PAGINE PER L INSEGNANTE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "PAGINE PER L INSEGNANTE"

Transcript

1 PAGINE PER L INSEGNANE LO SUENE ROVA QUESE PAGINE: p su amaldpu.zachell.t PF p elle Rsorse dgtal IEE PER UNA LEZIONE IGIALE PARAGRAFO 3. L etropa d u sstema solato ONENUO ANIMAZIONE L etropa d u sstema solato S dmostra che u sstema solato cu avvegoo soltato trasformazo reversbl la varazoe d etropa è ulla. ANIMAZIONE L etropa dell Uverso Può u frgorfero aumetare l etropa dell Uverso? ome? URAA (MINUI) Il secodo prcpo dal puto d vsta molecolare ESPERIMENO VIRUALE Orde e dsorde Goca, msura, eserctat MAPPA INERAIVA IN RE MINUI L etropa 30 ES INERAIVI SU ON FEEAK «Ha sbaglato, perché» VERSO IL LIL FORMULAE IN ENGLISH AUIO hage etropy Q S = b l R he chage etropy for a system s the rato of the heat flow Q to the system ad the temperature at whch the chage take place. he sub scrpt R dcates that the chage s reversble. QUESIONS AN ANSWERS AUIO Why s the etropy of a solated system dested to ether rema costat or crease? Etropy s a extesve thermodyamc property, de ed as the measure of a system s thermal eergy per ut temperature that s uavalable for dog useful work. e secod law of thermodyamcs represeted terms of etropy states that the etropy a solated system always creases or remas costat. A solated system s a thermodyamc system that has o teracto wth the surroudgs ad for whch chages the system have o e ect o the surroudgs. e coservato law tells us that the total eergy of a solated system (the sum of the teral, ketc, potetal eerges etc) remas costat over tme ad therefore the etropy the thermal eergy uavalable for useful work - of the system ca oly crease or, the lmt of a reversble process, rema costat. 140 PF

2 ERMOINAMIA 13 ENROPIA E ISORINE PROLEMI MOELLO, OMANE E PROLEMI IN PIÙ 1 LA ISUGUAGLIANZA I LAUSIUS Perché ua quattà d calore scambata co u basso dslvello d temperatura è meo utle della stessa quattà d calore scambata co u dslvello d temperatura pù alto? 3 4 I atura vale l uguaglaza d lausus? OSA SUEE SE osa succede se la stessa maccha termca vee utlzzata all equatore e al polo ord? PROLEMA MOELLO 1 POMPA I ALORE SU UN ILO I ARNO Ua pompa d calore che lavora su u cclo d arot ha u coe cete d guadago d,3. Quado fa freddo, per mateere casa ua temperatura d 1,l motore della maccha termca assorbe 5,0 kw d eerga elettrca og secodo. alcola l calore scambato co le sorget (atmosfera - sorgete fredda - e tero della casa - sorgete calda) og secodo. alcola la temperatura estera. AI emperatura tera: = ( ) K = 94 K Poteza erogata: P=5,0 kw oe cete d guadago: K =,3 INOGNIE alore assorbto (postvo): Q 1 =? alore ceduto (egatvo): Q =? emperatura estera: 1 =? L IEA La poteza elettrca assorbta dalla pompa d calore, moltplcata per l utà d tempo, corrspode al lavoro ecessaro per far fuzoare la maccha. ooscedo l coe cete d guadago e l lavoro possamo rcavare l calore ceduto alla sorgete calda e quello acqustato dalla sorgete fredda. I e poché s tratta d ua maccha termca reversble, ella dsuguaglaza d lausus vale l sego = azché #. LA SOLUZIONE alcolo l lavoro ecessaro per mateere fuzoe la pompa d calore og secodo. 4 J 4 J 4 P =, 50 # s & W = Pt = b,50 # s l # ^1 sh =,50 # J. alcolo calor scambat Q 1 e Q sfruttado la defzoe d coeffcete d guadago. alla de zoe d coe cete d guadago rcavo drettamete l modulo del calore ceduto Q : Q 4 5 K = W & Q = WK = ^, 50 # Jh #, 3 =, 58 # J. al prmo prcpo della termodamca ottego l calore assorbto Q 1 : = Q - W = ^, 58 # -, 5 # h J =, 33 # J. Applco l uguaglaza d lausus e rsolvo rspetto a 1. 5 Q, 33 # J + = 0 & 1=- Q =-^94 Kh # 5 = 66 K =-7, 5. -, 58 # J PF

3 PAGINE PER L INSEGNANE LO SUENE ROVA QUESE PAGINE: p su amaldpu.zachell.t PF p elle Rsorse dgtal PER NON SAGLIARE Fa attezoe alle covezo su seg. La pompa d calore assorbe calore dalla sorgete pù fredda (l atmosfera), coè Q 1 >0 e cede calore alla sorgete pù calda (l tero della casa) coè Q < Ua maccha termca assorbe 4,80 J da ua sorgete a temperatura 800 K e cede 88 J a ua sorgete a 300 K. Q Quato vale l espressoe / per questa maccha? = 1 [ 0,954 J/K] Ad og cclo u frgorfero, per mateere la sua temperatura d 4, estrae 50 J d calore dal suo tero e cede 305 J d calore all ambete crcostate a temperatura d. alcola l valore della dsuguaglaza d lausus. [ 0,13 J/K] Ua maccha termca rreversble lavora tra le temperature d e d 80 e l suo redmeto è d 0,350. Q J S sa oltre che / = 0,53 K. = 1 1 alcola l calore ceduto alla sorgete fredda og cclo. alcola l calore assorbto dalla sorgete calda og cclo. [337 J; 519 J] Ua maccha termca lavora tra le temperature d 73 K e d 40 K e la quattà assorbta dalla sorgete calda è l 39,0 % superore al calore ceduto che vale 95 J. Q alcola quato vale / per questa maccha termca. = 1 S tratta d ua maccha reversble oppure rreversble? [ 0,4 J/K; rreversble] L ENROPIA 16 Quale trasformazoe reversble è soetropca, coè avvee seza varazoe dell etropa? Suggermeto: pesa qual mod ua sommatora può dare come rsultato zero. urate ua trasformazoe soterma reversble 5,00 mol d u gas perfetto vegoo compresse a u volume che è u quarto del volume zale. alcola la varazoe d etropa del sstema Se due cubett d ghacco vegoo gettat uo dopo l altro u recpete d acqua, come s calcola l etropa? L etropa è ua gradezza estesva; cò sg ca che lo soo ache la temperatura e l calore Q che la de scoo? 18,5 kg d vapore acqueo codesao alla temperatura d 0. Il calore latete d vaporzzazoe dell acqua è,53 6 J/kg. alcola la varazoe d etropa dovuta alla codesazoe del vapore. 3 alcola la quattà d calore scambata se la temperatura dell soterma è d 30 K. [ 57,6 J/K; 1,84 4 J] U blocco d u certo materale d massa 15 g fode completamete alla pressoe atmosferca ormale e alla temperatura d 39. La varazoe d etropa el passaggo dallo stato soldo allo stato lqudo è d 5,81 J/K. alcola l calore latete d fusoe del blocco. Idca d che materale d stratta. [ f = 3,0 3 J/kg; Pombo] [ 1,1 5 J/K] 14 PF

4 ERMOINAMIA 13 ENROPIA E ISORINE 3 L ENROPIA I UN SISEMA ISOLAO Ua casa ha ua parete d lego spessa 0,0 cm e ua super ce d 15,0 m. La temperatura tera della casa è d 300 K, metre l ambete estero s trova a ua temperatura d 78 K. (oeffcete d coducbltà termca lego = 0,0 W/m K) alcola la quattà d calore dspersa ell ambete og secodo attraverso quella parete. alcola l aumeto d etropa dovuto al passaggo d calore attraverso quella parete. [330 J; 8,71 J/K] Ua serra è costtuta da paell d vetro d spessore 5,00 ( vetro = 0,93 W/m K). La d ereza d tempe- 41 ratura tra l tero della serra e l ambete estero è d 1,0 K. Attraverso ua parete s ha ua dspersoe d calore d,0 3 J og secodo. alcola la super ce della parete alcola l aumeto d etropa se all tero del magazzo v è ua temperatura d 15,0. [9,86 m ; 3,3 J/K] U sstema solato è costtuto da due sorget a temperature d 77 e d 5,0. L aumeto d etropa è,85 J/K. alcola l valore scambato tra le due sorget se queste vegoo poste a cotatto per breve tempo. [,6 3 J] 4 IL QUARO ENUNIAO EL SEONO PRINIPIO 47 APPLIA I ONEI Nelle trasformazo real (quelle che avvegoo spotaeamete atura) la varazoe d etropa è egatva? 48 Perché la egazoe dell eucato d lausus del secodo prcpo della termodamca mplca la egazoe del quarto eucato? Suggermeto: calcola la varazoe d etropa che s avrebbe el caso d ua trasformazoe che ega l eucato d lausus. 5 L ENROPIA I UN SISEMA NON ISOLAO 54 U govae studete ha appea termato u eserctazoe d laboratoro d sca. È credulo perché ha svolspermeto del questo precedete è par a 0,65 J/K. 55 APPLIA I ONEI La varazoe d etropa ell eto u espermeto cu l etropa è dmuta: cosa Qual è la varazoe mma dell etropa dell ambete? coclud? PROLEMA MOELLO 5 L ENROPIA I UN FRIGORIFERO U frgorfero d classe A++ ha u coe cete d prestazoe par alla metà d quello d ua maccha deale elle stesse codzo e assorbe medamete ua poteza elettrca d 0 W. Nel comparto cb la temperatura è mateuta costate a 4,0 e l gas compresso el codesatore estero ha la temperatura d 3. alcola la varazoe d etropa dell uverso u goro. eterma l espressoe per l etropa fuzoe del OP. AI emperature delle due sorget: 1 = (73 + 4,0) K = 77 K = (73 + 3) K = 305 K Poteza elettrca assorbta: P = 0 W = 0 J/s. Relazoe tra coe cete d prestazoe reale e coe cete d prestazoe deale: OPdeale OPreale = Itervallo d tempo: t = 1 d = s INOGNIE Varazoe d etropa dell uverso u goro S =? 143 PF

5 PAGINE PER L INSEGNANE LO SUENE ROVA QUESE PAGINE: p su amaldpu.zachell.t PF p elle Rsorse dgtal L IEA Poché l etropa è ua fuzoe d stato, al completameto d og cclo la varazoe d etropa del sstema-frgorfero è ulla. Per calcolare l etropa dell uverso, dobbamo qud calcolare la varazoe d etropa dell ambete, coè dovuta allo scambo d calore del frgorfero co le sorget: S = S + S = 0 + S. uverso frgorfero ambete ambete No sappamo quat ccl vegoo comput u secodo, ma cooscamo, attraverso la poteza, l lavoro computo dall estero og secodo. Ua maccha termca frgorfera deale ha u coeffcete d prestazoe OP = = W Q - che è maggore d quello d u frgorfero reale: Q 1 >0 è l calore sottratto alla sorgete fredda, W è l lavoro computo (l frgorfero compe lavoro egatvo), Q < 0 l calore ceduto all ambete u cclo. Rcordamo dal captolo precedete che l OP dà ua msura del redmeto e, el caso d ua maccha deale (reversble), 1 h 1 possamo esprmerlo fuzoe delle temperature delle sorget, coè: OP = - h = -. 1 LA SOLUZIONE etermo l lavoro computo dal frgorfero e l suo OP reale. alla poteza del frgorfero posso rcavare l lavoro che compe: W = Pt = 0 J/s 1 s = 0 J. ooscedo le temperature tra cu lavora calcolo l OP che avrebbe se fosse ua maccha deale: 1 77 K OP OP = - = (305-77) K = 9,89; sappamo che l OP reale del frgorfero è OPreale = = 4, etermo le quattà d calore scambate co le sorget og secodo. Il frgorfero preleva dal suo tero (sorgete fredda) ua quattà d calore Q 1 >0: Q = OP W = 4,95 0 J = 495 J (assorbto dal frgorfero, ceduto dall tero) 1 reale # e cede all estero (sorgete calda) ua quattà Q <0: Q = + W = ( ) J = 595 J(ceduto dal frgorfero, assorbto dall estero). alcolo la varazoe d etropa dell ambete. La varazoe d etropa dell ambete, e duque dell uverso, è dovuta agl scamb d calore co le sorget per og secodo: Q 495 J 595 J Sambete = - + = - 77 K K = (- 1, , 951) K = 0, 164 J/K. 1 Qud u goro la varazoe d etropa sarà 4 Sambete = Suverso = #(0, 164 J/K) = 1, 4 # J/K. PER NON SAGLIARE Fa attezoe alle covezo de seg: se cosder l frgorfero, l calore vee assorbto dalla sorgete fredda (tero) e ceduto a quella calda (estero): Q 1 > 0 (assorbto), Q < 0 (ceduto). Se cosder l ambete (formato coè da tero+estero), l calore vee ceduto dalla sorgete fredda (tero) e acqustato dalla sorgete calda (estero): Q 1 < 0 (ceduto), Q > 0 (assorbto). 144 PF

6 ERMOINAMIA 13 ENROPIA E ISORINE Ua maccha d arot lavora tra le temperature d 8,0 e 360 e compe u lavoro d 389 J og cclo d fuzoameto. alcola la varazoe d etropa della sorgete calda. alcola la varazoe d etropa della sorgete fredda. [ 1,18 J/K; 1,19 J/K] Ua maccha termca reale fa aumetare l etropa dell uverso d ua quattà par a 0,1 J/K a og cclo d fuzoameto, assorbedo dalla sorgete calda ua quattà d calore d 440 J. La maccha lavora tra sorget a temperatura d 0 e alcola l redmeto della maccha reale. [0,131] Ua maccha termca reale basata su u cclo d arot lavora tra due sorget alle temperature d 50 K e 1300 K. Ha u redmeto par a u quarto del redmeto deale e a og cclo preleva dalla sorgete calda 500 J. alcola la varazoe dell etropa dell ambete a og cclo. alcola la varazoe dell etropa dell uverso a og cclo. [0,433 J/K; 0,433 J/K] 6 IL SEONO PRINIPIO AL PUNO I VISA MOLEOLARE ONFRONA Fa u cofroto tra l etropa delle molecole d ara che s muovoo per agtazoe termca all tero d u recpete e quella del tra co stradale mattuto d ua grade metropol, dove gl abtat s spostao per adare al lavoro. Qual soo aaloge e dffereze? è ua d ereza sostazale, quale? APPLIA I ONEI. osdera l fuzoameto d u mulello d Joule. Prova a descrvere, seguedo l suggermeto, attraverso qual passagg l eerga del sstema, durate l fuzoameto della maccha, passa da forme pù ordate a forme meo ordate: Eerga potezale gravtazoale eerga cetca de pesett U meteorte d,0 kg, che s muove co ua veloctà d 5,6 km/s, cade su u paeta prvo d atmosfera. Nell urto aelastco l calore svluppato vee completamete assorbto dal paeta che o vara la sua tempe- 68 ratura. Assum che la temperatura sa uguale a 4,00 K. alcola la varazoe d etropa dell Uverso seguto all urto. [8,19 8 J/K] U bambo d 31,0 kg scede 5 volte da uo scvolo, seza attrto, e s mmerge el mare co ua veloctà d 3, m/s. Nell urto (aelastco) co l mare tutta l eerga cetca vee assorbta dal mare che o vara la sua temperatura. La temperatura del mare è d 4,. alcola la varazoe d etropa dell Uverso dopo le 5 mmerso del bambo. alcola la varazoe d etropa se, vece d u bambo c fosse u uomo d 85,3 kg che usa lo scvolo ua volta sola e s mmerge co veloctà d 38,1 m/s. I quale de due cas la varazoe d etropa dell Uverso è maggore? [141 J/K; 08 J/K; uomo] 7 SAI MAROSOPII E SAI MIROSOPII oramo a esamare l comportameto delle otto molecole ella scatola (tabella del paragrafo 7). osdera seguet due macrostat: metà delle molecole soo da ua parte e metà dall altra della scatola; tutte le molecole soo dalla stessa parte della scatola. Qual è la molteplctà del macrostato? quate volte l macrostato è pù probable del macrostato? he legame sussste tra l orde d u mcrostato e la probabltà che s realzz spotaeamete? Nel problema. 76, ha rcavato la relazoe fra l umero d co gurazo, l umero d molecole del sstema N e l umero m d part d volume (o stat) accessbl alle molecole lbere d muovers. Ua staza ha dmeso 4,0 m 3,5 m 3,0 m e cotee molecole d ara alla temperatura ambete (300 K) e alla pressoe atmosferca stadard (1 atm). alcola l umero d molecole d ara preset ella staza. eterma la probabltà che le molecole d ara preset ella staza s trovo tutte ua metà del volume dspoble (tutte a destra, tutte a sstra, tutte alto o tutte basso). Suggermeto: determa la probabltà come rapporto fra l umero d macrostat favorevol e l umero d cofgurazo possbl. :, # 7 4 ; PF

7 PAGINE PER L INSEGNANE LO SUENE ROVA QUESE PAGINE: p su amaldpu.zachell.t PF p elle Rsorse dgtal 79 que molecole possoo muovers lberamete u recpete. osdera tutt possbl mod cu s dstrbuscoo ella metà d sstra e quella d destra del cotetore. Autadot co gl esemp rportat el paragrafo: descrv tutt macrostat del sstema; calcola la molteplctà d og macrostato. 80 osulta la tabella del paragrafo 7 relatva a possbl macrostat corrspodet al sstema d otto molecole coteute u recpete. osdera seguet macrostat: A: ua metà del cotetore c soo da tre a cque molecole; : ua metà del cotetore c soo tre oppure se molecole. MAROSAO MOLEPLIIÀ Qual è la molteplctà del macrostato A? A 5,0 : 5 molecole a sstra e 0 a destra W(A 5,0 ) 1 Qual è la molteplctà del macrostato? : 56 ; ostrusc ua tabella delle molteplctà per se molecole dstgubl che s possoo muovere lberamete all tero d u recpete. alcola la probabltà che ua qualuque metà del recpete v sao tre molecole. alcola la probabltà che ella metà destra del recpete o v sao pù d quattro molecole. alcola la probabltà che ella metà sstra del recpete o v sao meo d cque molecole. [0/64; 57/64; 7/64] 8 L EQUAZIONE I OLZMANN PER L ENROPIA APPLIA I ONEI Perché possamo a ermare che l etropa d u macrostato o può ma essere egatva? osdera 4 molecole lbere d muovers u recpete (cosulta la tabella el paragrafo 7). La varazoe d etropa tra l macrostato A 3,1 cu 3 molecole s trovao a sstra e 1 a desta e l macrostato A 1,3 cu 1 molecola s trova a sstra e 3 a desta è ulla. Perché? PROLEMA MOELLO 6 VARIAZIONE I ENROPIA PER 8 MOLEOLE osdera l sstema formato da 8 molecole dstgubl, le cu molteplctà soo elecate ella secoda tabella del paragrafo 7. Il macrostato A 7,1 è quello cu 7 partcelle soo a sstra e 1 è a destra; l macrostato A 4,4 è quello smmetrco. alcola la d ereza d etropa tra lo stato A 4,4 ( ale) e lo stato A 7,1 (zale). alcola la varazoe massma d etropa. AI Molteplctà degl stat: ved tabella del paragrafo 7 W(A 7,1 ) = 8 W(A 4,4 ) = 70 INOGNIE Varazoe d etropa tra due stat: S = S( A44, )- SA ( 71, ) =? Varazoe d etropa massma S max =? L IEA Applchamo la relazoe S(A) = k l W( A) tra l etropa S(A) d u macrostato A e la molteplctà W del macrostato A. 146 PF

8 ERMOINAMIA 13 ENROPIA E ISORINE Poché calcolamo la varazoe d etropa da u macrostato meo probable (7 molecole da ua parte e solo ua dall altra) a uo pù probable (4 molecole per parte), c aspettamo che l etropa aumet e che qud la varazoe sa postva (evoluzoe spotaea). La varazoe massma per l etropa del sstema d 8 molecole s ha quado l sstema evolve dal macrostato pù mprobable (tutte le molecole da ua parte) al macrostato pù probable (quattro molecole per parte). LA SOLUZIONE alcolo la varazoe d etropa fra l macrostato A 7,1 e l macrostato A 4,4. Scrvo la relazoe S(A) = k l W( A) per oguo de due macrostat e po calcolo la d ereza rchesta: WA ( 44, ) SA ( 44, )- SA ( 71, ) = kl W( A44, )- kl W( A71, ) = k l WA ( 71, ) dove ell ultmo passaggo ho applcato le propretà de logartm. Qud rsolvo e ottego: 3 J 70 3 J SA ( 44, )- SA ( 71, ) = b - 1, 38 # K l - # l 8 =, 99 # K Rpeto l calcolo el caso del macrostato meo probable A 8,0 che evolve quello pù probable A 4,4. o u calcolo aalogo a quello del passaggo precedete s ottee WA ( 44, ) 3 J 70 3 J SMAX = SA ( 44, )- SA ( 80, ) = k l WA ( ) = b1, 38 # - K l# l 1 = 5, 86 # - 80, K. PER NON SAGLIARE I questo eserczo abbamo cosderado u gas rreale, formato da sole 8 molecole. L esguo umero d molecole fa sì che la probabltà d trovare quas tutte le molecole da ua parte o sa trascurable. Nella realtà, co umer d molecole molto pù grad, dell orde del umero d Avogadro, le probabltà de macrostat pù mprobabl tedoo a zero L etropa d ua mole d ossgeo gassoso, a pressoe atmosferca e alla temperatura d 5,0, è par a 05 J / (mol K). osdera 1,00 g d ossgeo elle stesse codzo. eterma l umero d mcrostat del sstema. Suggermeto: rcorda che la massa molare dell ossgeo è 0,03 kg/mol # e, que mol d Ne s espadoo sotermcamete e reversblmete da u volume d,30 L a uo d 4,15 L alla temperatura d 4,5. alcola l rapporto fra la molteplctà del macrostato ale e la molteplctà del macrostato zale relatv al sstema. 90 La temperatura zale dveta 3,0 : calcola d uovo l rapporto fra le molteplctà. alcola l rapporto fra le molteplctà se le mol zal che subscoo la trasformazoe soterma vegoo raddoppate. 6 1 e, 78 # 4 1 ; e, 78 # 4 3 ; e, 55 # I ua trasformazoe l umero d mcrostat possbl d u sstema termodamco trplca. alcola la varazoe d etropa del sstema. alcola l aumeto del umero d mcrostat ecessar per avere ua varazoe d etropa che sa l 0% pù rspetto a quato calcolato precedetemete. [1,5 3 J/K; e 1,3 ] 147 PF

9 PAGINE PER L INSEGNANE LO SUENE ROVA QUESE PAGINE: p su amaldpu.zachell.t PF p elle Rsorse dgtal 9 IL ERZO PRINIPIO ELLA ERMOINAMIA PROLEMA MOELLO 7 ILI PER LO ZERO ASSOLUO Quat ccl soo ecessar per ra reddare u corpo da = 300 K (temperatura ambete) a f = 1,00 K facedo fuzoare seso verso ua maccha termca reversble che ha l redmeto = 1,500? AI emperature zale e ale e redmeto della maccha termca: = 300 K f = 1,00 K = 0,500 INOGNIE Numero d ccl ecessar a portare la temperatura a 1,00 K : =? L IEA ooscedo l redmeto della maccha termca reversble, possamo rcavare l rapporto de calor scambat co le sorget e qud ache l rapporto delle temperature a og cclo. Ua volta ota la dmuzoe d temperatura otteuta u cclo, possamo calcolare quat ccl soo ecessar per raggugere la temperatura fale desderata. LA SOLUZIONE Scrvo la relazoe che lega l redmeto d ua maccha termca alle quattà d calore scambate. R R a dat del problema rcavo h = 1- R = 0, 500 pertato R = 0, 500 Q Q Esprmo l redmeto d ua maccha d arot fuzoe delle temperature delle due sorget. Esprmo la quattà calcolata fuzoe delle temperature delle sorget fredda e calda: R f R = Q qud f = 1 - h & f = 0, 500, coè u cclo la temperatura del frgorfero s dmezza. opo ccl deve qud valere l'equazoe: f f = ( 0, 500) & log = log( 0, 500) Rsolvo ell cogta (umero d ccl). Applcado le propretà de logartm ottego: f log 1, 00 log = log 0, 500 = K K 300 log 0, 500-0,, 477 = = 83,. PER NON SAGLIARE ome potevamo aspettarc, l rsultato che abbamo otteuto o è u umero tero: dopo 8 ccl complet la temperatura ragguta dal frgorfero è ^300 Kh # 0, = 1, 17 K. opo 9 ccl la temperatura s dmezza ulterormete. 148 PF

10 ERMOINAMIA 13 ENROPIA E ISORINE PROLEMI GENERALI 5 6 IN LAORAORIO I u espermeto, u seccho peo d sabba d massa,0 kg vee sospeso avvolgedo u lo d ylo a u pero e legadoe l estremtà al seccho. Il seccho è po fatto cadere da 0,70 m dal suolo a veloctà costate regolado l attrto fra l lo e l pero su cu è avvolto. A causa dell attrto l pero s rscalda; dopo u certo tempo dalla e della caduta del seccho, l pero tora alla temperatura ambete d 0 causado u aumeto d etropa dell ambete. alcola l aumeto d etropa dell ambete. [4,7 J/K] ue for elettrc, uo alla temperatura d 400 e l secodo alla temperatura d 450 soo separat da ua lastra d ferro. Poché l ferro è u cattvo solate termco,,05 kj d calore uscoo dalla sorgete pù calda a quella pù fredda. alcola la varazoe d etropa delle due sorget. alcola la varazoe d etropa della lastra d ferro. alcola la varazoe d etropa dell uverso. [3,05 J/K;,84 J/K; 0 J/K; 0,1 J/K] 11 Ua certa quattà d elo è sottoposta a u cclo d arot tra le temperature 00 K e 300 K. Il gas assorbe dal termostato pù caldo 50 J d calore. Il valore umerco dell etropa del gas durate la compressoe adabatca è 1,75 J/K. Rappreseta l cclo d u dagramma della temperatura fuzoe dell etropa. U sstema costtuto da ua certa quattà d gas perfetto passa dallo stato d equlbro termodamco S 1 allo stato d equlbro S co ua trasformazoe adabatca reversble. I u altra trasformazoe, co gl stess stat zale e ale, l sstema vee prma sottoposto a ua trasformazoe soterma reversble a seguto della quale esso passa dallo stato termodamco S 1 allo stato d equlbro S 3. La trasformazoe ha luogo a 90 K e l gas svluppa u lavoro verso l ambete estero d 5,8 J. Successvamete lo stato ale S è ragguto co ua trasformazoe rreversble. Le due trasformazo soo rportate ella gura. p S 1 7 Immaga d gocare a «testa o croce» co 4 moete. Quat e qual soo macrostat del sstema? Quat mcrostat possoo esstere? S 3 osulta la tabella delle molteplctà d paga 495, e de sc l macrostato pù probable e la sua probabltà. alcola la varazoe d etropa tra lo stato pù probable e l meo probable. [5; 16; 0,375;,47 3 J/K] O Qual è la varazoe d etropa el passaggo dallo stato S 3 allo stato S? S V [,0 J/K] 8 9 I u processo termodamco a temperatura costate u sstema svluppa u lavoro d 87,5 J e la sua etropa aumeta d 0,5 J/K. La temperatura s matee costate a 350 K. (cosdera l sstema come u gas perfetto.)> eterma la varazoe d eerga tera del sstema. [0 J] Il pstoe d ua srga vee spto modo da comprmere l ara coteuta evtadoe la fuoruscta. Se s agsce molto letamete la temperatura dell ara durate la compressoe resta sostazalmete costate e par a 300 K, quella dell ambete crcostate. L etropa del gas el processo è varata d 1,1 4 J/K. alcola l lavoro fatto per spgere l pstoe. 1 Per rscaldare ua sostaza s forsce eerga dall estero: l eerga tera della sostaza aumeta e s dstrbusce fra le sue molecole. Le molecole hao pù possbltà d scambare eerga fra loro e aumeta l umero d mcrostat possbl; tal modo aumeta, qud, ache l etropa. 1,0 L d acqua vee scaldato alla temperatura ambete d 300 K. La sua temperatura sale d e l etropa aumeta d 137 J K 1. Idchamo co W l umero d mcrostat delle molecole dell acqua ello stato zale. Quat soo dvetat mcrostat possbl ello stato ale, dopo l rscaldameto? 99 We, # 4 6 ^ [3,3 J] 149 PF

11 PAGINE PER L INSEGNANE LO SUENE ROVA QUESE PAGINE: p su amaldpu.zachell.t PF p elle Rsorse dgtal ES at due macrostat A e dello stesso sstema termodamco, s osserva che l etropa d è uguale al doppo dell etropa d A. he relazoe deve esstere tra le molteplctà W A e W de due macrostat? A W = (W A ). W = (W A ). W = l(w A ). W = (W A ) l(). U oggetto s rscalda scambado calore co ua sorgete a temperatura. Puo dre sez altro che: A l etropa del sstema (oggetto + sorgete) è costate. l etropa del corpo dmusce. l etropa della sorgete aumeta. l etropa della sorgete dmusce. Nella trasformazoe d ghacco acqua l etropa del sstema acqua-ghacco: A aumeta. tede a zero. rmae varata. è ferore a 0 J. E dmusce. est ammssoe Professo Satare, 013/014 I u sstema solato la varazoe d etropa ua trasformazoe: A è sempre maggore o uguale a zero. E è sempre uguale a zero. rmae costate solo elle trasformazo cclche rreversbl. rmae costate solo elle trasformazo soterme. può essere maggore, more o uguale zero, dpededo dalla trasformazoe. Prova d ammssoe al corso d laurea delle Professo Satare, 003/004 «L etropa può essere cosderata ua msura del dsorde d u sstema. I geerale s osserva che sstem tedoo ad assumere spotaeamete le dsposzo pù probabl, e qud meo ordate». Quale delle seguet a ermazo può essere dedotta dalla lettura del brao precedete? A L etropa d u sstema tede spotaeamete ad aumetare. È pù probable ua dsposzoe ordata rspetto a ua dsordata. E L etropa d u sstema deve comuque rmaere costate. L etropa d u sstema tede spotaeamete a dmure. utt sstem soo estremamete dsordat. Prova d ammssoe al corso d laurea Odotoatra e Protes detara, 003/ I ua trasformazoe cclca vegoo scambate quattà d calore Q, cascua alla temperatura. ome s può scrvere questo caso la dsuguaglaza d lausus? A / = 1 / = 1 / = 1 / = 1 Q Q Q Q # 0 # 0 # 0 # 0 L etropa: A aumeta sempre. è ua gradezza scalare. è ua propretà de gas. o vara ma u sstema solato. L utà d msura dell etropa el S.I. è: A J K. K/J. J/K. J/. Secodo prcp della termodamca, per u sstema o solato l etropa: A può solo aumetare el tempo. può solo dmure el tempo. resta costate el tempo. può sa aumetare che dmure el tempo. Per de zoe, l etropa d u sstema che s trova ello stato scelto come stato d rfermeto: A o è de ta. è comuque ulla. è comuque postva. è comuque egatva. 150 PF

12 ERMOINAMIA 13 ENROPIA E ISORINE 17 U sstema termodamco compe ua sere d trasformazo al terme delle qual rtora allo stato zale. La varazoe d etropa è: A uguale a zero se le trasformazo soo tutte reversbl. uguale a zero se l sstema è u gas perfetto. og caso uguale a zero. uguale a zero se l sstema è solato. 0 U sstema solato è costtuto da tre mol d u gas perfetto. Il gas subsce u espasoe soterma reversble o a raddoppare l suo volume. La varazoe d etropa S: A è zero perché la trasformazoe avvee seza scamb d calore. o s può calcolare perché o s coosce la temperatura del gas. è postva e uguale a R l (3). 18 Quale delle seguet a ermazo è corretta? A I feome che avvegoo atura evolvoo spesso da stuazo d dsorde a stuazo d orde. I feome che avvegoo atura evolvoo spotaeamete da stuazo d dsorde a stuazo d orde. 1 è postva e uguale a 3 R l (). U sstema solato evolve spotaeamete o a raggugere uo stato d equlbro a cu corrspode: A l mmo aumeto dell etropa. l massmo aumeto dell etropa. 19 I feome che avvegoo atura evolvoo spesso da stuazo d orde a stuazo d dsorde. I feome che avvegoo atura evolvoo spotaeamete da stuazo d orde a stuazo d dsorde. Nel seguete eleco, che s rfersce alle part d u automoble moto, qual soo le forme dsordate d eerga? Pù d ua rsposta è corretta. A L eerga cetca de psto movmeto el motore. L eerga cetca delle molecole dell abtacolo el sstema d rfermeto dell abtacolo. L eerga cetca d vbrazoe delle molecole de tessut della tappezzera. L eerga cetca d vbrazoe delle molecole dell atea della rado sollectata dal veto della corsa. 3 la massma dmuzoe dell etropa. la mma dmuzoe dell etropa. Mett ua bottgla d acqua el cogelatore e dopo u po osserv che l acqua s è trasformata ghacco. L etropa dell Uverso è: A aumetata. dmuta. rmasta la stessa. dvetata egatva. Il secodo prcpo della termodamca è accordo co l espereza perché: A feome che lo volao soo estremamete mprobabl. feome che lo volao soo mpossbl per le legg della damca. feome che lo volao evolvoo verso stat co molteplctà maggore dello stato zale. feome che lo volao soo mpossbl per l prmo prcpo della termodamca. 151 PF

Istogrammi e confronto con la distribuzione normale

Istogrammi e confronto con la distribuzione normale Istogramm e cofroto co la dstrbuzoe ormale Suppoamo d effettuare per volte la msurazoe della stessa gradezza elle stesse codzo (es. la massa d u oggetto, la tesoe d ua pla, la lughezza d u oggetto, ecc.):

Dettagli

Variabilità = Informazione

Variabilità = Informazione Varabltà e formazoe Lo studo d u feomeo ha seso solo se esso s preseta co modaltà/testà varabl da u soggetto all altro. Ad esempo, se dobbamo studare l reddto ua certa regoe è ecessaro osservare utà statstche

Dettagli

Facoltà di Economia - STATISTICA - Corso di Recupero a.a Prof.ssa G. Balsamo CONCETTI di BASE Carattere X [o A ] i = 1

Facoltà di Economia - STATISTICA - Corso di Recupero a.a Prof.ssa G. Balsamo CONCETTI di BASE Carattere X [o A ] i = 1 Facoltà d Ecooma - STATISTICA - Corso d Recupero a.a. 2012-13 Prof.ssa G. Balsamo CONCETTI d BASE Carattere X [o A ] caratterstca quattatva [o qualtatva] rappresetatva d u feomeo sottoposto ad dage Popolazoe

Dettagli

Lezione 4. La Variabilità. Lezione 4 1

Lezione 4. La Variabilità. Lezione 4 1 Lezoe 4 La Varabltà Lezoe 4 1 Defzoe U valore medo, comuque calcolato, o è suffcete a rappresetare l seme delle osservazo effettuate (o l seme de valor assut dalla varable statstca); è ecessaro qud affacare

Dettagli

CORSO DI STATISTICA I (Prof.ssa S. Terzi)

CORSO DI STATISTICA I (Prof.ssa S. Terzi) CORSO DI STATISTICA I (Prof.ssa S. Terz) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI Eserctazoe 2 2.1 Da u dage svolta su u campoe d lavorator dpedet co doppo lavoro è stata rlevata la dstrbuzoe coguta del reddto

Dettagli

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione?

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione? Prma dstrb. Secoda dstrb. Totale Meda 0 5 8 35 85 63 63/5 =3,6 5 5 38 40 45 63 63/5 =3,6 Due dstrbuzo, stessa meda ma quale delle due la meda rappreseta, stetzza meglo la stuazoe? Le mede stetzzao la dstrbuzoe,

Dettagli

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione Artmetca 06/07 Esercz svolt classe Quarta lezoe Rcorreze o lear Sa a c a cq ua rcorreza dove {c }, c C e c 0. Sa P C[λ] l polomo caratterstco della rcorreza. Allora ua soluzoe partcolare della rcorreza

Dettagli

Calcolo delle Probabilità: esercitazione 4

Calcolo delle Probabilità: esercitazione 4 Argometo: Probabltà classca Lbro d testo pag. 1-7 e 7-77 e varable casuale uforme dscreta NB: asscurars d cooscere le defzo, le propretà rchamate e le relatve dmostrazo quado ecessaro Eserczo 1 S cosder

Dettagli

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0)

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0) Massm e Mm Fuzo d pù varabl Massm e Mm Dezoe: Sa z = (, ) ua uzoe deta u seme E U puto (, E s dce puto d massmo (rsp mmo) relatvo per (, ) se esste δ > tale che ((, ) B((, ), δ ) E (, ) (, ) (rsp (, )

Dettagli

LE MEDIE. Le Medie. Medie razionali. Medie di posizione

LE MEDIE. Le Medie. Medie razionali. Medie di posizione LE MEDIE RAZIONALI LE MEDIE Msure stetche trodotte per valutare aspett compless e global d ua dstrbuzoe d u feomeo X medate u solo umero reale costruto modo da dsperdere al mmo le formazo su dat orgar.

Dettagli

Caso studio 2. Le medie. Esercizio. La media aritmetica. Esempio

Caso studio 2. Le medie. Esercizio. La media aritmetica. Esempio 8/02/20 Caso studo 2 U vesttore sta valutado redmet d due ttol del settore Petrolo e Gas aturale. Sulla base de redmet goraler della settmaa passata vuole cercare d prevedere l redmeto per la prossma settmaa

Dettagli

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che:

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che: Eserctazoe VI: Il teorema d Chebyshev Eserczo La statura meda d u gruppo d dvdu è par a 73,78cm e la devazoe stadard a 3,6. Qual è la frequeza relatva delle persoe che hao ua statura superore o ferore

Dettagli

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100 ESERCIZIO Data la seguete dstrbuzoe percetuale delle famgle talae per class d reddto, espresso mlo d lre, (ao 995, fote Istat): Class d reddto % famgle Fo a 5 5.3 5-5 6. 5-35. 35-45 8.6 45-55 3.6 Oltre

Dettagli

I percentili e i quartili

I percentili e i quartili I percetl e quartl I percetl soo quelle modaltà che dvdoo la dstrbuzoe ceto part d uguale umerostà. I quartl soo quelle modaltà che dvdoo la dstrbuzoe quattro part d uguale umerostà. Il prmo quartle Q

Dettagli

Gli indici sintetici Forma. Gli indici sintetici. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma

Gli indici sintetici Forma. Gli indici sintetici. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma Uverstà d Macerata Facoltà d Sceze Poltche - Ao accademco 01-013013 Gl dc d varabltà Crsta Davo Gl dc stetc Qualche cosderazoe Tedeza cetrale Varabltà La scelta dell dce d tedeza cetrale/poszoe dpede dal

Dettagli

LEZIONI DI STATISTICA MEDICA

LEZIONI DI STATISTICA MEDICA LEZIONI DI STATISTICA MEDICA A.A. 00/0 - Idc d dspersoe Sezoe d Epdemologa & Statstca Medca Uverstà degl Stud d Veroa La dspersoe o varabltà è la secoda mportate caratterstca d ua dstrbuzoe d dat. Essa

Dettagli

Caso studio 12. Regressione. Esempio

Caso studio 12. Regressione. Esempio 6/4/7 Caso studo Per studare la curva d domada d u bee che sta per essere trodotto sul mercato, s rlevao dat rguardat l prezzo mposto e l umero d pezz vedut 7 put vedta plota, ell arco d ua settmaa. I

Dettagli

Gli indici sintetici Forma. Un caso studio. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma

Gli indici sintetici Forma. Un caso studio. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma Uverstà d Macerata Dpartmeto d Sceze Poltche, della Comucazoe e delle Relaz. Iterazoal Gl dc d varabltà Crsta Davo Gl dc stetc Qualche cosderazoe Tedeza cetrale Varabltà La scelta dell dce d tedeza cetrale/poszoe

Dettagli

Generalmente sia l ampiezza che il valore medio della sollecitazione sono variabili nel tempo.

Generalmente sia l ampiezza che il valore medio della sollecitazione sono variabili nel tempo. È molto raro che u compoete meccaco sa sollectato a fatca da u carco cclco ad ampezza costate. Geeralmete sa l ampezza che l valore medo della sollectazoe soo varabl el tempo. max a a max m m m m Tempo

Dettagli

Lezione 4. Metodi statistici per il miglioramento della Qualità

Lezione 4. Metodi statistici per il miglioramento della Qualità Tecologe Iormatche per la Qualtà Lezoe 4 Metod statstc per l mglorameto della Qualtà Msure d Tedeza Cetrale Ultmo aggorameto: 30 Settembre 2003 Il materale ddattco potrebbe coteere error: la segalazoe

Dettagli

Modulo di Fisica Tecnica. Differenze finite per problemi di conduzione in regime instazionario

Modulo di Fisica Tecnica. Differenze finite per problemi di conduzione in regime instazionario Dpartmeto d Meccaca, Strutture, Ambete e Terrtoro UNIVERSITÀ DEGLI STUDI DI CASSINO Laurea Specalstca Igegera Meccaca: Modulo d Fsca Tecca Lezoe d: Dffereze fte per problem d coduzoe regme stazoaro /20

Dettagli

Caso studio 10. Dipendenza in media. Esempio

Caso studio 10. Dipendenza in media. Esempio 09/03/06 Caso studo 0 S cosder la seguete dstrbuzoe degl occupat Itala secodo l umero d ore settmaal effettvamete lavorate e l settore d attvtà (cfr. Itala cfre, Ao 008, pag. 7 ): Ore lavorate Settore

Dettagli

Capitolo 6 Gli indici di variabilità

Capitolo 6 Gli indici di variabilità Captolo 6 Gl dc d varabltà ommaro. Itroduzoe. -. Il campo d varazoe. - 3. La dffereza terquartle. - 4. Gl scostamet med. -. La varaza, lo scarto quadratco medo e la devaza. - 6. Le dffereze mede. - 7.

Dettagli

Lezione 13. Anelli ed ideali.

Lezione 13. Anelli ed ideali. Lezoe 3 Prerequst: Aell e sottoaell. Sottogrupp. Rfermet a test: [FdG] Sezoe 5.2; [H] Sezoe 3.4; [PC] Sezoe 4.2 Aell ed deal. Rcordamo la seguete defzoe, data el corso d Algebra : Defzoe 3. S dce aello

Dettagli

Propagazione di errori

Propagazione di errori Propagazoe d error Gl error e dat possoo essere amplfcat durate calcol. Rspetto alla propagazoe degl error s può dstguere: comportameto del problema - codzoameto del problema: vedere come le perturbazo

Dettagli

Ottavio Serra APPUNTI DI TERMODINAMICA

Ottavio Serra APPUNTI DI TERMODINAMICA Ottavo Serra APPUTI DI TERMODIAMICA (I) Temperatura d equlbro d u mscuglo. Se due flud d massa m ed m e calor specfc c e c soo a temperatura t e t e vegoo mescolat, ess scambao calore e fscoo per raggugere

Dettagli

Termodinamica. A cura di Eugenio Amitrano

Termodinamica. A cura di Eugenio Amitrano ermodamca cura d Eugeo mtrao INDIE 1. Defzo......... 2 2. ostat e coverso utl....... 4 3. Equazoe de gas........ 5 4. alore, lavoro ed eerga....... 5 5. rasformazo termodamche...... 6 6. Etala.........

Dettagli

Università di Cassino Esercitazioni di Statistica 1 del 5 Febbraio Dott. Mirko Bevilacqua

Università di Cassino Esercitazioni di Statistica 1 del 5 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 5 Febbrao 00. Dott. Mrko Bevlacqua ESERCIZIO N A partre dalla dstrbuzoe semplce del carattere peso rlevata su 0 studet del corso d Mcroecooma peso: { 4, 59, 65,

Dettagli

Lezione 3. Gruppi risolubili.

Lezione 3. Gruppi risolubili. Lezoe 3 Prerequst: Lezo 1 2 Class d cougo e cetralzzat rupp rsolubl I questo captolo troducamo ua ozoe che come vedremo seguto fuge da raccordo tra la teora de grupp e la teora de camp Defzoe 31 Dato u

Dettagli

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,

Dettagli

Matematica elementare art.1 di Raimondo Valeri

Matematica elementare art.1 di Raimondo Valeri Matematca elemetare art. d Ramodo Valer I questo artcolo voglamo provare che esste ua formula per calcolare l umero de dvsor d u dato umero aturale seza cooscere la scomposzoe fattor prm del umero stesso.

Dettagli

Analisi dei Dati. La statistica è facile!!! Correlazione

Analisi dei Dati. La statistica è facile!!! Correlazione Aals de Dat La statstca è facle!!! Correlazoe A che serve la correlazoe? Mettere evdeza la relazoe esstete tra due varabl stablre l tpo d relazoe stablre l grado d tale relazoe stablre la drezoe d tale

Dettagli

MEDIA DI Y (ALTEZZA):

MEDIA DI Y (ALTEZZA): Uverstà d Casso Eserctazo d Statstca del 4 Marzo 0 Dott. Mrko Bevlacqua ESERCIZIO Su u collettvo d dvdu soo stat rlevat caratter X Peso( kg) e Altezza ( cm) otteamo la seguete dstrbuzoe d frequeza coguta:

Dettagli

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

CORSO DI STATISTICA I (Prof.ssa S. Terzi) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI. Esercitazione n 3

CORSO DI STATISTICA I (Prof.ssa S. Terzi) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI. Esercitazione n 3 ORSO I STTISTI I (Prof.ssa S. Terz) STUIO ELLE ISTRIUZIONI SEMPLII Eserctazoe 3 3. ata la seguete dstrbuzoe de reddt: lass d reddto Reddter Reddto medo 6.500-7.500 4 6.750 7.500-8.500 7.980 8.500-9.500

Dettagli

Esercitazione 5 del corso di Statistica (parte 1)

Esercitazione 5 del corso di Statistica (parte 1) Eserctazoe 5 del corso d Statstca (parte 1) Dott.ssa Paola Costat 8 Novembre 011 I alcue crcostaze s poe u maggor teresse sullo studo della varabltà tra le sgole utà statstche, puttosto che lo studo della

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 26 Febbrao 200 Dott. Mrko Bevlacqua ESERCIZIO Cosderado le class d altezza 60 6; 6 70; 70 78; 78 86 per u collettvo d 20 persoe, s può affermare che l ALTEZZA dpede

Dettagli

Facoltà di Farmacia Corso di Matematica con elementi di Statistica Docente: Riccardo Rosso

Facoltà di Farmacia Corso di Matematica con elementi di Statistica Docente: Riccardo Rosso Facoltà d Farmaca Corso d Matematca co elemet d Statstca Docete: Rccardo Rosso Statstca descrttva: l coeffcete d cocetrazoe d G Quado s vuole rpartre ua certa somma d dearo, v soo due suddvso che soo,

Dettagli

FUNZIONI LOGICHE FORME CANONICHE SP E PS

FUNZIONI LOGICHE FORME CANONICHE SP E PS FUNZIONI LOGICHE FORME CANONICHE SP E PS Ua fuzoe logca può essere espressa quattro forme: 1. attraverso ua proposzoe logca; 2. attraverso ua tabella della vertà; 3. attraverso u espressoe algebrca; 4.

Dettagli

Numeri complessi Pag. 1 Adolfo Scimone 1998

Numeri complessi Pag. 1 Adolfo Scimone 1998 Numer compless Pag. Adolfo Scmoe 998 NUMERI COMPLESSI Come sappamo, o esstoo el campo de umer real le radc d dce par de umer egatv. Ammettamo pertato l esstea della radce quadrata del umero. Questo uovo

Dettagli

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso ESERCIZIO Co rfermeto a dvers modell d auto del medesmo segmeto d mercato e cldrata s soo rlevat dat sul prezzo d lsto mglaa d euro (X), la veloctà massma dcharata km/h (Y) ed l peso kg (Z). I dat soo

Dettagli

INDICI DI VARIABILITA

INDICI DI VARIABILITA INDICI DI VARIABILITA Defzoe d VARIABILITA': la varabltà s può defre come l'atttude d u carattere ad assumere dverse modaltà quattatve. La varabltà è la quattà d dspersoe presete e dat. Idc d varabltà

Dettagli

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100)

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100) ESERCIZIO Il Moblty Maager d u azeda ha rlevato l umero d chlometr percors settmaalmete da 60 mpegat. I dat soo rportat ello schema successvo. 67 4 93 58 66 87 5 53 86 8 7 47 56 70 54 86 48 43 60 58 5

Dettagli

Elementi di Statistica descrittiva Parte III

Elementi di Statistica descrittiva Parte III Elemet d Statstca descrttva Parte III Paaa Idce d asmmetra (/) Idce d forma che esprme l grado d asmmetra (skewess) d ua dstrbuzoe. Sao u, u,,u osservazo umerche. Chamamo dce d asmmetra l espressoe: c

Dettagli

Esercizi su Rappresentazioni di Dati e Statistica

Esercizi su Rappresentazioni di Dati e Statistica Esercz su Rappresetazo d Dat e Statstca Eserczo Esprmete forma percetuale e traducete u aerogramma dat della seguete tabella: Nord Cetro Sud Isole Totale 5 58 866 0 95 36 4 35 30 6 79 56 57 399 08 Soluzoe

Dettagli

Teoria dei Fenomeni Aleatori AA 2012/13

Teoria dei Fenomeni Aleatori AA 2012/13 La Legge de Grad Numer Cosderata ua sere d prove rpetute co p par alla probabltà d successo ua sgola prova, l rapporto tra l umero d success K ed l umero d prove tede a p quado tede ad fto: K P p ε per

Dettagli

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 15 SETTEMBRE 2009 C.d.L. ECONOMIA AZIENDALE

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 15 SETTEMBRE 2009 C.d.L. ECONOMIA AZIENDALE MATEMATICA FINANZIARIA PROVA SCRITTA DEL 5 SETTEMBRE 009 C.d.L. ECONOMIA AZIENDALE ESERCIZIO a) Il Sg. Ross ogg (t0) uole acqustare u furgoe del alore d 7000 per la sua atttà commercale. A tal fe egl ersa

Dettagli

MISURE DI TENDENZA CENTRALE. Psicometria 1 - Lezione 2 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek

MISURE DI TENDENZA CENTRALE. Psicometria 1 - Lezione 2 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek MISURE DI TENDENZA CENTRALE Pscometra 1 - Lezoe Lucd presetat a lezoe AA 000/001 dott. Corrado Caudek 1 Suppoamo d dsporre d u seme d msure e d cercare u solo valore che, meglo d cascu altro, sa grado

Dettagli

6. LA CONCENTRAZIONE

6. LA CONCENTRAZIONE UNIVERSITA DEGLI STUDI DI PERUGIA DIPARTIMENTO DI FILOSOFIA SCIENZE SOCIALI UMANE E DELLA FORMAZIONE Corso d Laurea Sceze per l'ivestgazoe e la Scurezza 6. LA CONCENTRAZIONE Prof. Maurzo Pertchett Statstca

Dettagli

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in due gruppi

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in due gruppi Le mede Italo Nofro LE MEDIE Statstca medca Le mede (o valor med) soo dc d tedeza cetrale e costtuscoo u modo semplce ed mmedato per stetzzare u solo valore dat eterogee raccolt el collettvo oggetto d

Dettagli

Statistica descrittiva per l Estimo

Statistica descrittiva per l Estimo Statstca descrttva per l Estmo Paolo Rosato Dpartmeto d Igegera Cvle e Archtettura Pazzale Europa 1-34127 Treste. Itala Tel: +39-040-5583569. Fax: +39-040-55835 80 E-mal: paolo.rosato@da.uts.t 1 A cosa

Dettagli

Modelli di accumulo del danno dovuto a carichi ciclici

Modelli di accumulo del danno dovuto a carichi ciclici Modell d accumulo del dao dovuto a carch cclc Modell d accumulo del dao dovuto a carch cclc È molto raro che u compoete meccaco sa sollectato a fatca da u carco cclco ad ampezza costate. Geeralmete sa

Dettagli

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO.

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO. elazoe d laboratoro d Fsca corso M-Z Laboratoro d Fsca del Dpartmeto d Fsca e Astrooma dell Uverstà degl Stud d Cataa. Scala Stefaa. AGOMENTO: MSUA DELLA ESSTENZA ELETTCA CON L METODO OLT-AMPEOMETCO. NTODUZONE:

Dettagli

Il termine regressione fu introdotto da Francis Galton ( ), antropologo (promotore dell eugenetica).

Il termine regressione fu introdotto da Francis Galton ( ), antropologo (promotore dell eugenetica). Regressoe leare Il terme regressoe fu trodotto da Fracs Galto (8-9), atropologo (promotore dell eugeetca). I u suo famoso studo (877-885), Galto scoprì che, sebbee c fosse ua tedeza de getor alt ad avere

Dettagli

Indipendenza in distribuzione

Indipendenza in distribuzione Marlea Pllat - Semar d Statstca (SVIC) "Lo studo delle relazo tra due caratter" Aals delle relazo tra due caratter Dpedeza dstrbuzoe s basa sul cofroto delle dstrbuzo codzoate Dpedeza meda s basa sul cofroto

Dettagli

Corrente elettrica. q i t

Corrente elettrica. q i t Correte elettrca La correte elettrca u coduttore metallco chuso è u movmeto ordato d elettro d coduzoe (le sole carche lbere preset all tero d u metallo, o vcolate a rspettv atom) el campo elettrco geerato

Dettagli

Dott.ssa Marta Di Nicola

Dott.ssa Marta Di Nicola RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quado s cosderao due o pù caratter (varabl) s possoo esamare ache l tpo e l'testà delle relazo che sussstoo tra loro. http://www.bostatstca.uch.tt Nel caso cu per

Dettagli

Stima puntuale Quando un parametro della popolazione incognito è valutato (stimato) da una sola statistica (parametro) tratto da un campione

Stima puntuale Quando un parametro della popolazione incognito è valutato (stimato) da una sola statistica (parametro) tratto da un campione STIMA PARAMTRICA TST DLL IPOTSI L fereza Statstca rguarda affermazo crca I parametr d ua popolazoe sulla base della metodologa statstca e del calcolo delle probabltà Stma putuale Quado u parametro della

Dettagli

Design of experiments (DOE) e Analisi statistica

Design of experiments (DOE) e Analisi statistica Desg of epermets (DOE) e Aals statstca L utlzzo fodametale della metodologa Desg of Epermets è approfodre la coosceza del sstema esame Determare le varabl pù sgfcatve; Determare l campo d varazoe delle

Dettagli

Variabili casuali ( ) 1 2 n

Variabili casuali ( ) 1 2 n Varabl casual &. Valore edo. Data ua varable casuale = ( x,x 2, K,x ) (.) cu valor assuoo le rspettve probabltà P = p,p, K,p (.2) s defsce valore edo la quattà ( ) 2 = [ ] T M = M = P = xp (.3) Sgfcato:

Dettagli

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura Damca Modello damco ello spazo de gut: relazoe tra le coppe d attuazoe a gut ed l moto della struttura smulazoe del moto aals e progettazoe delle traettore progettazoe del sstema d cotrollo progetto de

Dettagli

Appunti di Termodinamica classica dei sistemi all equilibrio

Appunti di Termodinamica classica dei sistemi all equilibrio Apput d ermodamca classca de sstem all equlbro (rfermeto bblografco: H. Calle ermodamca ) La meccaa l elettromagetsmo e la termodamca soo tre brahe parallele della Fsca macroscopca. I tutt e tre cas u

Dettagli

Renato Rota. Fondamenti di Termodinamica dell Ingegneria Chimica

Renato Rota. Fondamenti di Termodinamica dell Ingegneria Chimica eato ota Fodamet d ermodamca dell Igegera Chmca È sempre molto dffcle rgrazare tutt coloro che hao cotrbuto alla stesura d u lbro. Fra tutt però è gusto rcordare Sylve e Mchele che apparetemete o c etrao

Dettagli

corrispondenza della generica i-esima modalità. Indicando con #(.) la cardinalità di un insieme, per esse si ha, rispettivamente:

corrispondenza della generica i-esima modalità. Indicando con #(.) la cardinalità di un insieme, per esse si ha, rispettivamente: Corso d Statstca docete: Domeco Vstocco Le requeze cumulate S cosder ua varable qualtatva ordale X Per essa, oltre alle requeze assolute, relatve e ercetual, è ossble calcolare ache le requeze cumulate

Dettagli

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI Uverstà degl Stud d Mlao Bcocca CdS ECOAMM Corso d Metod Statstc per l Ammstrazoe delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI 1. Carta d cotrollo per frazoe d o coform (carta U resposable d produzoe,

Dettagli

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in Le mede Italo Nofro LE MEDIE Le mede (o valor med) soo dc d tedeza cetrale e costtuscoo u modo semplce ed mmedato per stetzzare u solo valore dat eterogee raccolt u collettvo Statstca medca Le mede Le

Dettagli

LA REGRESSIONE LINEARE SEMPLICE

LA REGRESSIONE LINEARE SEMPLICE LA REGRESSIONE LINEARE SEMPLICE L ANALISI DI REGRESSIONE La regressoe è volta alla rcerca d u modello atto a descrvere la relazoe esstete tra ua varable Dpedete e ua varable dpedete (regressoe semplce)

Dettagli

SIMULAZIONE DI SISTEMI CASUALI 1 parte. Variabili casuali e Distribuzioni di variabili casuali. Calcolo delle probabilità

SIMULAZIONE DI SISTEMI CASUALI 1 parte. Variabili casuali e Distribuzioni di variabili casuali. Calcolo delle probabilità SIMULAZIONE DI SISTEMI CASUALI parte Varabl casual e Dstrbuzo d varabl casual Calcolo delle probabltà Defzo Il calcolo delle probabltà tede a redere razoale l comportameto dell uomo d frote all certezza;

Dettagli

Regime di capitalizzazione composta

Regime di capitalizzazione composta Regme d capalzzazoe composa Se s deposa baca, all zo dell ao, ua somma d 000 ad u asso auale uaro =0,05 oppure r=5%, dopo ao ale somma frua u eresse par a I = = 000 0,05 = 50 che aggugedos al capale zale

Dettagli

Algoritmi e Strutture Dati. Alberi Binari di Ricerca

Algoritmi e Strutture Dati. Alberi Binari di Ricerca Algortm e Strutture Dat Alber Bar d Rcerca Alber bar d rcerca Motvazo gestoe e rcerche grosse quattà d dat lste, array e alber o soo adeguat perché effcet tempo O) o spazo Esemp: Matemeto d archv DataBase)

Dettagli

frazione 1 n dell ammontare complessivo del carattere A x

frazione 1 n dell ammontare complessivo del carattere A x La Cocetrazoe Il cocetto d cocetrazoe rguarda l modo cu l ammotare totale d u carattere quattatvo trasferble s rpartsce tra utà statstche. Tato pù tale ammotare è addesato u sottoseme d utà, tato pù s

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

Capitolo 2 Errori di misura: definizioni e trattamento

Capitolo 2 Errori di misura: definizioni e trattamento Captolo Error d msura: )Geeraltà defzo e trattameto I cocett d meda, varaza e devazoe stadard s utlzzao ormalmete per otteere formazo sulla botà d ua msura. I geerale, s assume come msura m della gradezza

Dettagli

Regressione e Correlazione

Regressione e Correlazione Regressoe e Correlazoe Probabltà e Statstca - Aals della Regressoe - a.a. 4/5 L aals della regressoe è ua tecca statstca per modellare e vestgare le relazo tra due (o pù) varabl. Nella tavola è rportata

Dettagli

MISURE E GRANDEZZE FISICHE

MISURE E GRANDEZZE FISICHE R. Campaella Ig. Meccaca v. Peruga Gradezze fsche Rev. 12.02.21 MISRE E GRANDEZZE FICHE 1 Itroduzoe Nella descrzoe de feome la fsca s serve d legg, elle qual tervegoo gradezze fsche qual: la lughezza,

Dettagli

Lezione 3 Cenni di meccanica statistica classica e quantistica

Lezione 3 Cenni di meccanica statistica classica e quantistica Lezoe Ce d meccaca statstca classca e quatstca Fsca dello Stato Soldo http://www.de.uf.t/fsca/bruzz/fss.html Lezoe. Ce d meccaca statstca classca e quatstca- M. Bruzz Laurea mastrale Ieera Elettroca Itroduzoe

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 3 VARIABILI QUANTITATIVE Indici di centralità, dispersione e forma

STATISTICA DESCRITTIVA - SCHEDA N. 3 VARIABILI QUANTITATIVE Indici di centralità, dispersione e forma Matematca e statstca: da dat a modell alle scelte www.dma.uge/pls_statstca Resposabl scetfc M.P. Rogat e E. Sasso (Dpartmeto d Matematca Uverstà d Geova) STATISTICA DESCRITTIVA - SCHEDA N. 3 VARIABILI

Dettagli

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione IV

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione IV Uverstà degl Stud d Napol Partheope Facoltà d Sceze Motore a.a. 011/01 Statstca Lezoe IV E-mal: paolo.mazzocch@upartheope.t Webste: www.statmat.upartheope.t Fuzoe d regressoe Attraverso la fuzoe d regressoe

Dettagli

CAPITOLO 5: esercizi

CAPITOLO 5: esercizi CAIOLO 5: esercz Eserczo 5 Da seuet dat termodamc stadard a 5 C: H kj mo G kj mo S J K H ( 37 O ( 5 H O ( -858-37 699 mo Cacoare a varazoe de eera bera d ormazoe (d Gbbs d ua moe d acqua quado vee rscadata

Dettagli

Lezione 24. Campi finiti.

Lezione 24. Campi finiti. Lezoe 4 Prerequst: Lezo 0,,, 3 Rfermet a test: [FdG] Sezoe 86; [H] Sezoe 79; [PC] Sezoe 63; Cam ft Nelle lezo recedet abbamo vsto dvers esem d cam ft: ess erao tutt del to oure [ x ]/( f ( x )), dove f

Dettagli

Università della Calabria

Università della Calabria Uverstà della Calabra FACOLTA DI INGEGNERIA Corso d Laurea Igegera per l Ambete e l Terrtoro CORSO DI IDROLOGIA Ig. Daela Bod SCHEDA DIDATTICA N 5 ISOIETE E TOPOIETI A.A. 20-2 Calcolo della precptazoe

Dettagli

Interpolazione. Definizione: per interpolazione si intende la ricerca di una funzione matematica che approssima l andamento di un insieme di punti.

Interpolazione. Definizione: per interpolazione si intende la ricerca di una funzione matematica che approssima l andamento di un insieme di punti. Iterpolazoe Defzoe: per terpolazoe s tede la rcerca d ua fuzoe matematca che approssma l adameto d u seme d put. Iterpolazoe MATEMATICA Calcola ua fuzoe che passa PER tutt put Tp d terpolazoe Iterpolazoe

Dettagli

Indici di asimmetria. Elementi di Statistica descrittiva Parte IV. Simmetria di una distribuzione di frequenze. Primo indice di asimmetria (1/3)

Indici di asimmetria. Elementi di Statistica descrittiva Parte IV. Simmetria di una distribuzione di frequenze. Primo indice di asimmetria (1/3) Smmetra d ua dstrbuzoe d frequeze Ua dstrbuzoe s dce asmmetrca se o è possble dvduare (aalzzado u stogramma) u asse vertcale che tagl la dstrbuzoe due part specularmete ugual Idc d asmmetra Rferedoc a

Dettagli

Calcolo dei fattori di vista

Calcolo dei fattori di vista Su u supporto ceraco è otata ua sere d coduttor elettrc patt euspazat co passo p par a c e altezza h par a c. ss hao ua teperatura d fuzoaeto T 50 C e la loro lughezza è grade desoe al pao della fgura.

Dettagli

2 si da eguale peso alle misure senza tener conto dell incertezza, che in generale possono essere diverse.

2 si da eguale peso alle misure senza tener conto dell incertezza, che in generale possono essere diverse. 5 MEDIE PESTE Come combare msure separate? Esempo, msure Msura d : ± Msura d B: B ± B Se s effettua la meda artmetca: B s da eguale peso alle msure seza teer coto dell certezza, che geerale possoo essere

Dettagli

Ciclo di convezione sulle pareti con intecapedine

Ciclo di convezione sulle pareti con intecapedine Clo d ovezoe sulle paret o teapede Dalla tabella delle odubltà terma s ha per l ara l more k, pertato l mglore solameto o la peggore odubltà terma. Putroppo s geerao orret ovettve, he qud trasmetto l alore

Dettagli

Consentono di descrivere la variabilità all interno della distribuzione di frequenza tramite un unico valore che ne sintetizza le caratteristiche

Consentono di descrivere la variabilità all interno della distribuzione di frequenza tramite un unico valore che ne sintetizza le caratteristiche Metodologa della rcerca pcologa clca - Dott. Luca Flppo Coetoo d decrvere la varabltà all tero della dtrbuzoe d frequeza tramte u uco valore che e tetzza le carattertche Metodologa della rcerca pcologa

Dettagli

Il campionamento e l inferenza

Il campionamento e l inferenza e l fereza Popolazoe Campoe Da dat osservat medate scelta campoara s guge ad affermazo che rguardao la popolazoe da cu ess soo stat prescelt Uverstà d Macerata Facoltà d Sceze Poltche - Ao accademco Ao

Dettagli

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2014/15. Prova Scritta del 16/11/ NOME matricola:

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2014/15. Prova Scritta del 16/11/ NOME matricola: Corso d Laurea n Scenze Ambental Corso d Fsca Generale II a.a. 2014/15 Prova Scrtta del 16/11/2015 - NOME matrcola: 1) Un clndro contene 2 mol d gas deale alla temperatura d 340 K. Se l gas vene compresso

Dettagli

I Sistemi a Più Componenti.

I Sistemi a Più Componenti. PARTE II I questa secoda parte del testo (che comca co questo captolo) sarao cosderate alcue applcazo della TD d equlbro a sstem omogee (gassos, lqud e sold) co pù compoet, sstem che costtuscoo l domo

Dettagli

L assorbimento e lo strippaggio

L assorbimento e lo strippaggio assorbmeto e lo strppaggo Coloa a stad d ulbro (coloa a patt Il calcolo d ua coloa d assorbmeto/strppaggo d questo tpo parte dal blaco d matera. Chamado e le portate d lqudo A e d gas C relatve a due compoet

Dettagli

SCIENZA DEI MATERIALI. Chimica Fisica. IV Lezione. Dr. Fabio Mavelli. Dipartimento di Chimica Università degli Studi di Bari

SCIENZA DEI MATERIALI. Chimica Fisica. IV Lezione. Dr. Fabio Mavelli. Dipartimento di Chimica Università degli Studi di Bari SCIEZA DEI MATERIALI Chmca Fsca IV Lezoe Dr. Fabo Mavell Dartmeto d Chmca Uverstà degl Stud d Bar Termochmca 2 La TERMOCIMICA studa gl effett termc legat alle reazo chmche e, ù geerale, d var feome qual:

Dettagli

Laboratorio di Fisica I: laurea in Ottica e Optometria. Misura di una resistenza con il metodo VOLT-AMPEROMETRICO

Laboratorio di Fisica I: laurea in Ottica e Optometria. Misura di una resistenza con il metodo VOLT-AMPEROMETRICO Laboratoro d Fsca I: laurea Ottca e Optoetra Msura d ua ressteza co l etodo OLTMPEOMETICO descrzoe s sura ua ressteza utlzzado u voltetro e u llaperoetro sfruttado la relazoe : Per coduttor ohc è dpedete

Dettagli

Sommario. Facoltà di Economia. Obiettivo. Quando studiarla? Lezione n 7. X: carattere quantitativo tra le unità statistiche. Quando studiarla?

Sommario. Facoltà di Economia. Obiettivo. Quando studiarla? Lezione n 7. X: carattere quantitativo tra le unità statistiche. Quando studiarla? Corso d Statstca acoltà d Ecooma a.a. - La cocetrazoe Quado studarla? Obettvo Dagramma d Lorez apporto d cocetrazoe rea d cocetrazoe Esemp Sommaro Lezoe 7 Lez7-a.a. - statstca-fracesco mola Quado studarla?

Dettagli

Matrice: tabella di m righe ed n colonne. A T matrice trasposta di A=(a ij ) di elementi a ijt =a ji. Serena Morigi Università di Bologna 1

Matrice: tabella di m righe ed n colonne. A T matrice trasposta di A=(a ij ) di elementi a ijt =a ji. Serena Morigi Università di Bologna 1 Matrc Matrce: tabella d m rghe ed coloe T matrce trasposta d (a j ) d elemet a jt a j Serea Morg Uverstà d Bologa Matrc Matrce quadrata m sottomatrc Matrce rettagolare m Serea Morg Uverstà d Bologa Matrc

Dettagli

Associazione tra due variabili quantitative

Associazione tra due variabili quantitative Esempo (1) Assocazoe tra due varabl quattatve Suppoamo che u professore vogla dmostrare che eserctars a casa aut gl studet el superameto dell esame. esame. A tal fe regstra la votazoe de compt a casa e

Dettagli

TRATTAMENTO STATISTICO DEI DATI ANALITICI

TRATTAMENTO STATISTICO DEI DATI ANALITICI TRATTAMENTO STATISTICO DEI DATI ANALITICI Nell aals chmca u aalsta effettua u umero lmtato d prove e cosdera la meda de rsultat otteut per poter arrvare a determare o l valore VERO d ua determata gradezza

Dettagli

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi.

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi. 7. Redte I questo captolo edremo solamete u caso d redta, che useremo po per geeralzzare le redte e dedurre tutt gl altr cas. S defsce redta ua successoe d captal (rate) tutte da pagare, o tutte da rscuotere,

Dettagli

CAPITOLO 2: PRIMO PRINCIPIO

CAPITOLO 2: PRIMO PRINCIPIO Introduzone alla ermodnamca Esercz svolt CAIOLO : RIMO RINCIIO Eserczo n 7 Una certa quanttà d Hg a = atm e alla temperatura = 0 C è mantenuta a = costante Quale dventa la se s porta la temperatura a =

Dettagli

Def. Si dice variabile aleatoria discreta X una variabile che può assumere valori X1, X

Def. Si dice variabile aleatoria discreta X una variabile che può assumere valori X1, X Prof.ssa Emauela Baudo Fabrza De Berard VARIABILI ALEATORIE DISCRETE E DISTRIBUZIONI DI PROBABILITA Def. S dce varable aleatora dscreta X ua varable che può assumere valor X, X,... X corrspodet ad evet

Dettagli