE ATTVTA' A.S. 2013/14 PROT. N. 5991 /A-19 Vescovato, 19/09/2013 Data Giorno Sedi scolastiche Classi Orario Durata ATTVTA' COLLEGO

Dettagli

Sintesi dei diritti dei passeggeri che viaggiano in autobus 1

Sintesi dei diritti dei passeggeri che viaggiano in autobus 1 Sintesi dei diritti dei passeggeri che viaggiano in autobus 1 Il regolamento (CE) n. 181/2011 (in appresso il regolamento ) entra in vigore il 1 marzo 2013. Esso prevede una serie minima di diritti dei

Dettagli

Capitolo 8 - Introduzione alla probabilità

Capitolo 8 - Introduzione alla probabilità Appunti di Teoria dei Segnali Capitolo 8 - Introduzione alla probabilità Concetti preliminari di probabilità... Introduzione alla probabilità... Deinizione di spazio degli eventi... Deinizione di evento...

Dettagli

Specifiche tecniche per la trasmissione telematica della certificazione Unica 2015

Specifiche tecniche per la trasmissione telematica della certificazione Unica 2015 ALLEGATO A Specifiche tecniche per la trasmissione telematica della certificazione Unica 2015 per i redditi di lavoro dipendente/assimilati e di lavoro autonomo/provvigioni e diversi Specifiche tecniche

Dettagli

Anno 2013 Tipologia Istituzione U - UNITA' SANITARIE LOCALI. Istituzione 9565 - ASL VENEZIA - MESTRE 12 Contratto SSNA - SERVIZIO SANITARIO NAZIONALE

Anno 2013 Tipologia Istituzione U - UNITA' SANITARIE LOCALI. Istituzione 9565 - ASL VENEZIA - MESTRE 12 Contratto SSNA - SERVIZIO SANITARIO NAZIONALE nno 213 Tipologia Istituzione U - UNIT' SNIT LCLI Istituzione 9565 - SL VNZI - MSTR 12 Contratto SSN - SRVIZI SNIT NZINL Fase/Stato Rilevazione: pprovazione/ttiva Data Creazione Stampa: 19/6/215 14:15:25

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Guida sull utilizzo del logo

Guida sull utilizzo del logo Centro di Servizio per il Volontariato della provincia di Vicenza http://www.csv-vicenza.org 2011 Perché questa Guida? La Guida fornisce indicazioni sull utilizzo del logo del CSV di Vicenza al fine di

Dettagli

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it)

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it) I rdicli Cludio CANCELLI (www.cludioccelli.it) Ed..0 www.cludioccelli.it Dec. 0 I rdicli INDICE DEI CONTENUTI. I RADICALI... INDICE DI RADICE PARI...4 INDICE DI RADICE DISPARI...5 RADICALI SIMILI...6 PROPRIETA

Dettagli

catalogo generale SPAZZATRICI AND URBAN POWER SWEEPERS PROFESSIONAL E URBANE

catalogo generale SPAZZATRICI AND URBAN POWER SWEEPERS PROFESSIONAL E URBANE cataogo generae genera cataogue SPAZZATRICI PROFESSIONALI E URBANE PROFESSIONAL AND URBAN POWER SWEEPERS Operatore a terra Wak behind modes SM Spazzatrice manuae a spinta Manua pushing sweeper con a soa

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

Introduzione. Classificazione delle non linearità

Introduzione. Classificazione delle non linearità Introduzione Accade spesso di dover studiare un sistema di controllo in cui sono presenti sottosistemi non lineari. Alcuni di tali sottosistemi sono descritti da equazioni differenziali non lineari, ad

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4.0. Esponenziale. Nella prima sezione abbiamo definito le potenze con esponente reale. Vediamo ora in dettaglio le proprietà della funzione esponenziale a,

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA Capializzazioe semplice e composa MATEMATICA FINANZIARIA Immagiiamo di impiegare 4500 per ai i ua operazioe fiaziaria che frua u asso del, % auo. Quao avremo realizzao alla fie dell operazioe? I u coeso

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

TRASFORMAZIONI GEOMETRICHE Una trasformazione geometrica del piano in sé è una corrispondenza biunivoca tra i punti del piano: ( ) , :,

TRASFORMAZIONI GEOMETRICHE Una trasformazione geometrica del piano in sé è una corrispondenza biunivoca tra i punti del piano: ( ) , :, TRASFORMAZIONI GEOMETRICHE Un rsforzione geoeric del pino in sé è un corrispondenz iunivoc r i puni del pino P P, P P P è l igine di P rispeo ll rsforzione. Ad ogni puno P(,) corrisponde uno ed un solo

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli