L'atomo è così chiamato perché inizialmente dai filosofi greci era considerato l'unita più piccola ed indivisibile della materia.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "L'atomo è così chiamato perché inizialmente dai filosofi greci era considerato l'unita più piccola ed indivisibile della materia."

Transcript

1 Il campo elettico La stuttua dell atomo L'atomo è così chiamato peché inizialmente dai filosofi geci ea consideato l'unita più piccola ed indivisibile della mateia. In ealtà sappiamo che non è così. Cecando su un dizionaio possiamo tovae la seguente definizione. Definizione: minima pozione di elemento chimico, che ne contiene tutte le caatteistiche chimiche e fisiche, costituito da un nucleo centale fomato da neutoni e da potoni con caica positiva, attono a cui sono disposti, in numeo uguale ai potoni, elettoni con caica negativa. Come si può notae vi sono elettoni più vicino al nucleo ed elettoni più lontani. Nel caso in cui due atomi inteagiscano sono popio gli elettoni più esteni a subie le sollecitazioni(attattive o epulsive). Tali inteazioni sono in gado di fa passae alcuni elettoni da un atomo all alto povocando in essi un difetto o un eccesso di elettoni. Nelle eazioni natuali che possiamo ossevae sulla tea il nucleo imane intatto e non cede paticelle. Inolte poiché gli elettoni hanno caica negativa con la loo quantità deteminano dell atomo consideato, vedemo in seguito di appofondie questa affemazione. la caica

2 Le pime ossevazioni sui fenomeni elettici sono semplici espeienze che consistono nello sfegae una bacchetta con un tessuto, va bene anche una penna sfegata sulla manica di un maglione, pe mettee in evidenza che dopo tale opeazione la bacchetta è in gado attiae piccoli pezzetti di cata. Cosa è successo duante l opeazione pecedente? Lo sfegamento ta bacchetta e tessuto ha povocato un tasfeimento di elettoni ta i due copi, petanto la bacchetta al temine dell opeazione ha accumulato un eccesso o un difetto di caica negativa (ciò dipende dal tipo di tessuto utilizzato). I copi inizialmente neuti, cioè con lo stesso numeo di caiche positive e negative, hanno modificato il loo stato di equilibio. peimentalmente si può veificae che copi identici che vengono sfegati con lo stesso mateiale si espingono, mente in alcuni casi copi identici che vengono sfegati con tessuti diffeenti si attaggono. Non vengono poi evidenziate alte inteazioni. Quindi possiamo dedue da tale fenomeno l esistenza di due possibilità pe l elettizzazione: due copi aventi la stessa caica si espingono due copi aventi caica opposta si attaggono Pe quanto appena ossevato, poiché le altenative possibili nel fenomeno di elettizzazione sono due, possiamo affemae che: esistono copi caichi positivamente (pesentano un difetto di elettoni ispetto ai potoni); esistono copi caichi negativamente (pesentano un eccesso di elettoni ispetto ai potoni); Legge di Coulomb Oa che abbiamo ossevato tali fenomeni attattivi o epulsivi, vediamo di quantificae l intensità di tale foza che si stabilisce ta due caice. peimentalmente il valoe dell azione che si stabilisce ta due caiche è stabilito dalla legge (speimentale) di Coulomb. F 4πε q q d La foza che si stabilisce ta due caiche alloa è:

3 diettamente popozionale alle caiche ; è invesamente popozionale al quadato della distanza. L unità di misua della caica è il Coulomb, che veà definito in seguito in quanto la sua fomulazione si ottiene come conseguenza della definizione dell Ampeè, unità di misua dell intensità della coente elettica. La foza inolte dipende da una costante, il temine 4πε, dove ε appesenta la costante dielettica del vuoto. Definiemo ε quando avemo intodotto il concetto di campo elettico. C Pe oa diamo il valoe ε 8,85. Nm Nella isoluzione di esecizi può essee più utile utilizzae al seguente fomulazione q q d C Nm 9 F k dove k 9 Nel caso in cui la foza di Coulomb si sviluppi in un mezzo mateiale, la fomula diventa F 4πε ε q q d Dove ε appesenta la costante dielettica elativa del mezzo ispetto al vuoto. Definizione: si definisce ε costante dielettica assoluta di un mezzo il valoe ε ε ε. Mezzo Costante dielettica elativa ε Aia.59 Idogeno.6 Acqua ca. 8 Etanolo 5 Etee etilico.35 Petolio. Veto comune 5 - Plexiglas 3.4 Mica 8 Ebanite Paaffina. Gliceolo 4.6

4 La legge di Coulomb stabilisce una elazione di tipo vettoiale, vediamo di deteminae alloa diezione e veso della foza elettica che si instaua ta due caiche q e q poste ta loo ad una ceta distanza. Diezione Date due caiche la foza elettica ha la diezione della etta che passante pe q e q. q q Veso Il veso della foza che si stabilisce ta due caiche è attattivo se le caiche sono dello stesso segno (cioè le caiche si avvicinano muovendosi lungo la etta della diezione ) o epulsivo se le caiche hanno segno opposto (cioè le caiche si allontanano muovendosi lungo la etta della diezione ). a) veso attattivo q q b) veso epulsivo q q

5 Nel caso vi fosseo più caiche la loo azione andebbe calcolata tenendo conto della diezione consideando poi tutte le componenti oizzontali e veticali delle foze che si stabiliscono ta le caiche. Elettizzazione Pe elettizzae un copo vi sono te possibilità. a) elettizzazione pe stofinio Come già ossevato in pecedenza, s stofiniamo una bacchetta di un ceto mateiale su di un tessuto, la bacchetta acquisisce la capacità di attiae a sé piccoli pezzetti di cata. Quello che è avvenuto duante lo sfegamento è stato un passaggio di elettoni da un copo all alto, lasciano sula bacchetta un difetto o un eccesso di elettoni che deteminano in questo modo la caica (positiva se vi è un difetto, negativa se sono in eccesso). b) elettizzazione pe contatto upponiamo di avee un copo caico positivamente ed un copo neuto in cui gli elettoni di conduzione siano in gado di muovesi libeamente (un conduttoe, come vedemo più avanti, cioè un copo in gado di lasciasi attavesae dalle caiche). e tocchiamo il copo neuto con il copo caico positivamente, cioè che contiene un difetto di elettoni, pate degli elettoni del pimo copo si tasfeianno sul secondo copo. Tale movimento di caica si aesta quando i due copi aggiungeanno un equilibio. Poiché gli elettoni dei due copi sono in numeo infeioe ispetto al numeo globale dei potoni, essi si distibuianno sui due copi che avanno al temine del moto di caica entambi un difetto di elettoni, cioè saanno caichi positivamente (il difetto di elettoni iniziale si idistibuisce ta i due copi). Copo neuto con caiche distibuite equamente Copo caico

6 Copo neuto con caiche distibuite equamente Copo caico Notae come le caiche del copo neuto sentano l azione delle caiche del copo caico: le caiche omologhe vengono espinte nella pate più lontana mente le caiche opposte vengono attatte. Contatto Quando avviene il contatto pate della caica positiva del copo elettizzato annulla caiche negative sul copo in equilibio lasciandolo una pevalenza di caiche positive. Copo caico Copo caico Oa i copi sono entambi caichi positivamente c) elettizzazione pe induzione L elettizzazione pe induzione sfutta il fatto che la Tea sia caica negativamente e quindi ha la capacità di assobie caiche positive. Come nella situazione pecedente si ha un copo in equilibio e un copo caico positivamente. Avvicinando i due copi senza fali venie a contatto si ha un oientamento delle caiche del copo neuto: le caiche positive si dispoanno lontano dal copo

7 caico, mente le caiche negative saanno vicine alla bacchetta. A questo punto pe scaicae le caiche positive a tea basteà collegae con un filo di ame la pate positiva del copo neuto con la tea. In questo modo la caica positiva del copo veà annullata dalle caiche negative pesenti al suolo. Il copo neuto saà quindi caico negativamente. Copo neuto con caiche distibuite equamente Copo caico Copo neuto con caiche distibuite equamente Copo caico Come pima le caiche del copo neuto sentono l azione delle caiche del copo caico Copo neuto con caiche distibuite equamente Copo caico Il filo di ame pemette di scaicae a tea la caica positiva del conduttoe

8 Copo caico Copo caico Oa i copi sono entambi caichi uno positivamente e uno negativamente Ossevazione In tutti gli esempi illustati avvengono delle inteazioni ta caiche. e facciamo un bilancio ta caiche positive pima della eazione e dopo la eazione toviamo che: il numeo di caiche positive pima e dopo l evento è sempe lo stesso; il numeo di caiche negative pima e dopo l evento è sempe lo stesso. Duante l evento non si è ceata nessuna nuova caica e nessuna caica è spaita. Duante l evento vi è stata una idistibuzione delle caiche. Pincipio di consevazione della caica In un sistema isolato, la somma algebica delle caiche elettiche si mantiene costante. Cioè la quantità di caica positiva [negativa] pima di un evento è uguale alla quantità di caica positiva [negativa] dopo l evento. Ossevazione La caica è una gandezza scalae. Il campo elettico Il concetto di campo è un concetto che ichiama un azione a distanza, cioè alcuni copi isentono dell influenza di alcuni copi pu non venendo a contatto con essi. Cosa significa ciò? Possiamo ispondee che: alcuni copi modificano le caatteistiche dello spazio loo cicostante.

9 Tale petubazione inteagisce con alti copi in gado di geneae modifiche dello spazio loo cicostante. Due caiche modificano lo spazio che e ciconda, le due petubazioni entano in contatto e quindi le caiche inteagiscono ta loo. Ricodiamo che più in geneale un campo vettoiale è una schematizzazione dello spazio che associa a ogni punto un vettoe dello spazio stesso. Definizione: si definisce campo elettico un campo vettoiale geneato da una quantità di caica elettica. Quindi una caica elettica che genea un campo elettico modifica lo spazio ad essa cicostante in maniea tale che ad ogni punto è possibile associae un vettoe che appesenta la diezione, il veso e l intensità del campo elettico in quel punto. e in una ceta zona dello spazio vi è un campo elettico in essa si stabiliscono azioni meccaniche di attazione o epulsione ta le vaie caiche elettiche pesenti nella zona stessa. Pe evidenziae l esistenza di un campo elettico è necessaio poe una caica in una ceta zona dello spazio e ossevae se essa subisce una foza. e la caica di pova subisce una foza attattiva è pesente un campo elettico di segno opposto, se l azione è epulsiva il campo elettico ha segno uguale alla caica di pova, se non subisce alcuna azione non è pesente alcun campo elettico (a meno che la caica venga posizionata in un punto in cui su di essa la somma algebica delle inteazioni sia nulla e imanga in quiete). Quindi il campo elettico deve essee messo in evidenza da una caica di pova q. Definizione: si definisce campo elettico geneato dalla caica Q in un punto P sulla caica di pova q il vettoe E definito dalla elazione: E F q [ ] F N E q C dove F è la foza elettica che si stabilisce ta la caica Q che genea il campo e la caica esploatice q. Analiticamente l espessione di F è data dalla legge di Coulomb, possiamo scivee alloa

10 E F q 4πε q Qq d 4πε Q d che possiamo scivee anche Q E k d Riguado il vettoe E possiamo affemae: diezione: è la etta che congiunge le due caiche Q e q. veso: q si avvicina a Q se hanno caiche opposte (veso centifugo) mente q si allontana da Q se hanno caiche uguali (veso centipeto). Diamo oa la definizione di ε. Definizione: si definisce costante dielettica quella gandezza fisica che descive la capacità di un mezzo mateiale (detto anche dielettico) di lasciasi attavesae da un campo elettico e quindi idue l intensità del campo elettico totale. Essa appesenta la pedisposizione di un mateiale a tasmettee un campo elettico. Vediamo oa di appesentae gaficamente il campo elettico tenendo conto della natua delle caiche. Linee di campo Ossevazione impotante (linee di campo) Pe qualsiasi gandezza vettoiale, quindi anche pe un campo vettoiale è possibile appesentae con una cuva l andamento del vettoe o del campo vettoe vale: in ogni punto della linea di campo il campo vettoiale ha diezione della tangente alla linea stessa; il veso si deteminata sulla etta tangente (quella della diezione) poseguendo dal punto di tangenza sulla etta tangente nel senso di pecoenza della linea di campo.

11 Illustiamo con un esempio quanto detto.. ia dato un campo vettoiale descitto dalla cuva appesentata di seguito. La feccia indica il veso in cui viene pecosa la linea di campo.. Consideiamo sulla linea un punto qualsiasi. 3. Tacciamo la tangente alla taiettoia pe il punto consideato. 4. Dal punto consideato polunghiamo il moto del punto lungo la tangente seguendo il veso della linea di campo. Questo vettoe appesenta il campo vettoiale nel punto consideato.

12 Possiamo ipetee il pocedimento sopa descitto pe ogni punto della linea di campo. I vettoi che si tovano appesentano il campo vettoiale nei punti. Definizione: si definisce linea di campo pe un campo vettoiale una cuva pe cui in ogni punto le tangenti hanno la diezione del campo vettoiale e veso del campo nel punto di tangenza. Linee di campo pe caiche positive e negativa Data una caica puntifome positiva adotteemo la convenzione che le linee di campo siano uscenti nella caica assegnata in diezione adiale. Data una caica puntifome negativa adotteemo la convenzione che le linee di campo siano entanti nella caica assegnata in diezione adiale. L inteazione ta caiche avviene tamite la sovapposizione dei ispettivi campi vettoiali, che sono appesentabili da linee di campo. Queste ultime, con la convenzione appena stabilita, pemettono di appesentae l inteazione ta caiche elettiche. caiche positive

13 caiche negative caica positiva e caica negativa Ossevae come nel caso di caiche uguali le linee di campo non si uniscono né si sovappongono pe appesentae la epulsione mente nel caso di caiche opposte le linee di campo si uniscono pe appesentae l attazione. Le linee di campo elettico inolte sono popozionali all intensità della caica che genea il campo elettico. Date due caiche distinte dalla caica maggioe uscià (o enteà) un numeo maggioe di linee di campo, cioè la densità delle linee di campo è popozionale all intensità del campo elettico. Nei pimi due esempi pecedenti al cento, ta le due caiche, il campo elettico è nullo (non vi è alcuna linea di campo). Nell ultimo esempio invece al cento il campo elettico è massimo (la densità delle linee di campo è massima). Ossevazione: si faccia attenzione a non confondee la foza che si stabilisce ta due caiche e il campo elettico geneato da una caica. Definizione: data una supeficie sulla quale si distibuisce unifomemente una quantità di caica Q si definisce densità supeficiale σ di caica il appoto Q Q C m σ [ ] σ

14 Un campo elettico si definisce unifome in una ceta egione del spazio se in ogni punto esso ha sempe gli stessi: diezione veso modulo Definizione: si definisce condensatoe piano la stuttua costituita da due laste piane, uguali e paallele sulle quali è distibuita una caica uguale ma di segno opposto. + Q Q All inteno di un condensatoe piano il campo elettico è unifome, infatti la densità delle linee di campo è costante. Notae come in coispondenza dei bodi vi sia dispesione e le linee di campo pesentino una cuva. Questo è un fatto caatteistico in coispondenza di iegolaità delle supefici. Flusso del campo elettico Come in pecedenza intoduciamo il concetto di flusso in geneale. Definizione: data una supeficie piana si definisce nomale alla supeficie la diezione pependicolae a tutte le ette appatenenti al piano assegnato. Poiché lo stesso agionamento può essee effettuato anche pe al supeficie infeioe del piano si dovà stabilie quale sia il veso pe una nomale alla supeficie nel caso di un aea piana.

15 Pe una solido o una supeficie tidimensionale la nomale alla supeficie ha veso ivolto sempe veso l esteno della cuvatua del copo assegnato. Nel caso di supeficie che pesentino cuvatua la definizione pecedente di pependicolae alla supeficie si ottiene come segue: consideiamo un elemento molto piccolo della supeficie sfeica tale da potelo appossimae con una sezione piana, su di essa si taccino gli assi di un ifeimento catesiano La feccia indica nel disegno la nomale alla supeficie pe l elemento si aea consideato. Il disegno pecedente illusta ancoa il significato di nomale alla supeficie. Definizione: dato un campo vettoiale V e una supeficie la cui nomale sia n, si definisce flusso del campo V attaveso al supeficie lo scalae Φ ( V ) V n V cosα dove α è l angolo fomato dal campo vettoiale V con la nomale alla supeficie n.

16 Esempi ia data la seguente supeficie con la elativa nomale n : n Caso : V n // e concode n Il flusso del campo vettoiale V è massimo attaveso la supeficie quando la diezione di V con n foma un angolo nullo, cioè V è pependicolae alla supeficie. Caso : V n, in posizione geneica Φ ( V ) V n V cos( ) V n Il campo vettoiale V foma con n un angolo α, il flusso è dato alloa dalla fomula: Φ ( V ) V n V cos( ) V Caso 3: V n n Il flusso del campo vettoiale V è nullo attaveso la supeficie quando la diezione di V con n foma un angolo etto, cioè V è paallelo alla supeficie.

17 Φ π ( V ) V n V cos Caso 4: V n // e disconcode n La diezione di V è la stessa di n ma i vesi son opposti, cioè V foma un angolo di 8 con n. Alloa: Φ ( V ) V n V cos( π ) V Il flusso del campo elettico Quanto detto in pecedenza si applica ad un campo elettico che attavesi una supeficie. Vediamo di deteminae la dipendenza del flusso in elazione alle caiche pesenti. ituazione Analizziamo il caso di un supeficie cubica (aea di ogni faccia del cubo ) immesa i un campo elettico unifome E (ad esempio quello di un condensatoe). Consideiamo un campo elettico unifome ta le amatue di un condensatoe. La nomale alla supeficie è dietta veso l esteno della supeficie cubica, quindi: A B

18 Consideiamo una vista dall alto del condensatoe con il cubo all inteno: n n 3 n 3 4 n 4 Consideiamo i singoli contibuti delle supefici del cubo al flusso totale: supefici supeioe e infeioe (A e B del pimo disegno), la basi del cubo hanno nomale che foma un angolo etto con la diezione del campo, cioè le basi sono paallele al campo elettico, quindi il flusso attaveso esse è nullo; supefici lateali e 4 (secondo disegno), anche pe loo le ispettive nomali n e n 4 sono pependicolai con la diezione del campo (le supefici sono paallele al campo elettico) quindi il flusso attaveso esse è nullo; supefici lateali e 3 (secondo disegno), le ispettive nomali n e n 3 sono paallele alla diezione del campo elettico (le supefici sono paallele al campo elettico) quindi il flusso attaveso ognuna di esse da un contibuto al flusso. La nomale n foma con il campo elettico un angolo di 8 (infatti sono paallele e discodi) mente la nomale n 3 foma con il campo elettico un angolo di (infatti sono paallele e concodi). Quindi il flusso totale del campo elettico attaveso la supeficie del cubo vale: ( E ) Φ( A) + Φ( B) + Φ( ) + Φ( ) + Φ( 3) + Φ( 4) Φ( ) + Φ( 3) E cos( 8) + E cos( ) Φ E + E Quindi il flusso è nullo. È possibile ipetee tale agionamento pe una supeficie qualunque.

19 Possiamo appossimae la supeficie in tanti piccoli elementi piani di supeficie e sommae tutti i contibuti al flusso potati dai singoli elementi supeficiali. Il isultato che si ottiene è sempe Φ( E ) Possiamo genealizzae alloa il isultato ottenuto. Il flusso del campo elettico attaveso una supeficie chiusa qualunque che non contiene caiche è nullo Consideiamo oa il caso di una supeficie che contiene caiche al suo inteno. Analizziamo il caso di una sfea contenente una caica al cento. + Il campo elettico sul bodo è costante, in quanto tutti i punti della supeficie hanno distanza R dal cento.

20 e appossimiamo/suddividiamo la sfea in tanti elementi infinitesimi di supeficie piana, la linea di campo che consideiamo attaveseà il coispondente elemento supeficiale in maniea tale da essee paallela e concode alla nomale alla supeficie pe la sezione supeficiale consideata. Quindi pe ogni elemento di supeficie si ha α. Il flusso del campo elettico è quindi la somma di tutti i flussi attaveso gli elementi supeficiali,, 3,..., n in cui è stata suddivisa la sfea. Possiamo scivee alloa Φ ( E) E + E + E + + E E ( ) 3... n 3 n Q πr E 4 4πε R Q ε Il campo elettico pe punti equidistanti dalla caica posta cento è dato dalla Q fomula 4πε R La somma di tutti gli elementi supeficiali della sfea n da come isultato la supeficie stessa della sfea, cioè 4π R Tale isultato si può genealizzae al caso di: supefici sfeiche contenenti una o più caiche in posizione geneica (cioè non al cento); supefici geneiche contenenti una o più caiche. Possiamo oa enunciae il isultato geneale. Teoema di Gauss pe il flusso del campo elettico (nel vuoto). Il flusso di un campo elettico E attaveso una supeficie chiusa è dato dalla elazione Φ ( E) ε Q Dove Q indica la somma algebica delle caiche contenute nella supeficie chiusa.

21 Ossevazione e il campo elettico non si tovasse nel vuoto pe il teoema di Gauss si deve utilizzae la costante dielettica assoluta del mezzo al posto della costante dielettica del vuoto: Φ ( E) Ossevazione Applichiamo il teoema di Gauss pe calcolae il campo elettico ta le laste si un condensatoe. Consideiamo una supeficie ideale avente una faccia immesa nel campo elettico unifome ta le amatue di un condensatoe mente l alta sia estena al condensatoe. ε Q Pe quanto ossevato in pecedenza il flusso è nullo sulle supefici paallele alla diezione del campo elettico. La supeficie A in gigio è pependicolae al campo elettico E (nomale alla supeficie // diezione campo), mente la supeficie estena non è immesa in un campo elettico, quindi il flusso del campo elettico pe essa è nullo. L unica supeficie che da un contibuto è A, alloa pe la supeficie possiamo scivee: Pe il teoema di Gauss il flusso attaveso vale: Φ Φ ( E) A E ( E) ε Q Uguagliando ta loo i secondi membi abbiamo: E A ε Q La supeficie A intecetta una quantità di caica distibuita sulla lasta del condensatoe che è data dal temine Q.

22 Q Ricodando la densità di caica supeficiale σ dove Q si ifeisce alla quantità totale di caica A consideata. Alloa possiamo scivee che Q σ Q σa A ostituendo la elazione appena tovata nella fomula Q E A si ottiene ε σa E A ε σ E ε Campo elettico all inteno di un condensatoe. Moto di caiche in un campo elettico unifome Consideiamo una paticella q caica positivamente che si muova oizzontalmente di moto ettilineo unifome. e ad un ceto punto essa inconta (pependicolamente) nel suo cammino un campo elettico unifome di un condensatoe subià: una epulsione dalla lasta positiva una attazione dalla lasta negativa + Q +q h h distanza veticale ta la paticella all istante in cui enta nel campo elettico e la lasta che la attia Q Poiché saà sottoposta all azione della foza elettica il moto lungo l asse veticale saà unifomemente acceleato. La foza veticale si icava data dall intensità del campo elettico dalla elazione F E, infatti: q

23 F qe (). Dal punto di vista meccanico del moto poiché lungo l asse veticale vi è una foza pe il moto della paticella vale la seconda legge della dinamica. F ma () Poiché la () e la () espimono la stessa foza possiamo uguagliae ta loo i secondi membi: ma qe Da cui si ottiene Poiché il moto è composto da: qe a m Acceleazione di una paticella di massa m che enta pependicolamente in un campo elettico E. ) moto ettilineo unifome lungo l asse delle x; ) moto unifomemente acceleato lungo l asse delle y. Il moto isultante della paticella all inteno del campo elettico è un moto paabolico. Detta v x la componente (costante) oizzontale della velocità, si ha v y at qe m t Pe lo spazio pecoso possiamo scivee: s s x y v t x h qe m t Ossevazioni e la paticelle non iesce ad uscie dal campo elettico pima di giungee alla lasta negativa, essa si deposita sull amatua. Pe uscie dalla stuttua il tempo del moto taslatoio pe pecoee tutta la lunghezza del condensatoe deve essee infeioe al tempo necessaio affinché la paticela giunga sulla lasta che la attia.

24 e la paticella esce dal campo elettico avà una velocità con diezione data dalla tangente alla taiettoia paabolica nell ultimo punto pima di uscie dal condensatoe e intensità pai alla somma delle componenti v x e v y nell ultimo istante in cui è sottoposta all azione del campo elettico. + Q Q Il tempo di caduta della paticella sulla lasta che la attia da un altezza h è dato dalla fomula mh t qe La paticella esce con velocità avente diezione tangente all ultimo punto della taiettoia paabolica e velocità v v x + v y (i valoi delle componenti sono ifeiti sempe all ultimo istante di moto paabolico). (simile alla fomula pe al caduta di un gave, soltanto che qui si usa un acceleazione divesa da quella di gavità). Ossevazione Analogie e diffeenza ta le foze associate al campo elettico e al campo gavitazionale. Foza elettica Foza gavitazionale Fomula F q q m m F G 4πε d d Analogie Analogie La foza è diettamente popozionale al podotto delle caiche. La foza è invesamente popozionale al quadato della distanza ta le caiche La foza è diettamente popozionale al podotto delle masse. La foza è invesamente popozionale al quadato della distanza ta le masse. Analogie La foza dipende da una costante di La foza dipende da una costante di

25 Diffeenze popozionalità La foza può essee attattiva (caiche opposte) o epulsiva (caiche uguali). popozionalità La foza ta masse è sempe attattiva. Ossevazione La costante di popozionalità nei due casi ha valoi divesi, infatti: 4πε è un valoe molto gande, quindi pemette di avee facilmente foze di intensità notevole anche ta caiche non toppo gandi; G è un valoe vicino allo zeo, quindi pe avee foze di intensità notevole sevono masse molto gandi. Esempio Date due caiche di C poste ad un meto di distanza, al foza elettica vale qq F k 9 d Pe avee una foza della stessa intensità ta due masse uguali poste ad un meto di distanza possiamo scivee 9 N F G m m d 9 9 6,67 m m,35 m,35,6 kg Quindi ogni massa dovebbe essee dell odine di gandezza di kg.

Facoltà di Ingegneria Fisica II Compito A

Facoltà di Ingegneria Fisica II Compito A Facoltà di ngegneia Fisica 66 Compito A Esecizio n Un filo di mateiale isolante, con densità di caica lineae costante, viene piegato fino ad assumee la foma mostata in figua (la pate cicolae ha aggio e

Dettagli

Energia potenziale elettrica

Energia potenziale elettrica Enegia potenziale elettica L ultima ossevazione del capitolo pecedente iguadava le analogie e le diffeenze ta il campo elettico e il campo gavitazionale pendendo in esame la foza di Coulomb e la legge

Dettagli

Elettrostatica. P. Maestro Elettrostatica pag. 1

Elettrostatica. P. Maestro Elettrostatica pag. 1 Elettostatica Composizione dell atomo Caica elettica Legge di Coulomb Campo elettico Pincipio di sovapposizione Enegia potenziale del campo elettico Moto di una caica in un campo elettico statico Teoema

Dettagli

IL POTENZIALE. = d quindi: LAB

IL POTENZIALE. = d quindi: LAB 1 IL POTENZIALE Sappiamo che il campo gavitazionale è un campo consevativo cioè nello spostamento di un copo ta due punti del campo gavitazionale teeste, le foze del campo compiono un lavoo che dipende

Dettagli

Conduttori in equilibrio elettrostatico

Conduttori in equilibrio elettrostatico onduttoi in equilibio elettostatico In un conduttoe in equilibio, tutte le caiche di conduzione sono in equilibio Se una caica di conduzione è in equilibio, in quel punto il campo elettico è nullo caica

Dettagli

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande Nome..ognome. classe 5 9 Novembe 8 RIFI di FISI: lettostatica omande ) ai la definizione di flusso di un campo vettoiale attaveso una supeficie. nuncia il teoema di Gauss pe il campo elettico (senza dimostalo)

Dettagli

qq r Elettrostatica Legge di Coulomb permette di calcolare la forza che si esercita tra due particelle cariche.

qq r Elettrostatica Legge di Coulomb permette di calcolare la forza che si esercita tra due particelle cariche. lettostatica La mateia è costituita da atomi. Gli atomi sono fomati da un nucleo, contenete paticelle neute (neutoni) e paticelle caiche positivamente (potoni). Intono al nucleo ci sono paticelle caiche

Dettagli

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da Gavitazione Dati due copi di massa m 1 e m 2, posti ad una distanza, ta di essi si esecita una foza attattiva data in modulo da F = G m 1m 2 dove G è una costante univesale, avente lo stesso valoe pe tutte

Dettagli

Lezione 3. Applicazioni della Legge di Gauss

Lezione 3. Applicazioni della Legge di Gauss Applicazioni della Legge di Gauss Lezione 3 Guscio sfeico di aggio con caica totale distibuita unifomemente sulla supeficie. immetia sfeica, dipende solo da supeficie sfeica di aggio

Dettagli

DISTRIBUZIONE DELLA CARICA NEI CONDUTTORI

DISTRIBUZIONE DELLA CARICA NEI CONDUTTORI 1 DISTRIBUZIONE DELLA CARICA NEI CONDUTTORI I copi conduttoi sono caatteizzati dal fatto di avee moltissimi elettoni libei di muovesi (elettoni di conduzione). Cosa accade se un copo conduttoe viene caicato

Dettagli

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE.

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. ESERCIZIO 1 AI VERTICI DI UN UADRATO DI LATO SONO POSTE 4 CARICHE UGUALI. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. 4 caiche uguali sono poste ai vetiti di un quadato. L asse di un quadato

Dettagli

LICEO PEDAGOGICO-ARTISTICO G. Pascoli di BOLZANO TEST DI FISICA IN SOSTITUZIONE DELL ORALE- FILA A CLASSE V B-27/05/2010

LICEO PEDAGOGICO-ARTISTICO G. Pascoli di BOLZANO TEST DI FISICA IN SOSTITUZIONE DELL ORALE- FILA A CLASSE V B-27/05/2010 LICEO PEDAGOGICO-ARTISTICO G. Pascoli di BOLZANO TEST DI FISICA IN SOSTITUZIONE DELL ORALE- FILA A CLASSE V B-7/05/010 Ogni quesito va oppotunamente motivato, pena la sua esclusione dalla valutazione.

Dettagli

Il magnetismo. Il Teorema di Ampere: la circuitazione del campo magnetico.

Il magnetismo. Il Teorema di Ampere: la circuitazione del campo magnetico. Il magnetismo Il Teoema di Ampee: la cicuitazione del campo magnetico. Richiamiamo la definizione geneale di cicuitazione pe un campo vettoiale Definizione: si definisce cicuitazione di un campo vettoiale

Dettagli

AZIONE A DISTANZA E TEORIA DI CAMPO (1)

AZIONE A DISTANZA E TEORIA DI CAMPO (1) Il campo elettico AZION A DITANZA TOIA DI CAMPO () Come fanno due caiche elettiche ad inteagie fa di loo? All inizio del 9 si sono confontate due ipotesi:.le caiche si scambiano dei messaggei e uindi si

Dettagli

E, ds. - Flusso totale uscente dalla superficie chiusa S: è la somma di tutti i flussi elementari, al tendere a zero delle aree infinitesime: r )

E, ds. - Flusso totale uscente dalla superficie chiusa S: è la somma di tutti i flussi elementari, al tendere a zero delle aree infinitesime: r ) Flusso del campo elettico e legge di Gauss. - Si definisce supeficie gaussiana una ipotetica supeficie S chiusa, che contiene un volume V. - La legge di Gauss mette in elazione i valoi dei campi elettici

Dettagli

L = F s cosα = r F r s

L = F s cosα = r F r s LVORO Se su un copo agisce una foza F, il lavoo compiuto dalla foza pe uno spostamento s è (podotto scalae di due vettoi): L = F s cosα = F s F α s LVORO L unità di misua del lavoo nel S.I. si chiama Joule:

Dettagli

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono:

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono: 4.1 Pincipi della dinamica 4. DINAMICA I te pincipi della dinamica pe un copo puntifome (detto anche punto mateiale o paticella) sono: 1) pincipio di intezia di Galilei; 2) legge dinamica di Newton; 3)

Dettagli

Campo elettrico e potenziale di un disco uniformemente carico

Campo elettrico e potenziale di un disco uniformemente carico Campo elettico e poteniale di un disco unifomemente caico q S densità supeficiale di caica Consideo l anello di aggio e spessoe d calcolo l anello sommo sugli anelli ho due integaioni dq da πd d Σ anello

Dettagli

Effetto Hall. flusso reale dei portatori se positivi. flusso reale dei portatori se negativi

Effetto Hall. flusso reale dei portatori se positivi. flusso reale dei portatori se negativi Appunti di Fisica II Effetto Hall L'effetto Hall è un fenomeno legato al passaggio di una coente I, attaveso ovviamente un conduttoe, in una zona in cui è pesente un campo magnetico dietto otogonalmente

Dettagli

Fenomeni elettrici. I primordi

Fenomeni elettrici. I primordi enomeni elettici. I pimodi già gli antichi Geci ossevaono fenomeni di «elettizzazione», ad es. dell amba «ελεκτρον» Questi studi fuono ipesi in modo sistematico dagli «eletticisti» del XVIII- La mateia

Dettagli

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss Esecizi Legge di Gauss. Un involuco sfeico isolante ha aggi inteno ed esteno a e b, ed e caicato con densita unifome ρ. Disegnae il diagamma di E in funzione di La geometia e mostata nella figua: Usiamo

Dettagli

( ) Energia potenziale U = GMm r. GMm r. GMm L AB. = r. r r. Definizione di energia potenziale

( ) Energia potenziale U = GMm r. GMm r. GMm L AB. = r. r r. Definizione di energia potenziale Enegia potenziale Definizione di enegia potenziale Il lavoo, compiuto da una foza consevativa nello spostae il punto di applicazione da a, non dipende dal cammino seguito, ma esclusivamente dai punti e.

Dettagli

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss 1 Appunti su agomenti monogafici pe il coso di FM1 Pof. Pieluigi Contucci Gavità e Teoema di Gauss Vogliamo dimostae, a patie dalla legge di gavitazione univesale che il campo gavitazionale geneato da

Dettagli

Massa è governata dalla legge di Newton: mm R. Q è governata invece dalla legge di Coulomb: R 1

Massa è governata dalla legge di Newton: mm R. Q è governata invece dalla legge di Coulomb: R 1 LTTROSTTIC Studia le inteazioni ta caiche elettiche feme ispetto all ossevatoe. Deiva dal nome geco dell amba (elekton) che, una volta stofinata, acuista la popietà di attae copi leggei. L inteazione implica

Dettagli

I 0 Principio o legge d inerzia: un corpo non soggetto ad alcuna sollecitazione esterna mantiene il suo stato di quiete o di moto rettilineo uniforme

I 0 Principio o legge d inerzia: un corpo non soggetto ad alcuna sollecitazione esterna mantiene il suo stato di quiete o di moto rettilineo uniforme Le leggi Newtoniane del moto Le foze sono vettoi I 0 Pincipio o legge d inezia: un copo non soggetto ad alcuna sollecitazione estena mantiene il suo stato di quiete o di moto ettilineo unifome Moto acceleato:

Dettagli

ESERCIZI DI CALCOLO STRUTTURALE

ESERCIZI DI CALCOLO STRUTTURALE ESERCIZIO A1 ESERCIZI DI CACOO SRUURAE Pate A: ave incastata Calcolo delle eazioni vincolai con caichi concentati o distibuiti P 1 P 1 = 10000 N = 1.2 m Sia la stuttua in figua soggetta al caico P 1 applicato

Dettagli

Lo schema seguente spiega come passare da una equazione all altra e al grafico della circonferenza. Svolgere i calcoli.

Lo schema seguente spiega come passare da una equazione all altra e al grafico della circonferenza. Svolgere i calcoli. D4. Ciconfeenza D4.1 Definizione di ciconfeenza come luogo di punti Definizione: una ciconfeenza è fomata dai punti equidistanti da un punto detto cento. La distanza (costante) è detta aggio. Ci sono due

Dettagli

Fisica Generale II con Laboratorio. Lezione - 3

Fisica Generale II con Laboratorio. Lezione - 3 Fisica Geneale II con Laboatoio Lezione - 3 Richiami - I Riassunto leggi della meccanica: Leggi di Newton 1) Pincipio di inezia Esistono sistemi di ifeimento ineziali (nei quali un copo non soggetto a

Dettagli

Campo magnetico: concetti introduttivi

Campo magnetico: concetti introduttivi Appunti di Fisica II Campo magnetico: concetti intoduttivi Intoduzione ai fenomeni magnetici...1 Azione dei magneti su caiche elettiche in moto... Foza di Loentz...5 Selettoe di velocità...5 Invaianza

Dettagli

Richiami di Fisica Generale

Richiami di Fisica Generale Richiami di Fisica Geneale Slide 1 Caica elettica (I) La caica elettica (q) è la popietà delle paticelle sensibili alla foza (inteazione) elettomagnetica, così come la massa (o caica) gavitazionale (m)

Dettagli

Legge di Ohm. La corrente elettrica dal punto di vista microscopico: modello di Drude

Legge di Ohm. La corrente elettrica dal punto di vista microscopico: modello di Drude Legge di Ohm. Obiettivi didattici: Veifica della elazione ta coente e d.d.p. pe un conduttoe metallico. Veifica della elazione ta la esistenza di un conduttoe e le sue dimensioni (lunghezza, sezione) Misua

Dettagli

7. LA DINAMICA Primo principio della dinamica Secondo principio della dinamica.

7. LA DINAMICA Primo principio della dinamica Secondo principio della dinamica. 7. LA DINAMICA Ta la foza applicata ad un copo e il moto che essa povoca esistono dei appoti molto stetti che sono studiati da una banca della fisica: la dinamica. Lo studio della dinamica si è ilevato

Dettagli

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc Politecnico di Milano Fondamenti di Fisica Speimentale a.a. 9-1 - Facoltà di Ingegneia Industiale - Ind. Aeo-Eneg-Mecc II pova in itinee - 5/7/1 Giustificae le isposte e scivee in modo chiao e leggibile.

Dettagli

Vista dall alto. Vista laterale. a n. Centro della traiettoria

Vista dall alto. Vista laterale. a n. Centro della traiettoria I poblema Un ciclista pedala su una pista cicolae di aggio 5 m alla velocità costante di 3.4 km/h. La massa complessiva del ciclista e della bicicletta è 85.0 kg. Tascuando la esistenza dell aia calcolae

Dettagli

SELEZIONE DI ESERCIZI DI ELETTROSTATICA.

SELEZIONE DI ESERCIZI DI ELETTROSTATICA. Fisica geneale II, a.a. 13/14 SELEZIONE DI ESEIZI DI ELETTOSTATIA..1. Un pocesso elettolitico divide 1.3 mg di Nal (massa di una mole = 59 g) in Na + e l. Le caiche positive vengono allontanate da quelle

Dettagli

Capacità ele+rica. Condensatori

Capacità ele+rica. Condensatori Capacità ele+ica Condensatoi Condensatoi Il sistema più semplice pe immagazzinae enegia elettostatica è caicae un condensatoe. Genealmente il condensatoe è costituito da due piani metallici sepaati da

Dettagli

Università degli Studi di Milano. Corso di Laurea in Informatica. Anno accademico 2013/14, Laurea Triennale FISICA. Lezione n.

Università degli Studi di Milano. Corso di Laurea in Informatica. Anno accademico 2013/14, Laurea Triennale FISICA. Lezione n. Univesità degli Studi di Milano Coso di Lauea in Infomatica Anno accademico 3/4, Lauea Tiennale FISICA Lezione n. (4 oe) Foze elettiche, campi e potenziale elettostatico Flavia Maia Goppi (A-G) & Calo

Dettagli

SESTA LEZIONE: campo magnetico, forza magnetica, momenti meccanici sui circuiti piani

SESTA LEZIONE: campo magnetico, forza magnetica, momenti meccanici sui circuiti piani A. Chiodoni esecizi di Fisica II SESTA LEZIONE: campo magnetico, foza magnetica, momenti meccanici sui cicuiti piani Esecizio 1 Un potone d enegia cinetica E k 6MeV enta in una egione di spazio in cui

Dettagli

A.A. 2009/ Appello del 15 giugno 2010

A.A. 2009/ Appello del 15 giugno 2010 Fisica I pe Ing. Elettonica e Fisica pe Ing. Infomatica A.A. 29/21 - Appello del 15 giugno 21 Soluzione del poblema n. 1a 1. All uscita della guida, nel punto D, il copo compie un moto paabolico con velocità

Dettagli

Massimi e minimi con le linee di livello

Massimi e minimi con le linee di livello Massimi e minimi con le linee di livello Pe affontae questo agomento è necessaio sape appesentae i fasci di cuve ed in paticolae: Fasci di paabole. Pe affontae questo agomento si consiglia di ivedee l

Dettagli

1 Potenziale elettrostatico e seconda equazione di Maxwell per E

1 Potenziale elettrostatico e seconda equazione di Maxwell per E 1 Potenziale elettostatico e seconda equazione di Maxwell pe E Consideiamo il campo elettico oiginato da una caica puntifome q che ipotizziamo fissa nell oigine degli assi: E( ) = q ˆ 2 = q 3 (1) Pe definizione,

Dettagli

F 1 F 2 F 3 F 4 F 5 F 6. Cosa è necessario per avere una rotazione?

F 1 F 2 F 3 F 4 F 5 F 6. Cosa è necessario per avere una rotazione? Cosa è necessaio pe avee una otazione? Supponiamo di vole uotae il sistema in figua intono al bullone, ovveo intono all asse veticale passante pe, usando foze nel piano oizzontale aventi tutte lo stesso

Dettagli

1. Interazioni elettrostatiche

1. Interazioni elettrostatiche FISICA Elettostatica 9. Inteazioni elettostatiche. Alcuni fatti speimentali Pime definizioni di caica elettica L amba è una sostanza, che, stofinata con un pezzo di stoffa, acquista la popietà di attae

Dettagli

Elettrostatica. Elettrostatica: branca della fisica che studia i fenomeni elettrici

Elettrostatica. Elettrostatica: branca della fisica che studia i fenomeni elettrici Elettostatica Elettostatica: banca della fisica che studia i fenomeni elettici Già nell antica Gecia (V secolo a.c.), si ea notato che l amba stofinata con un panno pesentava delle popietà attattive veso

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti Esecizi Scheda N. 45 Fisica II Esecizio. Esecizi con soluzione svolti Un filo ettilineo, indefinito, pecoso da una coente di intensità i=4 A, è immeso in un mezzo omogeneo, isotopo, indefinito e di pemeabilità

Dettagli

Dinamica. [studio delle cause del moto: forze] La forza è una grandezza vettoriale: una trazione o spinta ha sempre

Dinamica. [studio delle cause del moto: forze] La forza è una grandezza vettoriale: una trazione o spinta ha sempre Dinamica [studio delle cause del moto: foze] Il temine foza nel senso comune indica una tazione o una spinta La foza è una gandezza vettoiale: una tazione o spinta ha sempe una intensità (il modulo) una

Dettagli

La legge di Lenz - Faraday Neumann

La legge di Lenz - Faraday Neumann 1 La legge di Lenz - Faaday Neumann Il flusso del campo magnetico B Pe dae una veste matematica alle conclusioni delle espeienze viste nella lezione pecedente, abbiamo bisogno di definie una nuova gandezza

Dettagli

Sulla carica viene esercitata la forza magnetica. traiettoria circolare.

Sulla carica viene esercitata la forza magnetica. traiettoria circolare. Moto di caiche in Campo Magnetico Consideiamo una paticella di massa m e caica puntifome +q in moto con velocità v pependicolae ad un campo B unifome. B α v + F F v Nel piano α, B veso l alto Sulla caica

Dettagli

Elettrostatica. G.P. Maggi - Lezioni di Fisica Generale AA 2001/2002

Elettrostatica. G.P. Maggi - Lezioni di Fisica Generale AA 2001/2002 G.P. Maggi - Lezioni di Fisica Geneale AA 2001/2002 Elettostatica La caica elettica Ta tutti i tipi di foza che abbiamo incontato in meccanica, solo la foza peso e quella di gavitazione univesale deivano

Dettagli

Il campo magnetico. campo magnetico B (si misura in Telsa (T)) carica genera campo elettrico campo elettrico imprime forza su carica

Il campo magnetico. campo magnetico B (si misura in Telsa (T)) carica genera campo elettrico campo elettrico imprime forza su carica Il campo magnetico caica genea campo elettico campo elettico impime foza su caica e allo stesso modo caica in moto genea campo magnetico campo magnetico impime foza su caica in moto campo magnetico (si

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica () (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

Le equazioni di Maxwell.

Le equazioni di Maxwell. Le equazioni di Maxwell. Campi elettici indotti. Pe la legge di Faady, in una spia conduttice dove c è una vaiazione di Φ concatenato si osseva una coente indotta i. Ricodando che una coente è un flusso

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica B() (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

Cinematica III. 11) Cinematica Rotazionale

Cinematica III. 11) Cinematica Rotazionale Cinematica III 11) Cinematica Rotazionale Abbiamo già tattato il moto cicolae unifome come moto piano (pa. 8) intoducendo la velocità lineae v e l acceleazione lineae a, ma se siamo inteessati solo al

Dettagli

Per migliorare la trasmissione tra satellite e Terra, emerge la necessità di portare il satellite ad un orbita circolare diversa.

Per migliorare la trasmissione tra satellite e Terra, emerge la necessità di portare il satellite ad un orbita circolare diversa. 1 Esecizio (tatto dagli esempi 5.3 e 5.4 del cap. V del Mazzoldi-Nigo-Voci) Un satellite atificiale di massa m 10 3 Kg uota attono alla Tea descivendo un obita cicolae di aggio 1 6.6 10 3 Km. 1. Calcolae

Dettagli

Sommario: Campo elettrico

Sommario: Campo elettrico Sommaio: ampo elettico ampo elettico: se F è la foza sulla caica q, il campo elettico è: F q Linee di foza: il campo si appesenta figuativamente mediante le sue linee di foza: in ogni punto il campo è

Dettagli

Potenziale elettrostatico e lavoro. Potenziale elettrostatico Energia potenziale elettrostatica Esempi Moto di una carica in un potenziale e.s.

Potenziale elettrostatico e lavoro. Potenziale elettrostatico Energia potenziale elettrostatica Esempi Moto di una carica in un potenziale e.s. Potenziale elettostatico e lavoo Potenziale elettostatico Enegia potenziale elettostatica Esempi Moto di una caica in un potenziale e.s. Potenziale elettostatico Campo e.s. geneato da una caica puntifome

Dettagli

Concetto di capacità

Concetto di capacità oncetto di capacità Il teoema di Gauss stabilisce che, posta una caica su un conduttoe isolato, il campo elettico E da essa podotto nello spazio cicostante è diettamente popozionale alla caica stessa:

Dettagli

M.T., M.T.T. Appunti di Fisica per Scienze Biologiche Vers /09/2005

M.T., M.T.T. Appunti di Fisica per Scienze Biologiche Vers /09/2005 MT, MTT Appunti di Fisica pe Scienze iologiche Ves 4 /9/5 L Elettostatica costituenti elementai della mateia possiedono, olte alla massa, la caica elettica La caica elettica si misua in oulomb () ed il

Dettagli

Fondamenti di Gravitazione

Fondamenti di Gravitazione Fondamenti di Gavitazione Intoduzione all Astofisica AA 205/206 Pof. Alessando Maconi Dipatimento di Fisica e Astonomia Univesità di Fienze Dispense e pesentazioni disponibili all indiizzo http://www.aceti.asto.it/

Dettagli

CASO 2 CASO 1. δ Lo. e N. δ Lo. e L. PROBLEMA A Corso di Fisica 1- Prima provetta- 22 maggio 2004 Facoltà di Ingegneria dell Università di Trento

CASO 2 CASO 1. δ Lo. e N. δ Lo. e L. PROBLEMA A Corso di Fisica 1- Prima provetta- 22 maggio 2004 Facoltà di Ingegneria dell Università di Trento PROBEMA A Coso di Fisica 1- Pima povetta- maggio 004 Facoltà di Ingegneia dell Univesità di Tento Un anello di massa m= 70 g, assimilabile ad un copo puntifome, è infilato in una asta igida liscia di lunghezza

Dettagli

Misura della componente orizzontale del campo magnetico terrestre

Misura della componente orizzontale del campo magnetico terrestre Misua della componente oizzontale del campo magnetico teeste Pemessa teoica In tale pemessa vengono sintetizzati i peequisiti che si itengono indispensabili pe l'esecuzione e la compensione dell'espeienza

Dettagli

IL VOLUME DEI SOLIDI Conoscenze

IL VOLUME DEI SOLIDI Conoscenze IL VOLUME DEI SOLIDI Conoscenze 1. Completa. a. Il peso di un copo dipende dal volume e dalla sostanza di cui è costituito b. Ogni sostanza ha il suo peso specifico, che è il peso dell unità di volume

Dettagli

ELETTROTECNICA Ingegneria Industriale

ELETTROTECNICA Ingegneria Industriale ELETTROTECNICA Ingegneia Industiale CAMPI ELETTROMAGNETICI Stefano Pastoe Dipatimento di Ingegneia e Achitettua Coso di Elettotecnica (43IN) a.a. 15-16 Foza di Coulomb Nel 1785, Chales Coulomb fece degli

Dettagli

L atomo. legge di Coulomb che da l attrazione elettrostatica tra protone ed elettrone.

L atomo. legge di Coulomb che da l attrazione elettrostatica tra protone ed elettrone. L atomo Secondo Rutefod l atomo è composto di un nucleo positivo, in cui è concentata tutta la massa, attono al quale uotano a notevole distanza gli elettoni. Gli elettoni eano in gado di vincee l attazione

Dettagli

GEOMETRIA ELEMENTARE. h = 2 2 S. h =

GEOMETRIA ELEMENTARE. h = 2 2 S. h = QUESITI 1 GEOMETRI ELEMENTRE 1. (Da Veteinaia 015) Le diagonali (ossia le linee che uniscono i vetici opposti) di un ombo misuano ispettivamente 4 cm e 8 cm. Qual è il peimeto del ombo in cm? a) 8 3 b)

Dettagli

CENTRO DI MASSA. Il centro di massa C divide il segmento AB in parti inversamente proporzionali alle masse: AC. x C = m A x A + m B x B.

CENTRO DI MASSA. Il centro di massa C divide il segmento AB in parti inversamente proporzionali alle masse: AC. x C = m A x A + m B x B. Due paticelle: CENTRO DI MASSA 0 A m A A C m B B B C Il cento di massa C divide il segmento AB in pati invesamente popozionali alle masse: AC CB = m B m A C A B C = m B m A m A C m A A = m B B m B C (

Dettagli

SECONDA LEZIONE (4 ore): CONDUTTORI e DIELETTRICI

SECONDA LEZIONE (4 ore): CONDUTTORI e DIELETTRICI SECONDA LEZIONE (4 oe): CONDUTTORI e DIELETTRICI Conduttoi in campo elettico Polaizzazione della mateia Vettoe polaizzazione Vettoe spostamento elettico Suscettività elettica Capacità Condensatoi Enegia

Dettagli

Unità Didattica N 10 : I momenti delle forze

Unità Didattica N 10 : I momenti delle forze Unità didattica N 10 I momenti delle foze 1 Unità Didattica N 10 : I momenti delle foze 01) omento di una foza ispetto ad un punto 02) omento isultante di un sistema di foze 03) omento di una coppia di

Dettagli

Elettrostatica m. Il nucleo è a sua volta composto da altri

Elettrostatica m. Il nucleo è a sua volta composto da altri Elettostatica La caica elettica Ta tutti i tipi di foza che abbiamo incontato in meccanica, solo la foza peso e uella di gavitazione univesale deivano dalla popietà delle masse di attiae alte masse. Tutte

Dettagli

Sistemi di riferimento inerziali:

Sistemi di riferimento inerziali: La pima legge di Newton sul moto è anche chiamata pincipio di inezia. In fisica inezia significa esistenza ai cambiamenti di velocità. Es.: - la foza d attito ta la moneta e la tessea è molto piccola e

Dettagli

SETTIMA-OTTAVA LEZIONE: sorgenti del campo magnetico, legge di Ampere, legge di Biot-Sawart

SETTIMA-OTTAVA LEZIONE: sorgenti del campo magnetico, legge di Ampere, legge di Biot-Sawart . Chiodoni esecizi di Fisica II SETTIM-OTTV LEZIONE: sogenti del campo magnetico, legge di mpee, legge di Biot-Sawat Esecizio 1 Due spie cicolai di aggio 3cm, aventi lo stesso asse, sono poste in piani

Dettagli

AUTOVALORI ED AUTOVETTORI DI UNA MATRICE

AUTOVALORI ED AUTOVETTORI DI UNA MATRICE AUTOVALORI ED AUTOVETTORI DI UNA MATRICE TEOREMA: Un elemento di K è un autovaloe pe una matice A, di odine n, se e solo se, indicata con I la matice identità di odine n, isulta: det( A I) Il deteminante

Dettagli

Fisica Generale A. 9. Forze Inerziali. Cambiamento di Sistema di Riferimento. SdR in Moto Traslatorio Rettilineo Uniforme (II)

Fisica Generale A. 9. Forze Inerziali. Cambiamento di Sistema di Riferimento. SdR in Moto Traslatorio Rettilineo Uniforme (II) isica Geneale A 9. oze Ineziali http://campus.cib.unibo.it/2429/ ctobe 21, 2010 ambiamento di istema di ifeimento ome cambia la descizione del moto passando da un d a un alto? In paticolae, come cambia

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione

Esercizi Scheda N Fisica II. Esercizi con soluzione Esecizio 9.1 Esecizi con soluzione Te divese onde sonoe hanno fequenza ν ispettivamente 1 Hz, 1 Hz e 5 Mhz. Deteminae le lunghezze d onda coispondenti ed i peiodi di oscillazione, sapendo che la velocità

Dettagli

Sorgenti del campo magnetico. Forze tra correnti

Sorgenti del campo magnetico. Forze tra correnti Campo magnetico pag 31 A. Scimone Sogenti el campo magnetico. Foze ta coenti Un campo magnetico può essee pootto a una coente elettica. Espeienze i questo tipo fuono effettuate nella pima ventina i anni

Dettagli

Elettrostatica. Elettrostatica: branca della fisica che studia i fenomeni elettrici

Elettrostatica. Elettrostatica: branca della fisica che studia i fenomeni elettrici lettostatica lettostatica: banca della fisica che studia i fenomeni elettici Già nell antica Gecia (V secolo a.c.), si ea notato che l amba stofinata con un panno pesentava delle popietà attattive veso

Dettagli

IL VOLUME DEI SOLIDI Conoscenze

IL VOLUME DEI SOLIDI Conoscenze IL VOLUME DEI SOLIDI Conoscenze 1. Completa. a. Il peso di un copo dipende dal...e dalla...di cui è costituito b. Ogni sostanza ha il suo peso specifico, che è... di quella sostanza c. Il peso specifico

Dettagli

Moto su traiettorie curve: il moto circolare

Moto su traiettorie curve: il moto circolare Moto su taiettoie cuve: il moto cicolae Così come il moto ettilineo è un moto che avviene lungo una linea etta, il moto cicolae è un moto la cui taiettoia è cicolae, cioè un moto che avviene lungo una

Dettagli

Proprietà della materia: isolanti e conduttori

Proprietà della materia: isolanti e conduttori Popietà della mateia: isolanti e conduttoi I copi solidi dal punto di vista elettico molto schematicamente si dividono in isolanti e conduttoi. La diffeenza di compotamento elettico deiva dalla divesa

Dettagli

Risultati esame scritto Fisica 2 17/02/2014 orali: alle ore presso aula G8

Risultati esame scritto Fisica 2 17/02/2014 orali: alle ore presso aula G8 isultati esame scitto Fisica 7//4 oali: 4 alle oe. pesso aula G8 gli studenti inteessati a visionae lo scitto sono pegati di pesentasi il giono dell'oale; Nuovo odinamento voto AMATO MATTIA CASLLA ALSSANDO

Dettagli

Elettrostatica. di Daniele Gasparri

Elettrostatica. di Daniele Gasparri lettostatica di Daniele Gaspai Indice: - Legge di Coulomb - Sistema di caiche puntifomi 5 - Distibuzioni continue di caiche 7 - Il campo elettico - Flusso del campo elettico e legge di Gauss - Potenziale

Dettagli

FONDAMENTI DI FISICA GENERALE

FONDAMENTI DI FISICA GENERALE FONDAMENTI DI FISICA GENERALE Ingegneia Meccanica Roma Te AA/- APPUNTI PER IL CORSO (Ripesi integalmente e da me assemblati dai testi di bibliogafia) Robeto Renzetti Bibliogafia: Paul J. Tiple, Gene Mosca

Dettagli

Campi scalari e vettoriali (1)

Campi scalari e vettoriali (1) ampi scalai e vettoiali (1) 3 e ad ogni punto P = (x, y, z) di una egione di spazio Ω R è associato uno ed uno solo scalae φ diemo che un campo scalae è stato definito in Ω. In alti temini: φ 3 : P R φ(p)

Dettagli

LEZIONE 10. d(a, B) = AB = AB = (x A x B ) 2 + (y A y B ) 2 + (z A z B ) 2.

LEZIONE 10. d(a, B) = AB = AB = (x A x B ) 2 + (y A y B ) 2 + (z A z B ) 2. LEZIONE 10 10.1. Distanze. Definizione 10.1.1. In S n sia fissata un unità di misua u. Se A, B S n, definiamo distanza fa A e B, e sciviamo d(a, B), la lunghezza del segmento AB ispetto ad u. Abbiamo già

Dettagli

Nazaio Magnaelli ELETTROMAGNETISMO WWW.MATEMATICAMENTE.IT Foto: Electomagnetic di jjjohn N. Magnaelli Elettomagnetismo MATEMATICAMENTE.IT Ringazio l amico Pof. Calo Sintini pe i suoi utili consigli, pe

Dettagli

9 GRAVITAZIONE UNIVERSALE

9 GRAVITAZIONE UNIVERSALE 9 GRAVIAZIONE UNIVERSAE e conoscenze elative alla foza di gavitazione si sono sviluppate a patie dalle ossevazioni astonomiche del moto dei pianeti del sistema solae Attaveso tali ossevazioni yco Bahe

Dettagli

FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 5

FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 5 8360 - FISICA MATEMATICA 1 A.A. 014/15 Poblemi dal libo di testo: D. Giancoli, Fisica, a ed., CEA Capitolo 5 Poblema 1 Un bimbo su una giosta si muove con una velocità di 1.5 m/s quando è a 1.10 m dal

Dettagli

Elettrostatica. Fenomenologia elementare

Elettrostatica. Fenomenologia elementare lettostatica enomenologia elementae L elettostatica si occupa delle caiche in quiete. La fenomenologia elementae dell elettostatica iguada la capacità di ceti mateiali di attiae, in deteminate condizioni,

Dettagli

Esistono due tipi di forze di attrito radente: le forze di attrito statico, per cui vale la relazione:

Esistono due tipi di forze di attrito radente: le forze di attrito statico, per cui vale la relazione: oze di attito f N P Le foze di attito adente si geneano sulla supeficie di contatto di due copi e hanno la caatteistica di opposi sepe al oto elativo dei due copi. Le foze di attito adente non dipendono,

Dettagli

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. V Q 4pe 0 r. Fisica II CdL Chimica

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. V Q 4pe 0 r. Fisica II CdL Chimica Potenziale Elettico Q V 4pe 0 R Q 4pe 0 C R R R q independenza dal cammino Supefici Equipotenziali Due modi pe analizzae i poblemi Con le foze o i campi (vettoi) pe deteminae posizione e velocità di un

Dettagli

Potenza volumica. Legge di Joule in forma locale

Potenza volumica. Legge di Joule in forma locale Potenza volumica. Legge di Joule in foma locale Si considei un tubo di flusso elementae all inteno di un copo conduttoe nel quale ha sede un campo di coente. n da La potenza elettica che fluisce nel bipolo

Dettagli

Forza gravitazionale

Forza gravitazionale Foza gavitazionale Tea Mecuio Venee Mate Pianeti inteni Uano Nettuno Plutone atuno Giove istea solae Il oto dei pianeti descitto dalle 3 leggi di Kepleo Di qui Newton icavò la legge di gavitazione univesale:

Dettagli

CAPACITA' Capacità pag 11 A. Scimone

CAPACITA' Capacità pag 11 A. Scimone Capacità pag 11 A. Scimone CAPACITA' Ci occupiamo aesso elle popietà ei conensatoi, ispositivi che accumulano la caica elettica. I conensatoi vengono usati in vai tipi i cicuiti. Un conensatoe è un insieme

Dettagli

I.14. Le forze conservative e l'energia potenziale

I.14. Le forze conservative e l'energia potenziale I.14. Le foze consevative e l'enegia potenziale Ripendiamo la definizione di lavoo Il lavoo di alcune foze speciali Le foze consevative e la enegia potenziale L enegia potenziale pe le foze costanti, elastica

Dettagli

Il Potenziale elettrostatico 3.1 Distribuzione della carica in eccesso sui conduttori metallici

Il Potenziale elettrostatico 3.1 Distribuzione della carica in eccesso sui conduttori metallici Il Potenziale elettostatico 3.1 Distibuzione della caica in eccesso sui conduttoi metallici Consideiamo un conduttoe metallico neuto, posto in una egione di spazio dove sia assente qualunque campo elettico

Dettagli

ESERCIZIO n.1. rispetto alle rette r e t indicate in Figura. h t. d b GA#1 1

ESERCIZIO n.1. rispetto alle rette r e t indicate in Figura. h t. d b GA#1 1 Esecizi svolti di geometia delle aee Aliandi U., Fusci P., Pisano A., Sofi A. ESERCZO n.1 Data la sezione ettangolae ipotata in Figua, deteminae: a) gli assi pincipali centali di inezia; ) l ellisse pincipale

Dettagli

Campo magnetico B. Polo Nord. Terra. Polo Sud. Lezione V 1/15

Campo magnetico B. Polo Nord. Terra. Polo Sud. Lezione V 1/15 Leione V Campo magnetico B 1/15 Polo Nod N S S N Tea Sole Polo Sud Alcuni mineali (es. magnetite, da Magnesia Tessaglia) attiano il feo. Aghi calamitati si oientano nel campo magnetico teeste. Leione V

Dettagli

E1.2 Velocità della luce in un cavo coassiale

E1.2 Velocità della luce in un cavo coassiale E1.2 Velocità della luce in un cavo coassiale Obiettivo Misuae la velocità di popagazione di un segnale elettomagnetico (velocità della luce) in un cavo coassiale. Mateiali e stumenti Un cavo coassiale

Dettagli