ESERCIZI DI CALCOLO STRUTTURALE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESERCIZI DI CALCOLO STRUTTURALE"

Transcript

1 ESERCIZIO A1 ESERCIZI DI CACOO SRUURAE Pate A: ave incastata Calcolo delle eazioni vincolai con caichi concentati o distibuiti P 1 P 1 = N = 1.2 m Sia la stuttua in figua soggetta al caico P 1 applicato all estemità della tave. incasto è uno dei tipi di vincolo che può essee applicato ad una stuttua. All estemità vincolata con un incasto non è possibile avee né spostamento, né otazione. Pe effetto del vincolo hanno luogo delle eazioni vincolai che pemettono alla stuttua di essee in equilibio sotto l azione dei caichi esteni applicati, siano essi concentati oppue distibuiti. Dette ed le eazioni vincolai, dall equazione di equilibio alla taslazione in diezione veticale si ottiene: = P 1 = N Dall equazione di equilibio alla otazione ispetto all incasto isulta invece: = P 1 = Nm ESERCIZIO A2 P P 1 = N P 2 = 5000 N 1 = 1.2 m 2 = 0.7 m P 2 a stuttua in figua è soggetta al caico P 1 applicato all estemità della tave e al caico P 2 applicato ad una distanza pai ad 2 dal vincolo. Anche in questo caso si applicano le equazioni di equilibio pe il calcolo delle eazioni vincolai. Risulta: = P 1 - P 2 = 5000 N = P 1 P 2 = Nm = 8500 Nm 1

2 ESERCIZIO A3 = 5000 N/m = 1.2 m a stuttua è soggetta ad un caico distibuito, dietto veso l alto, costante e di modulo pai ad (caico pe unità di lunghezza). aea sottesa dal diagamma è pai alla isultante del caico. R = = 5000 N/m 1.2 m = 6000 N a isultante è applicata nel cento del sistema di foze paallele ossia nel baicento dell aea sottesa dal caico stesso, quindi ad /2. Dall equazione di equilibio alla taslazione veticale e dall equazione di equilibio alla otazione ispetto all incasto si ottiene: = R = 6000 N = R /2 = 6000 N 1.2/2 m = 3600 Nm ESERCIZIO A4 0 0 = N/m = 1.2 m a stuttua è soggetta ad un caico distibuito, dietto veso l alto, tiangolae, il cui valoe in coispondenza dell incasto è pai ad 0 (caico pe unità di lunghezza). Come nell esecizio pecedente l aea sottesa dal diagamma è pai alla isutante del caico distibuito e la posizione della isultante coincide con il cento del sistema di foze paallele ossia il baicento dell aea sottesa. Risulta quindi che la isultante del caico, è pai a: R = 0 /2 = 1/ N/m 1.2 m = 6000 N Dall equazione di equilibio alla taslazione in diezione veticale si ottiene: = 6000 N a isultante del caico distibuito è applicata ad un tezo della lunghezza della tave. equazione di equilibio alla otazione ispetto all incasto pemette di icavae la eazione vincolae : = R 1/3 = 6000 N 1/3 1.2 m = 2400 Nm 2

3 Pate B: Ala Calcolo dei caichi in volo oizzontale ettilineo unifome e in manova ESERCIZIO B1 Calcolae il valoe del coefficiente di potanza ed il valoe della potanza pe unità di apetua di un ala a pianta ettangolae di cui siano note le caatteistiche geometiche. Si ipotizzi una distibuzione di potanza costante in apetua, tascuando il contibuto della fusoliea e delle alte supefici aeodinamiche, e si assuma il peso del velivolo concentato nel baicento. Q = 5 m c = 1 m (semi-apetua alae a meno del aggio della sezione di fusoliea) (coda) = kg/m 3 V = 80 m/s Q = N Dall equazione di equilibio alla taslazione veticale in volo oizzontale ettilineo ed unifome isulta che la potanza deve uguagliae il peso: 1 2 2Q V SC P =Q C P = 2 2 V S S = 2 c = 2 5 m 1m = 10 m 2 C P = = 1/2 C l V 2 c = 3000 N/m oppue = Q/(2) = 3000 N/m ESERCIZIO B2 Si considei lo stesso velivolo dell esecizio pecedente. Calcolae le eazioni all incasto ta ala e fusoliea supponendo i seguenti due casi: 1) peso dell inteo velivolo concentato nel baicento 2) peso popio dell ala, pai al 20% del peso totale del velivolo, distibuito unifomemente in apetua. 3

4 inteo velivolo è in equilibio sotto l effetto delle foze applicate (peso e potanza). Questo implica che è in equilibio anche ogni pate del velivolo nel momento in cui questa viene isolata e vengono consideate le eazioni vincolai che gaantiscono l equilibio della pate. Caso 1: peso dell inteo velivolo concentato nel baicento (Q = N) Calcolo delle eazioni vincolai all incasto: = P/2 = Q/2 = N = P/2 /2 = Nm Caso 2: peso dell ala distibuito unifomemente Q ala = 0.2 Q = 6000 N Consideando la potanza ed il peso dell ala distibuiti unifomemente si ottiene il seguente schema dei caichi applicati al velivolo: q Q - Q ala I caichi distibuiti valgono ispettivamente: = Q 2 = 3000 N/m (veso l alto) q = Qala 2 = 600 N/m (veso il basso) Dall equazione di equilibio alla taslazione veticale si ottiene che: = - q = (-q) = ( ) N/m 5 m = N (veso il basso) Dall equazione di equilibio alla otazione ispetto all incasto si ottiene: -q = -q = Nm (veso oaio) = ( ) NOA Ricodate che l andamento in apetua della potanza e del peso non è costante nella ealtà. ali distibuzioni sono state appossimate come costanti pe comodità (ed in favoe di sciuezza ). Inolte, anche la fusoliea e le alte supefici aeodinamiche foniscono un contibuto di potanza, seppu di entità molto minoe ispetto alla potanza geneata dall ala. 4

5 ESERCIZIO B3 Pe lo stesso velivolo consideato negli esecizi pecedenti, si calcolino il coefficiente di potanza dell ala e le eazioni vincolai in coispondenza dell incasto ala-fusoliea, duante una manova di ichiamata effettuata a quota zeo, con un fattoe di caico pai a 3 ad una velocità di 120 m/s. Si consideino sia il caso di peso concentato, sia il caso di peso dell ala distibuito. = kg/m 3 V = 120 m/s n = 3 Dall equazione di equilibio alla taslazione veticale si ottiene: P = nq 2 nq C = = V S P 2 Caso 1: peso dell inteo velivolo concentato nel baicento Diagamma dei caichi agenti sul velivolo: Q+(Q/g) a P = n Q = n P VORU = n VORU Equazione di equilibio alla taslazione veticale: Q a Q+ a =Q +1 =nq = P g g = P 2 = nq = 9000 N/m 2 = = 9000 N/m 5 m = N (veso il basso) Equazione di equilibio alla otazione ispetto ad un polo coincidente con l incasto: = /2 = Nm (veso oaio) 5

6 Caso 2: peso dell ala distibuito unifomemente (Q-Q ala )+(Q-Q ala ) a/g q = P 2 = nq = 9000 N/m 2 q = Q ala + (Q ala / g) a 2 = a 1 nqala Qala1+ = g 2 2 = 1800 N/m Equazione di equilibio alla taslazione veticale: Q-Qala (Q-Q ala)+ a + q 2 = Q-Qala 1+ + nqala = nq = P g g ( ) a Pe calcolae le eazioni vincolai occoe scivee le equazioni di equilibio alla taslazione veticale e alla otazione, consideando la pesenza delle foza peso dell ala distibuita. Risulta: = q = 9000 N/m 5 m 1800 N/m 5 m = N (veso il basso) = q = Nm (veso oaio) 2 ( ) NOA 1 Si ossevi che le eazioni vincolai sono pai esattamente ad n volte quelle dell esecizio pecedente, elativo al caso di volo oizzontale ettilineo unifome (nei ispettivi casi di peso del velivolo concentato nel baicento e di peso dell ala distibuito in apetua). NOA 2 Ossevate l effetto benefico che ha pe i caichi, la pesenza di massa lungo l apetua alae. 6

Facoltà di Ingegneria Fisica II Compito A

Facoltà di Ingegneria Fisica II Compito A Facoltà di ngegneia Fisica 66 Compito A Esecizio n Un filo di mateiale isolante, con densità di caica lineae costante, viene piegato fino ad assumee la foma mostata in figua (la pate cicolae ha aggio e

Dettagli

Conduttori in equilibrio elettrostatico

Conduttori in equilibrio elettrostatico onduttoi in equilibio elettostatico In un conduttoe in equilibio, tutte le caiche di conduzione sono in equilibio Se una caica di conduzione è in equilibio, in quel punto il campo elettico è nullo caica

Dettagli

Equilibrio dei corpi rigidi- Statica

Equilibrio dei corpi rigidi- Statica Equilibio dei copi igidi- Statica Ci ifeiamo solo a situazioni paticolai in cui i copi igidi non si muovono in nessun modo: ne taslano ( a 0 ), ne uotano ( 0 ), ossia sono femi in un oppotuno sistema di

Dettagli

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono:

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono: 4.1 Pincipi della dinamica 4. DINAMICA I te pincipi della dinamica pe un copo puntifome (detto anche punto mateiale o paticella) sono: 1) pincipio di intezia di Galilei; 2) legge dinamica di Newton; 3)

Dettagli

! Un asta di peso p =! + 1 (vedi figura) è appoggiata su due. supporti A e B, distanti, dal baricentro G dell asta,

! Un asta di peso p =! + 1 (vedi figura) è appoggiata su due. supporti A e B, distanti, dal baricentro G dell asta, isica eneale 5. Esecizi di Statica Esecizio Un asta di eso = + (vedi figua) è aoggiata su due 0 N suoti e, distanti, dal baicento dell asta, isettivamente a =. m e b = + 0. 000 m Calcolae la foza d aoggio

Dettagli

Elementi di Dinamica

Elementi di Dinamica Elementi di Dinamica ELEMENTI DI DINAMICA Mente la cinematica si limita allo studio delle possibilità di movimento di un ceto sistema ed alla elativa descizione matematica, la dinamica si occupa delle

Dettagli

Corso di Progetto di Strutture. POTENZA, a.a Le piastre anulari

Corso di Progetto di Strutture. POTENZA, a.a Le piastre anulari Coso di Pogetto di Stuttue POTENZA, a.a. 3 Le piaste anulai Dott. aco VONA Scuola di Ingegneia, Univesità di Basilicata maco.vona@unibas.it http://www.unibas.it/utenti/vona/ LE PIASTE CICOLAI CAICATE ASSIALENTE

Dettagli

int Schiusa Schiusa r r Φ = r r S o 1 Anno scolastico

int Schiusa Schiusa r r Φ = r r S o 1 Anno scolastico Anno scolastico 4 + ε ε int dt E d C dt d E C Q E S o S Schiusa Schiusa gandezza definizione fomula Foza di Loentz Foza agente su una caica q in moto con velocità v in una egione in cui è pesente un campo

Dettagli

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss Esecizi Legge di Gauss. Un involuco sfeico isolante ha aggi inteno ed esteno a e b, ed e caicato con densita unifome ρ. Disegnae il diagamma di E in funzione di La geometia e mostata nella figua: Usiamo

Dettagli

Vista dall alto. Vista laterale. a n. Centro della traiettoria

Vista dall alto. Vista laterale. a n. Centro della traiettoria I poblema Un ciclista pedala su una pista cicolae di aggio 5 m alla velocità costante di 3.4 km/h. La massa complessiva del ciclista e della bicicletta è 85.0 kg. Tascuando la esistenza dell aia calcolae

Dettagli

I 0 Principio o legge d inerzia: un corpo non soggetto ad alcuna sollecitazione esterna mantiene il suo stato di quiete o di moto rettilineo uniforme

I 0 Principio o legge d inerzia: un corpo non soggetto ad alcuna sollecitazione esterna mantiene il suo stato di quiete o di moto rettilineo uniforme Le leggi Newtoniane del moto Le foze sono vettoi I 0 Pincipio o legge d inezia: un copo non soggetto ad alcuna sollecitazione estena mantiene il suo stato di quiete o di moto ettilineo unifome Moto acceleato:

Dettagli

Momento di una forza:

Momento di una forza: Univesità olitecnica delle ache, acoltà di gaia C.d.L. Scienze oestali e mbientali,.. 2008/2009, isica 1 omento di una foza: d 1 d 2 d C In quale situazione la pesona sente di piu il peso del copo? o?

Dettagli

SESTA LEZIONE: campo magnetico, forza magnetica, momenti meccanici sui circuiti piani

SESTA LEZIONE: campo magnetico, forza magnetica, momenti meccanici sui circuiti piani A. Chiodoni esecizi di Fisica II SESTA LEZIONE: campo magnetico, foza magnetica, momenti meccanici sui cicuiti piani Esecizio 1 Un potone d enegia cinetica E k 6MeV enta in una egione di spazio in cui

Dettagli

Esistono due tipi di forze di attrito radente: le forze di attrito statico, per cui vale la relazione:

Esistono due tipi di forze di attrito radente: le forze di attrito statico, per cui vale la relazione: oze di attito f N P Le foze di attito adente si geneano sulla supeficie di contatto di due copi e hanno la caatteistica di opposi sepe al oto elativo dei due copi. Le foze di attito adente non dipendono,

Dettagli

CASO 2 CASO 1. δ Lo. e N. δ Lo. e L. PROBLEMA A Corso di Fisica 1- Prima provetta- 22 maggio 2004 Facoltà di Ingegneria dell Università di Trento

CASO 2 CASO 1. δ Lo. e N. δ Lo. e L. PROBLEMA A Corso di Fisica 1- Prima provetta- 22 maggio 2004 Facoltà di Ingegneria dell Università di Trento PROBEMA A Coso di Fisica 1- Pima povetta- maggio 004 Facoltà di Ingegneia dell Univesità di Tento Un anello di massa m= 70 g, assimilabile ad un copo puntifome, è infilato in una asta igida liscia di lunghezza

Dettagli

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da Gavitazione Dati due copi di massa m 1 e m 2, posti ad una distanza, ta di essi si esecita una foza attattiva data in modulo da F = G m 1m 2 dove G è una costante univesale, avente lo stesso valoe pe tutte

Dettagli

Biomeccanica. Cinematica Dinamica Statica dei corpi rigidi Energia e principi di conservazione

Biomeccanica. Cinematica Dinamica Statica dei corpi rigidi Energia e principi di conservazione Biomeccanica Cinematica Dinamica Statica dei copi igidi Enegia e pincipi di consevazione Posizione: definita da : z modulo, diezione, veso vettoe s s z s s y unità di misua (S.I.) : meto x s x y Taiettoia:

Dettagli

CAP.2. cavo. corpo. = 0 il corpo si comporta come se su di esso non agisse alcuna forza, cioè è in equilibrio. Si noti che è implicitamente anche M r

CAP.2. cavo. corpo. = 0 il corpo si comporta come se su di esso non agisse alcuna forza, cioè è in equilibrio. Si noti che è implicitamente anche M r CP.2 Statica del punto mateiale Si definisce punto mateiale un copo pe il quale le dimensioni possono itenesi tascuabili ispetto alle alte dimensioni del poblema in esame e tutte le foze agenti possono

Dettagli

Esercizi di Statica. Esercitazioni di Fisica LA per ingegneri - A.A

Esercizi di Statica. Esercitazioni di Fisica LA per ingegneri - A.A Esecizio 1 Esecizi di Statica Esecitazioni di Fisica LA pe ingegnei - A.A. 2004-2005 Un punto ateiale di assa = 0.1 kg (vedi FIG.1) é situato all esteitá di una sbaetta indefoabile di peso tascuabile e

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti Esecizi Scheda N. 45 Fisica II Esecizio. Esecizi con soluzione svolti Un filo ettilineo, indefinito, pecoso da una coente di intensità i=4 A, è immeso in un mezzo omogeneo, isotopo, indefinito e di pemeabilità

Dettagli

IL POTENZIALE. = d quindi: LAB

IL POTENZIALE. = d quindi: LAB 1 IL POTENZIALE Sappiamo che il campo gavitazionale è un campo consevativo cioè nello spostamento di un copo ta due punti del campo gavitazionale teeste, le foze del campo compiono un lavoo che dipende

Dettagli

Tutorato di Fisica 1 - AA 2014/15

Tutorato di Fisica 1 - AA 2014/15 Tutoato di Fisica - AA 4/5 Emanuele Fabbiani 5 mazo 5 Dinamica del copo igido. Esecizio Si calcoli il momento d'inezia di una sbaa sottile di lunghezza l = 3 cm, la cui densità lineae di massa è descitta

Dettagli

CENTRO DI MASSA. Il centro di massa C divide il segmento AB in parti inversamente proporzionali alle masse: AC. x C = m A x A + m B x B.

CENTRO DI MASSA. Il centro di massa C divide il segmento AB in parti inversamente proporzionali alle masse: AC. x C = m A x A + m B x B. Due paticelle: CENTRO DI MASSA 0 A m A A C m B B B C Il cento di massa C divide il segmento AB in pati invesamente popozionali alle masse: AC CB = m B m A C A B C = m B m A m A C m A A = m B B m B C (

Dettagli

F 1 F 2 F 3 F 4 F 5 F 6. Cosa è necessario per avere una rotazione?

F 1 F 2 F 3 F 4 F 5 F 6. Cosa è necessario per avere una rotazione? Cosa è necessaio pe avee una otazione? Supponiamo di vole uotae il sistema in figua intono al bullone, ovveo intono all asse veticale passante pe, usando foze nel piano oizzontale aventi tutte lo stesso

Dettagli

SELEZIONE DI ESERCIZI DI ELETTROSTATICA.

SELEZIONE DI ESERCIZI DI ELETTROSTATICA. Fisica geneale II, a.a. 13/14 SELEZIONE DI ESEIZI DI ELETTOSTATIA..1. Un pocesso elettolitico divide 1.3 mg di Nal (massa di una mole = 59 g) in Na + e l. Le caiche positive vengono allontanate da quelle

Dettagli

Effetto Hall. flusso reale dei portatori se positivi. flusso reale dei portatori se negativi

Effetto Hall. flusso reale dei portatori se positivi. flusso reale dei portatori se negativi Appunti di Fisica II Effetto Hall L'effetto Hall è un fenomeno legato al passaggio di una coente I, attaveso ovviamente un conduttoe, in una zona in cui è pesente un campo magnetico dietto otogonalmente

Dettagli

Sistemi di riferimento inerziali:

Sistemi di riferimento inerziali: La pima legge di Newton sul moto è anche chiamata pincipio di inezia. In fisica inezia significa esistenza ai cambiamenti di velocità. Es.: - la foza d attito ta la moneta e la tessea è molto piccola e

Dettagli

AZIONE A DISTANZA E TEORIA DI CAMPO (1)

AZIONE A DISTANZA E TEORIA DI CAMPO (1) Il campo elettico AZION A DITANZA TOIA DI CAMPO () Come fanno due caiche elettiche ad inteagie fa di loo? All inizio del 9 si sono confontate due ipotesi:.le caiche si scambiano dei messaggei e uindi si

Dettagli

MACCHINA ELEMENTARE A RILUTTANZA

MACCHINA ELEMENTARE A RILUTTANZA Sistemi magnetici con moto meccanico MACCHINA ELEMENTARE A RILUTTANZA Consiste in un nucleo magnetico con un avvolgimento a N spie e una pate mobile che uota con spostamento angolae θ e velocità angolae

Dettagli

A.A. 2009/ Appello del 15 giugno 2010

A.A. 2009/ Appello del 15 giugno 2010 Fisica I pe Ing. Elettonica e Fisica pe Ing. Infomatica A.A. 29/21 - Appello del 15 giugno 21 Soluzione del poblema n. 1a 1. All uscita della guida, nel punto D, il copo compie un moto paabolico con velocità

Dettagli

Se i corpi 1 e 2 interagiscono solo fra loro e non con altri corpi si ha quindi l importante principio di conservazione della quantità di moto: dp r

Se i corpi 1 e 2 interagiscono solo fra loro e non con altri corpi si ha quindi l importante principio di conservazione della quantità di moto: dp r 3. Dinamica Leggi di Newton Si intoduce il concetto di foza come misua della vaiazione dello stato di moto di un copo, ossevato in un sistema di ifeimento di pe se stesso non soggetto a foze (sistema ineziale).

Dettagli

I principi della dinamica ed il concetto di massa e di forza. Le forze nascono da interazioni tra corpi Questo però non è sempre vero!

I principi della dinamica ed il concetto di massa e di forza. Le forze nascono da interazioni tra corpi Questo però non è sempre vero! Lezione III 1 I pincipi della dinamica ed il concetto di massa e di foza Le foze sono la causa del cambiamento nel moto dei copi. In geneale noi associamo all azione di una foza la pesenza di un alto copo

Dettagli

FISICA GENERALE II Esercitazione D tutorato ESERCIZI CON SOLUZIONE

FISICA GENERALE II Esercitazione D tutorato ESERCIZI CON SOLUZIONE FSCA GENERALE Esecitazione D tutoato -3 ESERCZ CON SOLUZONE. Un conduttoe cilindico cavo, di aggio esteno a =. cm e aggio inteno b =.6 cm, è pecoso da una coente =A, distibuita uniomemente sulla sua sezione.

Dettagli

Momenti d'inerzia di figure geometriche semplici

Momenti d'inerzia di figure geometriche semplici Appofondimento Momenti d'inezia di figue geometice semplici Pidatella, Feai Aggadi, Pidatella, Coso di meccanica, maccine ed enegia Zanicelli 1 Rettangolo Pe un ettangolo di ase e altezza (FGURA 1.a),

Dettagli

Lezione 3. Applicazioni della Legge di Gauss

Lezione 3. Applicazioni della Legge di Gauss Applicazioni della Legge di Gauss Lezione 3 Guscio sfeico di aggio con caica totale distibuita unifomemente sulla supeficie. immetia sfeica, dipende solo da supeficie sfeica di aggio

Dettagli

SETTIMA-OTTAVA LEZIONE: sorgenti del campo magnetico, legge di Ampere, legge di Biot-Sawart

SETTIMA-OTTAVA LEZIONE: sorgenti del campo magnetico, legge di Ampere, legge di Biot-Sawart . Chiodoni esecizi di Fisica II SETTIM-OTTV LEZIONE: sogenti del campo magnetico, legge di mpee, legge di Biot-Sawat Esecizio 1 Due spie cicolai di aggio 3cm, aventi lo stesso asse, sono poste in piani

Dettagli

5) Il modulo della velocità del centro di massa del cilindro, calcolata quando esso raggiunge il fondo del piano inclinato vale:

5) Il modulo della velocità del centro di massa del cilindro, calcolata quando esso raggiunge il fondo del piano inclinato vale: Facoltà di Ingegneia Pova Scitta di Fisica I - Luglio 005 Quesito n. Dalla soità di uno scivolo, liscio, descitto in figua, viene fatto patie, a quota e da feo, un copo puntifoe di assa. aggiunto il fondo

Dettagli

Momenti. Momento di inerzia, momento di una forza, momento angolare

Momenti. Momento di inerzia, momento di una forza, momento angolare Momenti Momento di inezia, momento di una foza, momento angolae Conce&o di Momento I momenti in fisica sono cose molto divese fa loo. Cetamente non hanno sempe la stessa unità di misua; ed avemo cua di

Dettagli

Momenti. Momento di inerzia, momento di una forza, momento angolare

Momenti. Momento di inerzia, momento di una forza, momento angolare Momenti Momento di inezia, momento di una foza, momento angolae Conce&o di Momento I momenti in fisica sono cose molto divese fa loo. Cetamente non hanno sempe la stessa unità di misua; ed avemo cua di

Dettagli

effettuato una rotazione di 60 ; c) la velocità angolare quando il sistema ha effettuato una rotazione di 180.

effettuato una rotazione di 60 ; c) la velocità angolare quando il sistema ha effettuato una rotazione di 180. CORPO RIGIDO EX Un pofilo igido è costituito da un tatto ettileo AB e da una semiciconfeenza di aggio R=0cm come figua. Dal punto A viene lanciata una moneta di aggio =cm. Calcolae la mima velocità che

Dettagli

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc Politecnico di Milano Fondamenti di Fisica Speimentale a.a. 9-1 - Facoltà di Ingegneia Industiale - Ind. Aeo-Eneg-Mecc II pova in itinee - 5/7/1 Giustificae le isposte e scivee in modo chiao e leggibile.

Dettagli

E, ds. - Flusso totale uscente dalla superficie chiusa S: è la somma di tutti i flussi elementari, al tendere a zero delle aree infinitesime: r )

E, ds. - Flusso totale uscente dalla superficie chiusa S: è la somma di tutti i flussi elementari, al tendere a zero delle aree infinitesime: r ) Flusso del campo elettico e legge di Gauss. - Si definisce supeficie gaussiana una ipotetica supeficie S chiusa, che contiene un volume V. - La legge di Gauss mette in elazione i valoi dei campi elettici

Dettagli

ψ β F ESERCIZIO PIEGAMENTI SULLE BRACCIA

ψ β F ESERCIZIO PIEGAMENTI SULLE BRACCIA S ϕ α E h W ψ β ESERCIZIO PIEGMENTI SULLE BRCCI W Un atleta compie una seie di piegamenti sulle baccia, mantenendo il movimento dei segmenti del baccio (omeo ed avambaccio) paalleli al piano sagittale.

Dettagli

FISICA GENERALE T-A 23 luglio 2012 prof. spighi (CdL ingegneria Energetica)

FISICA GENERALE T-A 23 luglio 2012 prof. spighi (CdL ingegneria Energetica) ISICA GENEAE T-A 3 luglio 1 pof. spighi (Cd ingegneia Enegetica) 1) Un punto ateiale si uove nello spazio secondo la seguente legge oaia: x( t) = t + 3 t; ( t) = t + 5; z( t) = t; deteinae: a) la velocità

Dettagli

Energia potenziale elettrica

Energia potenziale elettrica Enegia potenziale elettica L ultima ossevazione del capitolo pecedente iguadava le analogie e le diffeenze ta il campo elettico e il campo gavitazionale pendendo in esame la foza di Coulomb e la legge

Dettagli

Fisica Generale A. 9. Forze Inerziali. Cambiamento di Sistema di Riferimento. SdR in Moto Traslatorio Rettilineo Uniforme (II)

Fisica Generale A. 9. Forze Inerziali. Cambiamento di Sistema di Riferimento. SdR in Moto Traslatorio Rettilineo Uniforme (II) isica Geneale A 9. oze Ineziali http://campus.cib.unibo.it/2429/ ctobe 21, 2010 ambiamento di istema di ifeimento ome cambia la descizione del moto passando da un d a un alto? In paticolae, come cambia

Dettagli

Fisica Generale II con Laboratorio. Lezione - 3

Fisica Generale II con Laboratorio. Lezione - 3 Fisica Geneale II con Laboatoio Lezione - 3 Richiami - I Riassunto leggi della meccanica: Leggi di Newton 1) Pincipio di inezia Esistono sistemi di ifeimento ineziali (nei quali un copo non soggetto a

Dettagli

DISTRIBUZIONE DELLA CARICA NEI CONDUTTORI

DISTRIBUZIONE DELLA CARICA NEI CONDUTTORI 1 DISTRIBUZIONE DELLA CARICA NEI CONDUTTORI I copi conduttoi sono caatteizzati dal fatto di avee moltissimi elettoni libei di muovesi (elettoni di conduzione). Cosa accade se un copo conduttoe viene caicato

Dettagli

1Cuscinetti a Sfere a Contatto Obliquo di Alta Precisione (Serie Standard)

1Cuscinetti a Sfere a Contatto Obliquo di Alta Precisione (Serie Standard) Cuscinetti a Sfee a 1Cuscinetti a Sfee a di Alta Pecisione (Seie Standad)........ 44-56 Caatteistiche Sistema di designazione Tabelle dimensionali Seie Miniatua Seie 79 Seie 70 Seie 72 Cuscinetti a Sfee

Dettagli

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande Nome..ognome. classe 5 9 Novembe 8 RIFI di FISI: lettostatica omande ) ai la definizione di flusso di un campo vettoiale attaveso una supeficie. nuncia il teoema di Gauss pe il campo elettico (senza dimostalo)

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE

CORSO DI LAUREA IN SCIENZE BIOLOGICHE RS DI LURE IN SIENZE BILGIE Pova di isica del 17 aio 6 Giustiicae il pocediento seuito, sostituie alla ine i valoi nueici, non dienticae le unità di isua,scivee in odo chiao. 1 Un poiettile di si ea in

Dettagli

Geometria analitica in sintesi

Geometria analitica in sintesi punti distanza ta due punti coodinate del punto medio coodinate del baicento ta due punti di un tiangolo di vetici etta e foma implicita foma esplicita foma segmentaia equazione della etta m è il coefficiente

Dettagli

Fisica Generale- Modulo Fisica II Esercitazione 2 Ingegneria Meccanica POTENZIALE ELETTRICO ED ENERGIA POTENZIALE

Fisica Generale- Modulo Fisica II Esercitazione 2 Ingegneria Meccanica POTENZIALE ELETTRICO ED ENERGIA POTENZIALE Fisica Geneale- Modulo Fisica II secitazione OTNZIL LTTRICO D NRGI OTNZIL Ba. Una caica elettica mc si tova nell oigine di un asse mente una caica negativa 4 mc si tova nel punto di ascissa m. Sia il punto

Dettagli

ESERCIZIO n.1. rispetto alle rette r e t indicate in Figura. h t. d b GA#1 1

ESERCIZIO n.1. rispetto alle rette r e t indicate in Figura. h t. d b GA#1 1 Esecizi svolti di geometia delle aee Aliandi U., Fusci P., Pisano A., Sofi A. ESERCZO n.1 Data la sezione ettangolae ipotata in Figua, deteminae: a) gli assi pincipali centali di inezia; ) l ellisse pincipale

Dettagli

L'atomo è così chiamato perché inizialmente dai filosofi greci era considerato l'unita più piccola ed indivisibile della materia.

L'atomo è così chiamato perché inizialmente dai filosofi greci era considerato l'unita più piccola ed indivisibile della materia. Il campo elettico La stuttua dell atomo L'atomo è così chiamato peché inizialmente dai filosofi geci ea consideato l'unita più piccola ed indivisibile della mateia. In ealtà sappiamo che non è così. Cecando

Dettagli

( ) Energia potenziale U = GMm r. GMm r. GMm L AB. = r. r r. Definizione di energia potenziale

( ) Energia potenziale U = GMm r. GMm r. GMm L AB. = r. r r. Definizione di energia potenziale Enegia potenziale Definizione di enegia potenziale Il lavoo, compiuto da una foza consevativa nello spostae il punto di applicazione da a, non dipende dal cammino seguito, ma esclusivamente dai punti e.

Dettagli

L = F s cosα = r F r s

L = F s cosα = r F r s LVORO Se su un copo agisce una foza F, il lavoo compiuto dalla foza pe uno spostamento s è (podotto scalae di due vettoi): L = F s cosα = F s F α s LVORO L unità di misua del lavoo nel S.I. si chiama Joule:

Dettagli

Campi scalari e vettoriali (1)

Campi scalari e vettoriali (1) ampi scalai e vettoiali (1) 3 e ad ogni punto P = (x, y, z) di una egione di spazio Ω R è associato uno ed uno solo scalae φ diemo che un campo scalae è stato definito in Ω. In alti temini: φ 3 : P R φ(p)

Dettagli

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE.

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. ESERCIZIO 1 AI VERTICI DI UN UADRATO DI LATO SONO POSTE 4 CARICHE UGUALI. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. 4 caiche uguali sono poste ai vetiti di un quadato. L asse di un quadato

Dettagli

qq r Elettrostatica Legge di Coulomb permette di calcolare la forza che si esercita tra due particelle cariche.

qq r Elettrostatica Legge di Coulomb permette di calcolare la forza che si esercita tra due particelle cariche. lettostatica La mateia è costituita da atomi. Gli atomi sono fomati da un nucleo, contenete paticelle neute (neutoni) e paticelle caiche positivamente (potoni). Intono al nucleo ci sono paticelle caiche

Dettagli

Capacità ele+rica. Condensatori

Capacità ele+rica. Condensatori Capacità ele+ica Condensatoi Condensatoi Il sistema più semplice pe immagazzinae enegia elettostatica è caicae un condensatoe. Genealmente il condensatoe è costituito da due piani metallici sepaati da

Dettagli

Gravitazione universale

Gravitazione universale INGEGNERIA GESTIONALE coso di Fisica Geneale Pof. E. Puddu LEZIONE DEL 22 OTTOBRE 2008 Gavitazione univesale 1 Legge della gavitazione univesale di Newton Ogni paticella attae ogni alta paticella con una

Dettagli

CAPITOLO 12 GONIOMETRIA

CAPITOLO 12 GONIOMETRIA CAPITOLO 1 GONIOMETRIA 1.01 - Misua degli Angoli e degli Achi 1.01.a) Unità di Misua degli Angoli o degli Achi Dato un angolo, è possibile scegliee come unità di misua un ulteioe (ovviamente) angolo definito

Dettagli

Potenziale elettrostatico e lavoro. Potenziale elettrostatico Energia potenziale elettrostatica Esempi Moto di una carica in un potenziale e.s.

Potenziale elettrostatico e lavoro. Potenziale elettrostatico Energia potenziale elettrostatica Esempi Moto di una carica in un potenziale e.s. Potenziale elettostatico e lavoo Potenziale elettostatico Enegia potenziale elettostatica Esempi Moto di una caica in un potenziale e.s. Potenziale elettostatico Campo e.s. geneato da una caica puntifome

Dettagli

Esercizio n. 1 ELEMENTI DI MECCANICA RAZIONALE. 1 Esercizi. 1) Dati i vettori

Esercizio n. 1 ELEMENTI DI MECCANICA RAZIONALE. 1 Esercizi. 1) Dati i vettori Politecnico di Toino CeTeM Esecizi Esecizio n. ) Dati i vettoi u 3i + 4 j + k v i + 3j k w i + j applicato in P (,,) applicato in P applicato P 3 (,,) (,,) a: deteminae la loo isultante. b: calcolae il

Dettagli

IL VOLUME DEI SOLIDI Conoscenze

IL VOLUME DEI SOLIDI Conoscenze IL VOLUME DEI SOLIDI Conoscenze 1. Completa. a. Il peso di un copo dipende dal volume e dalla sostanza di cui è costituito b. Ogni sostanza ha il suo peso specifico, che è il peso dell unità di volume

Dettagli

Lezione mecc n.13 pag 1

Lezione mecc n.13 pag 1 Lezione mecc n.3 pag Agomenti di questa lezione Intoduzione alla dinamica dei sistemi Definizione di cento di massa Foze estene ed intene ad un sistema Quantità di moto e sue vaiazioni (pima equazione

Dettagli

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss 1 Appunti su agomenti monogafici pe il coso di FM1 Pof. Pieluigi Contucci Gavità e Teoema di Gauss Vogliamo dimostae, a patie dalla legge di gavitazione univesale che il campo gavitazionale geneato da

Dettagli

1 Potenziale elettrostatico e seconda equazione di Maxwell per E

1 Potenziale elettrostatico e seconda equazione di Maxwell per E 1 Potenziale elettostatico e seconda equazione di Maxwell pe E Consideiamo il campo elettico oiginato da una caica puntifome q che ipotizziamo fissa nell oigine degli assi: E( ) = q ˆ 2 = q 3 (1) Pe definizione,

Dettagli

Il magnetismo. Il Teorema di Ampere: la circuitazione del campo magnetico.

Il magnetismo. Il Teorema di Ampere: la circuitazione del campo magnetico. Il magnetismo Il Teoema di Ampee: la cicuitazione del campo magnetico. Richiamiamo la definizione geneale di cicuitazione pe un campo vettoiale Definizione: si definisce cicuitazione di un campo vettoiale

Dettagli

M = 1500 kg. m 9 m 3 m M F

M = 1500 kg. m 9 m 3 m M F 1) La figua descive un copo di assa appoggiato ad un piano inclinato di un angolo ispetto all oizzontale, con un coefficiente di attito dinaico fa copo e piano µ. Il copo è collegato, pe ezzo di una fune,

Dettagli

La legge di Lenz - Faraday Neumann

La legge di Lenz - Faraday Neumann 1 La legge di Lenz - Faaday Neumann Il flusso del campo magnetico B Pe dae una veste matematica alle conclusioni delle espeienze viste nella lezione pecedente, abbiamo bisogno di definie una nuova gandezza

Dettagli

ESERCIZIO n.2. y B. rispetto alle rette r e t indicate in Figura. GA#2 1

ESERCIZIO n.2. y B. rispetto alle rette r e t indicate in Figura. GA#2 1 ESERCZO n. Data la sezione a T ipotata in Figua, deteminae: a) gli assi pincipali centali di inezia; ) l ellisse pincipale centale di inezia; c) il nocciolo centale di inezia; d) i momenti di inezia e

Dettagli

Lunghezza della circonferenza e area del cerchio

Lunghezza della circonferenza e area del cerchio Come possiamo deteminae la lunghezza di una ciconfeenza di aggio? Poviamo a consideae i poligoni egolai inscitti e cicoscitti alla ciconfeenza: è chiao che la lunghezza della ciconfeenza è maggioe del

Dettagli

Università degli Studi di Roma La Sapienza Ingegneria Elettrotecnica

Università degli Studi di Roma La Sapienza Ingegneria Elettrotecnica Pova scitta di Fisica 2-14 Gennaio 2013 Esecizio 1 (8 punti) Una caica statica nel vuoto distibuita su un aco di ciconfeenza di aggio a con densità lineae λ = λ 0 sinα dove 0 < α < 3π/2. Calcolae il potenziale

Dettagli

Unità Didattica N 10 : I momenti delle forze

Unità Didattica N 10 : I momenti delle forze Unità didattica N 10 I momenti delle foze 1 Unità Didattica N 10 : I momenti delle foze 01) omento di una foza ispetto ad un punto 02) omento isultante di un sistema di foze 03) omento di una coppia di

Dettagli

Cinematica III. 11) Cinematica Rotazionale

Cinematica III. 11) Cinematica Rotazionale Cinematica III 11) Cinematica Rotazionale Abbiamo già tattato il moto cicolae unifome come moto piano (pa. 8) intoducendo la velocità lineae v e l acceleazione lineae a, ma se siamo inteessati solo al

Dettagli

STUDIO DELLA RESISTENZA DI UN DISCO A SPESSORE COSTANTE UTILIZZANDO IL METODO DEGLI ELEMENTI FINITI

STUDIO DELLA RESISTENZA DI UN DISCO A SPESSORE COSTANTE UTILIZZANDO IL METODO DEGLI ELEMENTI FINITI POLITECNICO DI TORINO Facoltà di Ingegneia I Anno accademico xxxx/xxxx Coso di COSTRUZIONE DI MACCHINE Elettix1 STUDIO DELLA RESISTENZA DI UN DISCO A SPESSORE COSTANTE UTILIZZANDO IL METODO DEGLI ELEMENTI

Dettagli

Proprietà della materia: isolanti e conduttori

Proprietà della materia: isolanti e conduttori Popietà della mateia: isolanti e conduttoi I copi solidi dal punto di vista elettico molto schematicamente si dividono in isolanti e conduttoi. La diffeenza di compotamento elettico deiva dalla divesa

Dettagli

Macchina di Atwood. Serve a studiare i moti accelerati nel campo gravitazionale terrestre variando a piacimento l accelerazione di gravità g.

Macchina di Atwood. Serve a studiare i moti accelerati nel campo gravitazionale terrestre variando a piacimento l accelerazione di gravità g. acchina di Atwood E costituita da due asse attacate l una all alta da una fune ideale (inestendibile e di assa tascuabile) e sospese taite una caucola anch essa ideale (attito e assa tascuabili). Seve

Dettagli

Massimi e minimi con le linee di livello

Massimi e minimi con le linee di livello Massimi e minimi con le linee di livello Pe affontae questo agomento è necessaio sape appesentae i fasci di cuve ed in paticolae: Fasci di paabole. Pe affontae questo agomento si consiglia di ivedee l

Dettagli

Facoltà di Ingegneria

Facoltà di Ingegneria Facoltà i Ingegneia Pova scitta i Fisica Cognome: Nome: Data: CL/Maticola: Compito: Aula: Pe annullae la popia pesenza a uesta pova scivee RITIRATO al igo seguente:.. Moalità i svolgimento:. isolvee i

Dettagli

Il campo magnetico. campo magnetico B (si misura in Telsa (T)) carica genera campo elettrico campo elettrico imprime forza su carica

Il campo magnetico. campo magnetico B (si misura in Telsa (T)) carica genera campo elettrico campo elettrico imprime forza su carica Il campo magnetico caica genea campo elettico campo elettico impime foza su caica e allo stesso modo caica in moto genea campo magnetico campo magnetico impime foza su caica in moto campo magnetico (si

Dettagli

Potenza volumica. Legge di Joule in forma locale

Potenza volumica. Legge di Joule in forma locale Potenza volumica. Legge di Joule in foma locale Si considei un tubo di flusso elementae all inteno di un copo conduttoe nel quale ha sede un campo di coente. n da La potenza elettica che fluisce nel bipolo

Dettagli

CAPACITA' Capacità pag 11 A. Scimone

CAPACITA' Capacità pag 11 A. Scimone Capacità pag 11 A. Scimone CAPACITA' Ci occupiamo aesso elle popietà ei conensatoi, ispositivi che accumulano la caica elettica. I conensatoi vengono usati in vai tipi i cicuiti. Un conensatoe è un insieme

Dettagli

Fondamenti di Gravitazione

Fondamenti di Gravitazione Fondamenti di Gavitazione Intoduzione all Astofisica AA 205/206 Pof. Alessando Maconi Dipatimento di Fisica e Astonomia Univesità di Fienze Dispense e pesentazioni disponibili all indiizzo http://www.aceti.asto.it/

Dettagli

Cuscinetti orientabili a sfere

Cuscinetti orientabili a sfere Cuscinetti oientabili a sfee 1. Costuzione e catteistiche La supeficie della pista dell anello esteno dei cuscinetti oientabili a sfee è di foma sfeica; il cento della sfe coincide con l incocio degli

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione

Esercizi Scheda N Fisica II. Esercizi con soluzione Esecizio 9.1 Esecizi con soluzione Te divese onde sonoe hanno fequenza ν ispettivamente 1 Hz, 1 Hz e 5 Mhz. Deteminae le lunghezze d onda coispondenti ed i peiodi di oscillazione, sapendo che la velocità

Dettagli

Docente Francesco Benzi

Docente Francesco Benzi MACCHINE ELETTRICHE Coso di Lauea in Ingegneia Industiale Anno Accademico 2015-2016 CONVERSIONE ELETTROMECCANICA - PRINCIPI Docente Fancesco Benzi Univesità di Pavia e-mail: fbenzi@unipv.it Dispense in

Dettagli

Elettrostatica. G.P. Maggi - Lezioni di Fisica Generale AA 2001/2002

Elettrostatica. G.P. Maggi - Lezioni di Fisica Generale AA 2001/2002 G.P. Maggi - Lezioni di Fisica Geneale AA 2001/2002 Elettostatica La caica elettica Ta tutti i tipi di foza che abbiamo incontato in meccanica, solo la foza peso e quella di gavitazione univesale deivano

Dettagli

Misura della componente orizzontale del campo magnetico terrestre

Misura della componente orizzontale del campo magnetico terrestre Misua della componente oizzontale del campo magnetico teeste Pemessa teoica In tale pemessa vengono sintetizzati i peequisiti che si itengono indispensabili pe l'esecuzione e la compensione dell'espeienza

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica () (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

Sorgenti del campo magnetico.

Sorgenti del campo magnetico. Sogenti del campo magnetico. n Campo magnetico podotto da una coente n ima legge elementae di Laplace n Legame campo elettico e magnetico Campo magnetico podotto da una coente n ima legge elementae di

Dettagli

7. LA DINAMICA Primo principio della dinamica Secondo principio della dinamica.

7. LA DINAMICA Primo principio della dinamica Secondo principio della dinamica. 7. LA DINAMICA Ta la foza applicata ad un copo e il moto che essa povoca esistono dei appoti molto stetti che sono studiati da una banca della fisica: la dinamica. Lo studio della dinamica si è ilevato

Dettagli

Energia cinetica di un corpo rigido in rotazione. ogni elemento del corpo ha la stessa velocità angolare m 2

Energia cinetica di un corpo rigido in rotazione. ogni elemento del corpo ha la stessa velocità angolare m 2 Enegia cinetica di un copo igido in otazione z Copo igido con asse di otazione fisso (Z) 1 1 ogni eleento del copo ha la stessa velocità angolae K un eleento a distanza K dall asse di otazione ha velocità

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica B() (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

Geometria analitica in sintesi

Geometria analitica in sintesi geometia analitica Geometia analitica in sintesi punti istanza ta ue punti punto meio baicento ta ue punti i un tiangolo i vetici aea i un tiangolo i vetici C B A etta e foma implicita foma esplicita foma

Dettagli

La struttura stellare

La struttura stellare La stuttua stellae La stuttua stellae Una stella è una sfea di gas tenuta insieme dall auto gavità ed il cui collasso è impedito dalla pesenza di gadienti di pessione. Con ottima appossimazione una stella

Dettagli

Moto su traiettorie curve: il moto circolare

Moto su traiettorie curve: il moto circolare Moto su taiettoie cuve: il moto cicolae Così come il moto ettilineo è un moto che avviene lungo una linea etta, il moto cicolae è un moto la cui taiettoia è cicolae, cioè un moto che avviene lungo una

Dettagli

IL VOLUME DEI SOLIDI Conoscenze

IL VOLUME DEI SOLIDI Conoscenze IL VOLUME DEI SOLIDI Conoscenze 1. Completa. a. Il peso di un copo dipende dal...e dalla...di cui è costituito b. Ogni sostanza ha il suo peso specifico, che è... di quella sostanza c. Il peso specifico

Dettagli