SELEZIONE DI ESERCIZI DI ELETTROSTATICA.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "SELEZIONE DI ESERCIZI DI ELETTROSTATICA."

Transcript

1 Fisica geneale II, a.a. 13/14 SELEZIONE DI ESEIZI DI ELETTOSTATIA..1. Un pocesso elettolitico divide 1.3 mg di Nal (massa di una mole = 59 g) in Na + e l. Le caiche positive vengono allontanate da quelle negative sino a che la foza di attazione ta caiche di segno opposto si iduce a 1 N. La distanza d ta caiche positive e negative è di cica (A) 1 km () 1 km () 4 km (D) km (E) 1 km SOLUZIONE. Ogni ione pota una caica pai, in modulo, alla caica elementae. Il pocesso elettolitico foma dove N A è il numeo di Avogado ( ). La caica di una mole di elettoni (e ) è il Faada (con F maiuscolo e simbolo F!) pai a La caica degli ioni positivi/negativi in 1.3 mg di Nal vale in valoe assoluto Deve quindi essee A.. Te caiche elettiche q A, q = q sono poste ai vetici di un tiangolo isoscele di vetice A, altezza AH = 1 cm e base = 6 cm. Se q = 5 n e il campo elettico nel baicento M si annulla la caica q A vale: (A) () 1. n ().89 n (D) 8.64 n (E).5 n M SOLUZIONE. oichè q = q, E = E ; il vettoe E +E è veticale e ha A modulo pai a E +E = E cos(). Il campo elettico E A ceato da q A deve soddisfae la elazione: E E A H E e le popietà del baicento: H Utilizzando questi valoi nell espessione di E A otteniamo:.3. Le coodinate (in meti) dei punti A della figua sono ipotate in tabella. Nel punto è posta una caica q = 9 n e la caica in è scelta in A modo che il campo elettico nel punto O (,) sia nullo. La caica 3 q A vale 3 4 (A) 3 n () 4 n () 6.75 n (D) 7. n (E) n O A 1

2 Fisica geneale II, a.a. 13/14 E O A SOLUZIONE. oichè il campo elettico podotto in O da una caica posta in è dietto lungo la etta tatteggiata, i campi E ed E A podotti in O dalle caiche q e q A devono dae come isultante un vettoe giacente sulla etta:.4. Una caica Q è distibuita all inteno di una sfea di aggio con densità vaiabile =, dove è la distanza dal cento della sfea e costante. a) alcolae l espessione della caica Q () in funzione di ; b) calcolae. SOLUZIONE. Un guscio sfeico di aggio < e spessoe d ha un volume pai a e contiene quindi una caica dq pai a L espessione della caica in funzione del aggio si ottiene integando l espessione pecedente: Imponendo che la caica totale distibuita nella sfea valga Q si ottiene l espessione della costante : e l espessione pecedente può essee scitta come.5. Un asta sottile che pota complessivamente una caica Q =.5 n viene cuvata a foma di semicechio di aggio =.77 m mantenendo unifome la densità della caica stessa. Il campo elettico nel cento del semicechio vale (A) 5.73 V/m ().87 V/m () V/m (D).716 V/m (E).358 V/m O SOLUZIONE. La densità lineae di caica sulla semiciconfeenza è E de Ogni tatto dl = dϑ pota una caica e cea in O un campo elettico pai a O dl d di cui, pe la simmetia del poblema, la componente oizzontale si annulla mente solo la componente veticale de sin(ϑ) contibuisce al campo totale E. etanto, integando sulla semiciconfeenza:

3 Fisica geneale II, a.a. 13/14 [ ].6. Due fili conduttoi cicolai (1 e ) caichi hanno i centi sull asse delle e appatengono a piani paalleli a z. aggi () dei fili, ascisse ( ) dei centi e z caiche (q) note sono ipotate in tabella. Il campo elettico si annulla nel punto dell asse delle che ha ascissa = 1/3 cm. La caica q vale (cm) (cm) q () (A) 3. () () 6.3 (D) 9.6 1? (E) 1.6 SOLUZIONE. a) b) dq dq alcoliamo il campo lungo l asse della spia conduttice 1 di cento O. La situazione è appesentata nella figua a). Ogni tatto infinitesimo della spia pota una caica dq e contibuisce al campo elettico a distanza ( + ) 1/ con Il contibuto della spia 1 al campo totale in vale quindi La funzione E (q 1, ) è appesentata nella figua b); si noti che essa pesenta un massimo pe = e vale zeo nel cento ( = ) della spia. e la spia conduttice si ha analogamente (in centimeti, =1) [ ] [ ] oiché il punto in cui il campo si annulla appatiene al tatto di asse compeso ta i centi delle due spie, q 1 e q devono avee lo stesso segno. Uguagliando il modulo dei campi podotti in dalle due spie dovo ave semplificato la costante k e otteniamo [ ] [ ] 3

4 Fisica geneale II, a.a. 13/14 Il poblema si può isolvee anche cecando il minimo della funzione potenziale e notando che, pe il cechio 1, la distanza ta il punto () e un qualunque punto del cechio 1 vale (vedi fig. a) mente pe il cechio si ha. Il potenziale è peciò e la sua deivata in è popozionale a dove si è tenuto conto che il segno della deivata ispetto a di è indeteminato. Imponendo l annullamento della deivata del potenziale pe si aiva all equazione pecedente..7. Una sfea conduttice di aggio s = 1 cm con una caica Q s = n ha il cento nell oigine O degli assi catesiani. L asse di un lungo cilindo conduttoe di aggio c = cm e caica pe unità di lunghezza pai a Q c /L = 3 n/m è paallelo all asse e inteseca l asse nel punto (5,) che è distante 5 m da O. La componente E del campo elettico nel punto (3. m,.4 m) vale (A) 91.5 V/m () V/m ().5 V/m (D).5 V/m (E). V/m O SOLUZIONE. La sfea genea nel punto esteno un campo E S dietto adialmente, la cui componente paallela all asse è: E E S Il campo geneato dal cilindo conduttoe nel punto è pependicolae al filo (E = ), ha veso opposto all asse e la sua intensità è: Sommando i due contibuti di sfea e cilindo si ha: O.8. Una sfeetta di massa m = 1 g e caica q (positiva) è appesa mediante un leggeo filo di seta lungo L =.5 m a una sottile lamina conduttice veticale di gande estensione che pota una caica di densità supeficiale =.1 m/m (vedi figua). Se, nella condizione di equilibio, l angolo fomato ta il filo e la lamina è = 3 o la caica q della sfeetta vale (A) 5.1 n () 43.4 n () 5.1 n (D) 81.6 n (E) 1 n < T mg qe 4

5 a b c Fisica geneale II, a.a. 13/14 SOLUZIONE. La lamina conduttice è caatteizzata da densità supeficiale di caica pai a sulle sue supefici estene, mente il campo S S 3 1 elettico è nullo all inteno: E inteno =. e lasta sufficientemente estesa, il campo elettico geneato dalla lasta è pependicolae alle sue facce. ossiamo deteminae il valoe di E esteno applicando la legge di Gauss a uno dei due cilindi disegnati nella figua a desta con S 1 =S =S 3 = S 4 S Nel caso del cilindo piccolo si ha: S 4 Qint S ( E ) S1E E (la supeficie S intena alla lamina non contibuisce al flusso peché E inteno = ). Anche nel caso del cilindo gande, essendovi una supeficie caica sopa e una sotto, si ha: Qint S3 ( E ) ( S3 S4) E S3E E La condizione di equilibio della sfeetta caica si può espimee dicendo che i) il momento della foza elettica qe e della foza peso mg ispetto al punto di sospensione devono essee uguali e opposti ii) la isultante qe+mg deve essee dietta come il filo pe essee compensata dalla tensione T dello stesso. e la condizione ii) deve quindi essee 1 mg tan tan(3) 9 mg tan qe q q Una caica positiva q è posta a d =1 mm di distanza sopa il cento della calotta semisfeica di aggio = 1 m della figua. Il flusso del campo elettico attaveso la supeficie piana che chiude la calotta supeiomente vale cica, in valoe assoluto (A) () () q/ (D) q/ (E) SOLUZIONE. La caica q è contenuta nell emisfeo supeioe (tatteggiato in figua) della sfea completa in cui si tova una caica q, spostata di un tatto d > dal cento. Il flusso di E attaveso la supeficie costituita dalla calotta sfeica supeioe chiusa dalla supeficie cicolae piana di inteesse è, pe la legge di Gauss: oiché d <<, il campo geneato da q è sostanzialmente pependicolae alla supeficie sfeica della calotta supeioe e il flusso attaveso questa vale quasi esattamente la metà del flusso attaveso l intea sfea che acchiude q: E 5

6 Fisica geneale II, a.a. 13/14.1. Una sfea isolante di aggio a ha una caica totale Q, distibuita con densità volumetica unifome. La sfea è cicondata da un guscio sfeico concentico conduttoe con aggio inteno b e aggio esteno c. Disegnae qualitativamente l andamento, in funzione della distanza dal cento, del modulo del campo elettico nelle vaie egioni (inteno della sfea isolante, ta sfea e guscio, inteno del guscio, esteno del guscio) e calcolae (a) La caica indotta pe unità di aea sulla supeficie intena del conduttoe cavo (b) La caica indotta pe unità di aea sulla supeficie estena del conduttoe cavo SOLUZIONE. La densità di caica della sfea è e < a, applicando la legge di Gauss: oiché, pe definizione di flusso: e dalle elazioni pecedenti pe il campo inteno alla sfea intena unifomemente caica si ha e a < b, come già visto, la sfea caica si compota come una caica puntifome Q posta nel suo cento e pe il campo in questa egione si ha All inteno del guscio sfeico conduttoe, quindi pe b c, il campo elettico è nullo. Infine, il campo podotto all'esteno del guscio conduttoe ( > c) è lo stesso che si avebbe se la caica Q totale della sfea intena fosse depositata diettamente sul guscio. La densità di caica indotta sulla supeficie elettica del guscio è e pe > c si ha Gaficamente: e il fenomeno dell induzione elettica, la caica indotta pe unità di aea sulla supeficie intena del conduttoe cavo vale Q/4b, mente la caica indotta pe unità di aea sulla supeficie estena del conduttoe cavo vale +Q/4c. 6

7 Fisica geneale II, a.a. 13/ alcolae la divegenza del vettoe v(,t) = (at)i+ (z+bt)j 3z k, funzione delle coodinate del punto e del tempo t, con a e b costanti. SOLUZIONE. icodando la definizione di divegenza:.1. alcolae la diffeenza di potenziale ta due punti a distanza ed dall asse di un filo caico infinitamente lungo. L asse del filo coincide con l asse, e sul filo vi è una densità lineae di caica 1 (in /m). E SOLUZIONE. e un filo caico, le supefici equipotenziali sono E cilindi che hanno pe asse il filo. La diffeenza di potenziale ta una supeficie cilindica a distanza e una a distanza è V ( ) V ( ) E( )d In qualunque punto il campo elettico è dietto nomalmente all asse del filo e il suo modulo pe il teoema di Gauss è: 1h 1 E( ) πh E( ) π Sostituendo tale espessione nell integale pecedente si ottiene: 1 d 1 V ( ) V ( ) E( )d ln π π h.13. Un guscio sfeico metallico di aggio esteno pai a 18 cm e aggio inteno pai a 1 cm contiene una sfea metallica di aggio cm; guscio e sfea sono concentici. La sfea intena ha una caica q S = n mente sul guscio esteno viene posta una caica q G = 4 n. Il potenziale elettico nel punto () a una distanza = cm dal cento del sistema, cioè sulla supeficie della sfea intena, vale (A) 65 V () V () 7 V (D) 1 V (E) 9 V SOLUZIONE. Il potenziale elettico in un punto () è uguale al lavoo del campo E pe potae una caica unitaia da () all infinito. Suddividiamo il pecoso in 3 tatti: da ad A, da A a e da all infinito. Il campo elettico nella zona compesa ta sfea e supeficie intena del guscio, cioè da ad A, è pai a quello di una caica puntifome q S posta nel cento del sistema; all inteno del guscio conduttoe (tatto da A a ), E = ; all esteno del guscio (feccia tatteggiata da all infinito), il campo E è pai al campo elettico di una caica puntifome q S +q G = n posta nel cento del sistema. Si ha peciò: A 7

8 Fisica geneale II, a.a. 13/14.1 A q S qs qg () d d qs qs qg V ke ke V Un campo elettico unifome E ha le componenti catesiane date in tabella assieme alle coodinate di due punti A e. La diffeenza di potenziale V A V vale: (A)79 V () 37 V () 33 V (D) 79 V(E) V SOLUZIONE. La diffeenza di potenziale ta A e è uguale al lavoo compiuto dal campo elettico pe spostae una caica unitaia positiva da A a : z E (V/m) A (m) 1 (m) Una molecola tiatomica (ad esempio l idossido di sodio NaOH) è schematizzata come l insieme delle te caiche della figua, consideate puntifomi. Sia Q 1 = Q 3 = +e, Q = e, 1 =.15 nm, 3 =.1 nm; l enegia potenziale totale del sistema è pai a cica (e = 1.6(1 19 ) ; 1eV = 1.6(1 19 ) J) (A) 14 ev () 31 ev () 4 ev (D) 48 ev (E) 98 ev Q Q Q 3 3 A SOLUZIONE. L enegia potenziale del sistema è uguale al lavoo da compiee conto il campo elettico pe costuie la molecola, cioè pe potae in posizione i te ioni da distanza infinita. In assenza di Q e di Q 3, la caica Q 1 viene potata in posizione al punto A senza compiee lavoo. e posizionae Q si compie un lavoo pai a dove V 1 () è il potenziale elettico geneato dalla caica Q 1 nel punto. e posizionae Q 3 si compie infine un lavoo pai a etanto [ ] Il valoe dell enegia potenziale calcolato coisponde all enegia di legame della molecola, cioè al lavoo che si compie pe scindee la molecola potando i suoi ioni costituenti a distanza idealmente infinita..16. Il potenziale elettico in una egione dello spazio in possimità dell oigine catesiana vaia in funzione della posizione secondo la legge: V a b c dove le costanti hanno i seguenti valoi: a = 3 V, b = V/m, c = 15 V/m. Il bastoncello A della figua è lungo L = m e pota ai suoi estemi due caiche di segno opposto e di uguale valoe A 8

9 Fisica geneale II, a.a. 13/14 assoluto q = 1 m. Il punto medio di A è vincolato nel punto di ascissa = 5 m dell asse. Il momento ispetto a delle foze elettiche agenti sulle caiche del bastoncello in Nm vale in modulo (A) 3.8 () 3. () 34. (D) 35.7 (E) 46. SOLUZIONE. alcoliamo il campo elettico lungo patendo dal potenziale: La foza elettica sia sulla caica in A sia su quella in è dietta lungo l asse e vale in modulo E + Le foze elettiche fomano una coppia il cui momento vale in modulo F La figua a sinista appesenta la situazione nel caso in cui la caica E F A positiva è in, mente quella a desta E appesenta la situazione nel caso in cui la A caica positiva è in A. Nel pimo caso, il momento delle foze elettiche tende a fa uotae il dipolo in senso antioaio, quindi M = 34. k. Nel secondo caso, il momento delle foze elettiche tende a fa uotae il dipolo in senso oaio, quindi M = 34. k. F A F E A alcolae il gadiente del campo scalae f()= + z e il suo modulo nel punto di coodinate = (1, 3, ). SOLUZIONE. alcoliamo il gadiente del campo: Nel punto si ha.18. Lungo l asse del piano il potenziale elettico è descitto dalla funzione V V 1 a con V = 5 V e a = m. La componente E del campo elettico nel punto = 4 m vale in V/m (A).45 ().89 ().68 (D).36 (E) V/m SOLUZIONE. alcoliamo la componente E del campo elettico patendo dal potenziale: e = 4 m si ha ( ) ( ) 9

10 Fisica geneale II, a.a. 13/ I potenziali elettici nei punti del piano attono all oigine hanno i valoi ipotati in tabella. La componente E del campo elettico nell oigine vale (A) 5V/m () 1V/m () 5 V/m (D) 1 V/m(E) V/m SOLUZIONE. alcoliamo la componente E del campo elettico nell oigine degli assi patendo dal potenziale: V(,) m m 75 V 1 m m 85 V 1 m m 65 V 1 m 7 V 1 m 8 V V D =8V V A =85V V =65V V O =75V V =7V Allo stesso isultato si giunge calcolando la deivata del potenziale ta A e O e ta O e in quanto il campo elettico è unifome. 1

Facoltà di Ingegneria Fisica II Compito A

Facoltà di Ingegneria Fisica II Compito A Facoltà di ngegneia Fisica 66 Compito A Esecizio n Un filo di mateiale isolante, con densità di caica lineae costante, viene piegato fino ad assumee la foma mostata in figua (la pate cicolae ha aggio e

Dettagli

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss Esecizi Legge di Gauss. Un involuco sfeico isolante ha aggi inteno ed esteno a e b, ed e caicato con densita unifome ρ. Disegnae il diagamma di E in funzione di La geometia e mostata nella figua: Usiamo

Dettagli

Fisica Generale- Modulo Fisica II Esercitazione 2 Ingegneria Meccanica POTENZIALE ELETTRICO ED ENERGIA POTENZIALE

Fisica Generale- Modulo Fisica II Esercitazione 2 Ingegneria Meccanica POTENZIALE ELETTRICO ED ENERGIA POTENZIALE Fisica Geneale- Modulo Fisica II secitazione OTNZIL LTTRICO D NRGI OTNZIL Ba. Una caica elettica mc si tova nell oigine di un asse mente una caica negativa 4 mc si tova nel punto di ascissa m. Sia il punto

Dettagli

Lezione 3. Applicazioni della Legge di Gauss

Lezione 3. Applicazioni della Legge di Gauss Applicazioni della Legge di Gauss Lezione 3 Guscio sfeico di aggio con caica totale distibuita unifomemente sulla supeficie. immetia sfeica, dipende solo da supeficie sfeica di aggio

Dettagli

Conduttori in equilibrio elettrostatico

Conduttori in equilibrio elettrostatico onduttoi in equilibio elettostatico In un conduttoe in equilibio, tutte le caiche di conduzione sono in equilibio Se una caica di conduzione è in equilibio, in quel punto il campo elettico è nullo caica

Dettagli

int Schiusa Schiusa r r Φ = r r S o 1 Anno scolastico

int Schiusa Schiusa r r Φ = r r S o 1 Anno scolastico Anno scolastico 4 + ε ε int dt E d C dt d E C Q E S o S Schiusa Schiusa gandezza definizione fomula Foza di Loentz Foza agente su una caica q in moto con velocità v in una egione in cui è pesente un campo

Dettagli

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da Gavitazione Dati due copi di massa m 1 e m 2, posti ad una distanza, ta di essi si esecita una foza attattiva data in modulo da F = G m 1m 2 dove G è una costante univesale, avente lo stesso valoe pe tutte

Dettagli

IL POTENZIALE. = d quindi: LAB

IL POTENZIALE. = d quindi: LAB 1 IL POTENZIALE Sappiamo che il campo gavitazionale è un campo consevativo cioè nello spostamento di un copo ta due punti del campo gavitazionale teeste, le foze del campo compiono un lavoo che dipende

Dettagli

IL POTENZIALE. Nello spostamento successivo B B, poiché la forza elettrica risulta perpendicolare allo spostamento, il lavoro L è nullo.

IL POTENZIALE. Nello spostamento successivo B B, poiché la forza elettrica risulta perpendicolare allo spostamento, il lavoro L è nullo. 1 I POTENZIAE Sappiamo che il campo gavitazionale è un campo consevativo cioè nello spostamento di un copo ta due punti del campo gavitazionale teeste, le foze del campo compiono un lavoo che dipende dalla

Dettagli

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc Politecnico di Milano Fondamenti di Fisica Speimentale a.a. 9-1 - Facoltà di Ingegneia Industiale - Ind. Aeo-Eneg-Mecc II pova in itinee - 5/7/1 Giustificae le isposte e scivee in modo chiao e leggibile.

Dettagli

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande Nome..ognome. classe 5 9 Novembe 8 RIFI di FISI: lettostatica omande ) ai la definizione di flusso di un campo vettoiale attaveso una supeficie. nuncia il teoema di Gauss pe il campo elettico (senza dimostalo)

Dettagli

FISICA GENERALE II Esercitazione D tutorato ESERCIZI CON SOLUZIONE

FISICA GENERALE II Esercitazione D tutorato ESERCIZI CON SOLUZIONE FSCA GENERALE Esecitazione D tutoato -3 ESERCZ CON SOLUZONE. Un conduttoe cilindico cavo, di aggio esteno a =. cm e aggio inteno b =.6 cm, è pecoso da una coente =A, distibuita uniomemente sulla sua sezione.

Dettagli

E, ds. - Flusso totale uscente dalla superficie chiusa S: è la somma di tutti i flussi elementari, al tendere a zero delle aree infinitesime: r )

E, ds. - Flusso totale uscente dalla superficie chiusa S: è la somma di tutti i flussi elementari, al tendere a zero delle aree infinitesime: r ) Flusso del campo elettico e legge di Gauss. - Si definisce supeficie gaussiana una ipotetica supeficie S chiusa, che contiene un volume V. - La legge di Gauss mette in elazione i valoi dei campi elettici

Dettagli

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE.

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. ESERCIZIO 1 AI VERTICI DI UN UADRATO DI LATO SONO POSTE 4 CARICHE UGUALI. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. 4 caiche uguali sono poste ai vetiti di un quadato. L asse di un quadato

Dettagli

Fisica II Secondo Appello - 7/2/2008

Fisica II Secondo Appello - 7/2/2008 Fisica II Secondo Appello - 7/2/2008 Chi ecupea il pimo compitino fa il pimo esecizio in due oe Chi ecupea il secondo compitino fa gli ultimi due esecizi in due oe Chi non ecupea fa le pime 4 domande del

Dettagli

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss 1 Appunti su agomenti monogafici pe il coso di FM1 Pof. Pieluigi Contucci Gavità e Teoema di Gauss Vogliamo dimostae, a patie dalla legge di gavitazione univesale che il campo gavitazionale geneato da

Dettagli

Campo elettrico e potenziale di un disco uniformemente carico

Campo elettrico e potenziale di un disco uniformemente carico Campo elettico e poteniale di un disco unifomemente caico q S densità supeficiale di caica Consideo l anello di aggio e spessoe d calcolo l anello sommo sugli anelli ho due integaioni dq da πd d Σ anello

Dettagli

Elettrostatica. P. Maestro Elettrostatica pag. 1

Elettrostatica. P. Maestro Elettrostatica pag. 1 Elettostatica Composizione dell atomo Caica elettica Legge di Coulomb Campo elettico Pincipio di sovapposizione Enegia potenziale del campo elettico Moto di una caica in un campo elettico statico Teoema

Dettagli

Legge di Gauss. Superficie Σ immersa nel campo elettrostatico generato da una carica q. da! r 2. d!(! E) "! E #! n da = q r 2! er!!

Legge di Gauss. Superficie Σ immersa nel campo elettrostatico generato da una carica q. da! r 2. d!(! E) ! E #! n da = q r 2! er!! Legge di Gauss Legge di Gauss in foma integale e locale Esempi Equazioni di Poisson e di Laplace Poblemi di Diichlet e Neumann Poblema geneale dell elettostatica Legge di Gauss Supeficie Σ immesa nel campo

Dettagli

Energia potenziale elettrica

Energia potenziale elettrica Enegia potenziale elettica L ultima ossevazione del capitolo pecedente iguadava le analogie e le diffeenze ta il campo elettico e il campo gavitazionale pendendo in esame la foza di Coulomb e la legge

Dettagli

( ) Energia potenziale U = GMm r. GMm r. GMm L AB. = r. r r. Definizione di energia potenziale

( ) Energia potenziale U = GMm r. GMm r. GMm L AB. = r. r r. Definizione di energia potenziale Enegia potenziale Definizione di enegia potenziale Il lavoo, compiuto da una foza consevativa nello spostae il punto di applicazione da a, non dipende dal cammino seguito, ma esclusivamente dai punti e.

Dettagli

Potenziale elettrostatico e lavoro. Potenziale elettrostatico Energia potenziale elettrostatica Esempi Moto di una carica in un potenziale e.s.

Potenziale elettrostatico e lavoro. Potenziale elettrostatico Energia potenziale elettrostatica Esempi Moto di una carica in un potenziale e.s. Potenziale elettostatico e lavoo Potenziale elettostatico Enegia potenziale elettostatica Esempi Moto di una caica in un potenziale e.s. Potenziale elettostatico Campo e.s. geneato da una caica puntifome

Dettagli

AZIONE A DISTANZA E TEORIA DI CAMPO (1)

AZIONE A DISTANZA E TEORIA DI CAMPO (1) Il campo elettico AZION A DITANZA TOIA DI CAMPO () Come fanno due caiche elettiche ad inteagie fa di loo? All inizio del 9 si sono confontate due ipotesi:.le caiche si scambiano dei messaggei e uindi si

Dettagli

Campo magnetico, forza magnetica, momenti meccanici sui circuiti piani

Campo magnetico, forza magnetica, momenti meccanici sui circuiti piani Campo magnetico, foza magnetica, momenti meccanici sui cicuiti piani Esecizio 1 Un potone d enegia cinetica E k 6MeV enta in una egione di spazio in cui esiste un campo magnetico B1T otogonale al piano

Dettagli

SECONDA LEZIONE: lavoro elettrico, potenziale elettrostatico, teorema di Gauss (prima parte)

SECONDA LEZIONE: lavoro elettrico, potenziale elettrostatico, teorema di Gauss (prima parte) A. Chiodoni esecizi di Fisica II SECONDA LEZIONE: lavoo elettico, potenziale elettostatico, teoea di Gauss (pia pate) Esecizio Te caiche sono poste ai vetici di un tiangolo euilateo di lato l, calcolae

Dettagli

Capacità ele+rica. Condensatori

Capacità ele+rica. Condensatori Capacità ele+ica Condensatoi Condensatoi Il sistema più semplice pe immagazzinae enegia elettostatica è caicae un condensatoe. Genealmente il condensatoe è costituito da due piani metallici sepaati da

Dettagli

Concetto di capacità

Concetto di capacità oncetto di capacità Il teoema di Gauss stabilisce che, posta una caica su un conduttoe isolato, il campo elettico E da essa podotto nello spazio cicostante è diettamente popozionale alla caica stessa:

Dettagli

SESTA LEZIONE: campo magnetico, forza magnetica, momenti meccanici sui circuiti piani

SESTA LEZIONE: campo magnetico, forza magnetica, momenti meccanici sui circuiti piani A. Chiodoni esecizi di Fisica II SESTA LEZIONE: campo magnetico, foza magnetica, momenti meccanici sui cicuiti piani Esecizio 1 Un potone d enegia cinetica E k 6MeV enta in una egione di spazio in cui

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione

Esercizi Scheda N Fisica II. Esercizi con soluzione Esecizio 9.1 Esecizi con soluzione Te divese onde sonoe hanno fequenza ν ispettivamente 1 Hz, 1 Hz e 5 Mhz. Deteminae le lunghezze d onda coispondenti ed i peiodi di oscillazione, sapendo che la velocità

Dettagli

IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO

IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO Legge di Faaday-Heny (o dell induzione elettomagnetica); Applicazioni della legge dell induzione e.m., caso della spia otante; Il fenomeno dell autoinduzione

Dettagli

SETTIMA-OTTAVA LEZIONE: sorgenti del campo magnetico, legge di Ampere, legge di Biot-Sawart

SETTIMA-OTTAVA LEZIONE: sorgenti del campo magnetico, legge di Ampere, legge di Biot-Sawart . Chiodoni esecizi di Fisica II SETTIM-OTTV LEZIONE: sogenti del campo magnetico, legge di mpee, legge di Biot-Sawat Esecizio 1 Due spie cicolai di aggio 3cm, aventi lo stesso asse, sono poste in piani

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti Esecizi Scheda N. 45 Fisica II Esecizio. Esecizi con soluzione svolti Un filo ettilineo, indefinito, pecoso da una coente di intensità i=4 A, è immeso in un mezzo omogeneo, isotopo, indefinito e di pemeabilità

Dettagli

ESERCIZI DI CALCOLO STRUTTURALE

ESERCIZI DI CALCOLO STRUTTURALE ESERCIZIO A1 ESERCIZI DI CACOO SRUURAE Pate A: ave incastata Calcolo delle eazioni vincolai con caichi concentati o distibuiti P 1 P 1 = 10000 N = 1.2 m Sia la stuttua in figua soggetta al caico P 1 applicato

Dettagli

Problema generale dell elettrostatica

Problema generale dell elettrostatica Poblema geneale dell elettostatica Deteminae il campo elettico in tutto lo spazio uando pe M conduttoi sono fissati i potenziali e pe i imanenti N sono note le caiche possedute Nello spazio esteno ai conduttoi

Dettagli

Fisica Generale - Modulo Fisica II Esercitazione 1 Ingegneria Meccanica LA FORZA ELETTRICA

Fisica Generale - Modulo Fisica II Esercitazione 1 Ingegneria Meccanica LA FORZA ELETTRICA Fisica Geneale - Moulo Fisica II secitazione L FOZ LTTI a. Date le ue caiche fisse ella figua ove. e.5 la posizione i euilibio lungo l'asse i una teza caica mobile. si tova nel punto con ascissa ().7 m

Dettagli

DISTRIBUZIONE DELLA CARICA NEI CONDUTTORI

DISTRIBUZIONE DELLA CARICA NEI CONDUTTORI 1 DISTRIBUZIONE DELLA CARICA NEI CONDUTTORI I copi conduttoi sono caatteizzati dal fatto di avee moltissimi elettoni libei di muovesi (elettoni di conduzione). Cosa accade se un copo conduttoe viene caicato

Dettagli

Potenza volumica. Legge di Joule in forma locale

Potenza volumica. Legge di Joule in forma locale Potenza volumica. Legge di Joule in foma locale Si considei un tubo di flusso elementae all inteno di un copo conduttoe nel quale ha sede un campo di coente. n da La potenza elettica che fluisce nel bipolo

Dettagli

Fisica per Medicina. Lezione 22 - Campo magnetico. Dr. Cristiano Fontana

Fisica per Medicina. Lezione 22 - Campo magnetico. Dr. Cristiano Fontana Fisica pe Medicina Lezione 22 - Campo magnetico D. Cistiano Fontana Dipatimento di Fisica ed Astonomia Galileo Galilei Univesità degli Studi di Padova 1 dicembe 2017 ndice Elettomagnetismo Campo magnetico

Dettagli

Campi scalari e vettoriali (1)

Campi scalari e vettoriali (1) ampi scalai e vettoiali (1) 3 e ad ogni punto P = (x, y, z) di una egione di spazio Ω R è associato uno ed uno solo scalae φ diemo che un campo scalae è stato definito in Ω. In alti temini: φ 3 : P R φ(p)

Dettagli

Sorgenti del campo magnetico.

Sorgenti del campo magnetico. Sogenti del campo magnetico. n Campo magnetico podotto da una coente n ima legge elementae di Laplace n Legame campo elettico e magnetico Campo magnetico podotto da una coente n ima legge elementae di

Dettagli

Le equazioni di Maxwell.

Le equazioni di Maxwell. Le equazioni di Maxwell. Campi elettici indotti. Pe la legge di Faady, in una spia conduttice dove c è una vaiazione di Φ concatenato si osseva una coente indotta i. Ricodando che una coente è un flusso

Dettagli

Unità Didattica N 27 Circonferenza e cerchio

Unità Didattica N 27 Circonferenza e cerchio 56 La ciconfeenza ed il cechio Ciconfeenza e cechio 01) Definizioni e popietà 02) Popietà delle code 03) Ciconfeenza passante pe te punti 04) Code e loo distanza dal cento 05) Angoli, achi e code 06) Mutua

Dettagli

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. V Q 4pe 0 r. Fisica II CdL Chimica

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. V Q 4pe 0 r. Fisica II CdL Chimica Potenziale Elettico Q V 4pe 0 R Q 4pe 0 C R R R q independenza dal cammino Supefici Equipotenziali Due modi pe analizzae i poblemi Con le foze o i campi (vettoi) pe deteminae posizione e velocità di un

Dettagli

Equilibrio dei corpi rigidi- Statica

Equilibrio dei corpi rigidi- Statica Equilibio dei copi igidi- Statica Ci ifeiamo solo a situazioni paticolai in cui i copi igidi non si muovono in nessun modo: ne taslano ( a 0 ), ne uotano ( 0 ), ossia sono femi in un oppotuno sistema di

Dettagli

A.A. 2009/ Appello del 15 giugno 2010

A.A. 2009/ Appello del 15 giugno 2010 Fisica I pe Ing. Elettonica e Fisica pe Ing. Infomatica A.A. 29/21 - Appello del 15 giugno 21 Soluzione del poblema n. 1a 1. All uscita della guida, nel punto D, il copo compie un moto paabolico con velocità

Dettagli

SECONDA LEZIONE (4 ore): CONDUTTORI e DIELETTRICI

SECONDA LEZIONE (4 ore): CONDUTTORI e DIELETTRICI SECONDA LEZIONE (4 oe): CONDUTTORI e DIELETTRICI Conduttoi in campo elettico Polaizzazione della mateia Vettoe polaizzazione Vettoe spostamento elettico Suscettività elettica Capacità Condensatoi Enegia

Dettagli

1 Potenziale elettrostatico e seconda equazione di Maxwell per E

1 Potenziale elettrostatico e seconda equazione di Maxwell per E 1 Potenziale elettostatico e seconda equazione di Maxwell pe E Consideiamo il campo elettico oiginato da una caica puntifome q che ipotizziamo fissa nell oigine degli assi: E( ) = q ˆ 2 = q 3 (1) Pe definizione,

Dettagli

IL VOLUME DEI SOLIDI Conoscenze

IL VOLUME DEI SOLIDI Conoscenze IL VOLUME DEI SOLIDI Conoscenze 1. Completa. a. Il peso di un copo dipende dal volume e dalla sostanza di cui è costituito b. Ogni sostanza ha il suo peso specifico, che è il peso dell unità di volume

Dettagli

L = F s cosα = r F r s

L = F s cosα = r F r s LVORO Se su un copo agisce una foza F, il lavoo compiuto dalla foza pe uno spostamento s è (podotto scalae di due vettoi): L = F s cosα = F s F α s LVORO L unità di misua del lavoo nel S.I. si chiama Joule:

Dettagli

LICEO PEDAGOGICO-ARTISTICO G. Pascoli di BOLZANO TEST DI FISICA IN SOSTITUZIONE DELL ORALE- FILA A CLASSE V B-27/05/2010

LICEO PEDAGOGICO-ARTISTICO G. Pascoli di BOLZANO TEST DI FISICA IN SOSTITUZIONE DELL ORALE- FILA A CLASSE V B-27/05/2010 LICEO PEDAGOGICO-ARTISTICO G. Pascoli di BOLZANO TEST DI FISICA IN SOSTITUZIONE DELL ORALE- FILA A CLASSE V B-7/05/010 Ogni quesito va oppotunamente motivato, pena la sua esclusione dalla valutazione.

Dettagli

Effetto Hall. flusso reale dei portatori se positivi. flusso reale dei portatori se negativi

Effetto Hall. flusso reale dei portatori se positivi. flusso reale dei portatori se negativi Appunti di Fisica II Effetto Hall L'effetto Hall è un fenomeno legato al passaggio di una coente I, attaveso ovviamente un conduttoe, in una zona in cui è pesente un campo magnetico dietto otogonalmente

Dettagli

IL VOLUME DEI SOLIDI Conoscenze

IL VOLUME DEI SOLIDI Conoscenze IL VOLUME DEI SOLIDI Conoscenze 1. Completa. a. Il peso di un copo dipende dal...e dalla...di cui è costituito b. Ogni sostanza ha il suo peso specifico, che è... di quella sostanza c. Il peso specifico

Dettagli

Sulla carica viene esercitata la forza magnetica. traiettoria circolare.

Sulla carica viene esercitata la forza magnetica. traiettoria circolare. Moto di caiche in Campo Magnetico Consideiamo una paticella di massa m e caica puntifome +q in moto con velocità v pependicolae ad un campo B unifome. B α v + F F v Nel piano α, B veso l alto Sulla caica

Dettagli

Momenti. Momento di inerzia, momento di una forza, momento angolare

Momenti. Momento di inerzia, momento di una forza, momento angolare Momenti Momento di inezia, momento di una foza, momento angolae Conce&o di Momento I momenti in fisica sono cose molto divese fa loo. Cetamente non hanno sempe la stessa unità di misua; ed avemo cua di

Dettagli

Momenti. Momento di inerzia, momento di una forza, momento angolare

Momenti. Momento di inerzia, momento di una forza, momento angolare Momenti Momento di inezia, momento di una foza, momento angolae Conce&o di Momento I momenti in fisica sono cose molto divese fa loo. Cetamente non hanno sempe la stessa unità di misua; ed avemo cua di

Dettagli

Campo magnetico B. Polo Nord. Terra. Polo Sud. Lezione V 1/15

Campo magnetico B. Polo Nord. Terra. Polo Sud. Lezione V 1/15 Leione V Campo magnetico B 1/15 Polo Nod N S S N Tea Sole Polo Sud Alcuni mineali (es. magnetite, da Magnesia Tessaglia) attiano il feo. Aghi calamitati si oientano nel campo magnetico teeste. Leione V

Dettagli

La struttura stellare

La struttura stellare La stuttua stellae La stuttua stellae Una stella è una sfea di gas tenuta insieme dall auto gavità ed il cui collasso è impedito dalla pesenza di gadienti di pessione. Con ottima appossimazione una stella

Dettagli

Geometria analitica in sintesi

Geometria analitica in sintesi punti distanza ta due punti coodinate del punto medio coodinate del baicento ta due punti di un tiangolo di vetici etta e foma implicita foma esplicita foma segmentaia equazione della etta m è il coefficiente

Dettagli

! Un asta di peso p =! + 1 (vedi figura) è appoggiata su due. supporti A e B, distanti, dal baricentro G dell asta,

! Un asta di peso p =! + 1 (vedi figura) è appoggiata su due. supporti A e B, distanti, dal baricentro G dell asta, isica eneale 5. Esecizi di Statica Esecizio Un asta di eso = + (vedi figua) è aoggiata su due 0 N suoti e, distanti, dal baicento dell asta, isettivamente a =. m e b = + 0. 000 m Calcolae la foza d aoggio

Dettagli

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono:

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono: 4.1 Pincipi della dinamica 4. DINAMICA I te pincipi della dinamica pe un copo puntifome (detto anche punto mateiale o paticella) sono: 1) pincipio di intezia di Galilei; 2) legge dinamica di Newton; 3)

Dettagli

INTERAZIONE E DISTANZA

INTERAZIONE E DISTANZA Il campo elettico Le caiche elettiche inteagiscono a distana: nelle inteaioni fondamentali si manifestano foe ta copi sena che gli stessi vengano a contatto ta loo: le foe gavitaionali e anche le foe elettiche

Dettagli

Sommario: Campo elettrico

Sommario: Campo elettrico Sommaio: ampo elettico ampo elettico: se F è la foza sulla caica q, il campo elettico è: F q Linee di foza: il campo si appesenta figuativamente mediante le sue linee di foza: in ogni punto il campo è

Dettagli

qq r Elettrostatica Legge di Coulomb permette di calcolare la forza che si esercita tra due particelle cariche.

qq r Elettrostatica Legge di Coulomb permette di calcolare la forza che si esercita tra due particelle cariche. lettostatica La mateia è costituita da atomi. Gli atomi sono fomati da un nucleo, contenete paticelle neute (neutoni) e paticelle caiche positivamente (potoni). Intono al nucleo ci sono paticelle caiche

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica B() (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

Fondamenti di Gravitazione

Fondamenti di Gravitazione Fondamenti di Gavitazione Intoduzione all Astofisica AA 205/206 Pof. Alessando Maconi Dipatimento di Fisica e Astonomia Univesità di Fienze Dispense e pesentazioni disponibili all indiizzo http://www.aceti.asto.it/

Dettagli

Gravitazione universale

Gravitazione universale INGEGNERIA GESTIONALE coso di Fisica Geneale Pof. E. Puddu LEZIONE DEL 22 OTTOBRE 2008 Gavitazione univesale 1 Legge della gavitazione univesale di Newton Ogni paticella attae ogni alta paticella con una

Dettagli

Per migliorare la trasmissione tra satellite e Terra, emerge la necessità di portare il satellite ad un orbita circolare diversa.

Per migliorare la trasmissione tra satellite e Terra, emerge la necessità di portare il satellite ad un orbita circolare diversa. 1 Esecizio (tatto dagli esempi 5.3 e 5.4 del cap. V del Mazzoldi-Nigo-Voci) Un satellite atificiale di massa m 10 3 Kg uota attono alla Tea descivendo un obita cicolae di aggio 1 6.6 10 3 Km. 1. Calcolae

Dettagli

ELETTROTECNICA Ingegneria Industriale

ELETTROTECNICA Ingegneria Industriale ELETTROTECNICA Ingegneia Industiale CAMPI ELETTROMAGNETICI Stefano Pastoe Dipatimento di Ingegneia e Achitettua Coso di Elettotecnica (43IN) a.a. 15-16 Foza di Coulomb Nel 1785, Chales Coulomb fece degli

Dettagli

Fisica Generale - Modulo Fisica II Esercitazione 3 Ingegneria Gestionale-Informatica POTENZIALE ELETTRICO ED ENERGIA POTENZIALE

Fisica Generale - Modulo Fisica II Esercitazione 3 Ingegneria Gestionale-Informatica POTENZIALE ELETTRICO ED ENERGIA POTENZIALE PTNZIL LTTRIC D NRGI PTNZIL Ba. Una caica elettica q mc si tova nell oigine di un asse mente una caica negativa q 4 mc si tova nel punto di ascissa m. Sia Q il punto dell asse dove il campo elettico si

Dettagli

Elettrostatica. G.P. Maggi - Lezioni di Fisica Generale AA 2001/2002

Elettrostatica. G.P. Maggi - Lezioni di Fisica Generale AA 2001/2002 G.P. Maggi - Lezioni di Fisica Geneale AA 2001/2002 Elettostatica La caica elettica Ta tutti i tipi di foza che abbiamo incontato in meccanica, solo la foza peso e quella di gavitazione univesale deivano

Dettagli

FONDAMENTI DI FISICA GENERALE

FONDAMENTI DI FISICA GENERALE FONDAMENTI DI FISICA GENERALE Ingegneia Meccanica Roma Te AA/- APPUNTI PER IL CORSO (Ripesi integalmente e da me assemblati dai testi di bibliogafia) Robeto Renzetti Bibliogafia: Paul J. Tiple, Gene Mosca

Dettagli

Massimi e minimi con le linee di livello

Massimi e minimi con le linee di livello Massimi e minimi con le linee di livello Pe affontae questo agomento è necessaio sape appesentae i fasci di cuve ed in paticolae: Fasci di paabole. Pe affontae questo agomento si consiglia di ivedee l

Dettagli

Elementi di Dinamica

Elementi di Dinamica Elementi di Dinamica ELEMENTI DI DINAMICA Mente la cinematica si limita allo studio delle possibilità di movimento di un ceto sistema ed alla elativa descizione matematica, la dinamica si occupa delle

Dettagli

GEOMETRIA ELEMENTARE. h = 2 2 S. h =

GEOMETRIA ELEMENTARE. h = 2 2 S. h = QUESITI 1 GEOMETRI ELEMENTRE 1. (Da Veteinaia 015) Le diagonali (ossia le linee che uniscono i vetici opposti) di un ombo misuano ispettivamente 4 cm e 8 cm. Qual è il peimeto del ombo in cm? a) 8 3 b)

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica () (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

ed è pari a: 683 lumen/watt, pertanto:

ed è pari a: 683 lumen/watt, pertanto: RICIAI GRADEZZE FOTOMETRICHE Fattoe di visibilità (o di sensibilità visiva) K ( λ) : funzione che appesenta la sensibilità media dell occhio umano a adiazioni di diffeente lunghezza d onda ma di eguale

Dettagli

M.T., M.T.T. Appunti di Fisica per Scienze Biologiche Vers /09/2005

M.T., M.T.T. Appunti di Fisica per Scienze Biologiche Vers /09/2005 MT, MTT Appunti di Fisica pe Scienze iologiche Ves 4 /9/5 L Elettostatica costituenti elementai della mateia possiedono, olte alla massa, la caica elettica La caica elettica si misua in oulomb () ed il

Dettagli

Il campo magnetico generato da correnti

Il campo magnetico generato da correnti Il campo magnetico geneato da coenti Hans Chistian Østed (1777 1851) Siamo in Danimaca nel 180: duante alcuni espeimenti all Univesità di Copenhagen, il fisico danese Hans Chistian Oested si accoge che

Dettagli

Effetto delle Punte e problema dell elettrostatica

Effetto delle Punte e problema dell elettrostatica Effetto delle Punte e poblema dell elettostatica 4 4 R Q R Q πε πε / / R R R R E E Effetto delle punte E L effetto paafulmine E E E R R Nel caso del paafulmine, R 6 Km è il aggio di cuvatua della supeficie

Dettagli

CASO 2 CASO 1. δ Lo. e N. δ Lo. e L. PROBLEMA A Corso di Fisica 1- Prima provetta- 22 maggio 2004 Facoltà di Ingegneria dell Università di Trento

CASO 2 CASO 1. δ Lo. e N. δ Lo. e L. PROBLEMA A Corso di Fisica 1- Prima provetta- 22 maggio 2004 Facoltà di Ingegneria dell Università di Trento PROBEMA A Coso di Fisica 1- Pima povetta- maggio 004 Facoltà di Ingegneia dell Univesità di Tento Un anello di massa m= 70 g, assimilabile ad un copo puntifome, è infilato in una asta igida liscia di lunghezza

Dettagli

Proprietà della materia: isolanti e conduttori

Proprietà della materia: isolanti e conduttori Popietà della mateia: isolanti e conduttoi I copi solidi dal punto di vista elettico molto schematicamente si dividono in isolanti e conduttoi. La diffeenza di compotamento elettico deiva dalla divesa

Dettagli

Il rischio della embolia gassosa. Fsica Medica

Il rischio della embolia gassosa. Fsica Medica Il ischio della embolia gassosa La espiazione nei subacquei h 1atm 1atm +ρgh Il subacqueo che si tova alla pofondità h deve espiae aia ad una pessione maggioe ispetto a quella atmosfeica ate dell aia espiata

Dettagli

Lezione XV Cinghie. Organi di trasmissione. Normalmente gli assi di rotazione delle due pulegge sono paralleli.

Lezione XV Cinghie. Organi di trasmissione. Normalmente gli assi di rotazione delle due pulegge sono paralleli. Ogani di tasmissione Ogani flessibili Nelle macchine tovano numeose applicazioni tanto ogani flessibili popiamente detti (cinghie e funi), quanto ogani costituiti da elementi igidi ta loo aticolati (catene).

Dettagli

Il magnetismo. Il Teorema di Ampere: la circuitazione del campo magnetico.

Il magnetismo. Il Teorema di Ampere: la circuitazione del campo magnetico. Il magnetismo Il Teoema di Ampee: la cicuitazione del campo magnetico. Richiamiamo la definizione geneale di cicuitazione pe un campo vettoiale Definizione: si definisce cicuitazione di un campo vettoiale

Dettagli

Il campo magnetico. campo magnetico B (si misura in Telsa (T)) carica genera campo elettrico campo elettrico imprime forza su carica

Il campo magnetico. campo magnetico B (si misura in Telsa (T)) carica genera campo elettrico campo elettrico imprime forza su carica Il campo magnetico caica genea campo elettico campo elettico impime foza su caica e allo stesso modo caica in moto genea campo magnetico campo magnetico impime foza su caica in moto campo magnetico (si

Dettagli

APPROSSIMAZIONE DI BORN

APPROSSIMAZIONE DI BORN 4/ APPROSSIMAZIONE DI BORN 5/6 APPROSSIMAZIONE DI BORN L applicazione più impotante della teoia delle petubazioni degli stati del continuo è costituita dalla isoluzione appossimata dei poblemi di diffusione.

Dettagli

Moto su traiettorie curve: il moto circolare

Moto su traiettorie curve: il moto circolare Moto su taiettoie cuve: il moto cicolae Così come il moto ettilineo è un moto che avviene lungo una linea etta, il moto cicolae è un moto la cui taiettoia è cicolae, cioè un moto che avviene lungo una

Dettagli

F 1 F 2 F 3 F 4 F 5 F 6. Cosa è necessario per avere una rotazione?

F 1 F 2 F 3 F 4 F 5 F 6. Cosa è necessario per avere una rotazione? Cosa è necessaio pe avee una otazione? Supponiamo di vole uotae il sistema in figua intono al bullone, ovveo intono all asse veticale passante pe, usando foze nel piano oizzontale aventi tutte lo stesso

Dettagli

MACCHINA ELEMENTARE A RILUTTANZA

MACCHINA ELEMENTARE A RILUTTANZA Sistemi magnetici con moto meccanico MACCHINA ELEMENTARE A RILUTTANZA Consiste in un nucleo magnetico con un avvolgimento a N spie e una pate mobile che uota con spostamento angolae θ e velocità angolae

Dettagli

Momenti. Momento di una forza, momento di inerzia, momento angolare

Momenti. Momento di una forza, momento di inerzia, momento angolare Momenti Momento di una foza, momento di inezia, momento angolae Momento di una foza Supponiamo di avee una pota vista dall alto e supponiamo che sia incadinata su un lato, diciamo in A. A Se applicassimo

Dettagli

Si considerino le rette:

Si considerino le rette: Si consideino le ette: Eseciio (tipo tema d esame) : s : + () ) Si dica pe quali valoi del paameto eale le ette e s isultano sghembe, paallele o incidenti. ) Nel caso paallele si emino i paameti diettoi

Dettagli

La legge di Lenz - Faraday Neumann

La legge di Lenz - Faraday Neumann 1 La legge di Lenz - Faaday Neumann Il flusso del campo magnetico B Pe dae una veste matematica alle conclusioni delle espeienze viste nella lezione pecedente, abbiamo bisogno di definie una nuova gandezza

Dettagli

Campi elettrici e magnetici a bassa frequenza: sorgenti e metodi di valutazione

Campi elettrici e magnetici a bassa frequenza: sorgenti e metodi di valutazione Coso di Maste di secondo livello Sistemi Infomativi Geogafici pe il monitoaggio e la gestione del teitoio Campi elettici e magnetici a bassa fequenza: sogenti e metodi di valutazione Ing. Nicola Zoppetti

Dettagli

Il Problema di Keplero

Il Problema di Keplero Il Poblema di Kepleo Il poblema di Kepleo nel campo gavitazionale Intoduzione Con Poblema di Kepleo viene indicato il poblema del moto di un copo in un campo di foze centali. Nel caso specifico gavitazionale

Dettagli

Unità Didattica N 10 : I momenti delle forze

Unità Didattica N 10 : I momenti delle forze Unità didattica N 10 I momenti delle foze 1 Unità Didattica N 10 : I momenti delle foze 01) omento di una foza ispetto ad un punto 02) omento isultante di un sistema di foze 03) omento di una coppia di

Dettagli

ESERCIZIO n.1. rispetto alle rette r e t indicate in Figura. h t. d b GA#1 1

ESERCIZIO n.1. rispetto alle rette r e t indicate in Figura. h t. d b GA#1 1 Esecizi svolti di geometia delle aee Aliandi U., Fusci P., Pisano A., Sofi A. ESERCZO n.1 Data la sezione ettangolae ipotata in Figua, deteminae: a) gli assi pincipali centali di inezia; ) l ellisse pincipale

Dettagli

Elettrostatica m. Il nucleo è a sua volta composto da altri

Elettrostatica m. Il nucleo è a sua volta composto da altri Elettostatica La caica elettica Ta tutti i tipi di foza che abbiamo incontato in meccanica, solo la foza peso e uella di gavitazione univesale deivano dalla popietà delle masse di attiae alte masse. Tutte

Dettagli

ESERCIZIO n.2. y B. rispetto alle rette r e t indicate in Figura. GA#2 1

ESERCIZIO n.2. y B. rispetto alle rette r e t indicate in Figura. GA#2 1 ESERCZO n. Data la sezione a T ipotata in Figua, deteminae: a) gli assi pincipali centali di inezia; ) l ellisse pincipale centale di inezia; c) il nocciolo centale di inezia; d) i momenti di inezia e

Dettagli

Risultati esame scritto Fisica 2 17/02/2014 orali: alle ore presso aula G8

Risultati esame scritto Fisica 2 17/02/2014 orali: alle ore presso aula G8 isultati esame scitto Fisica 7//4 oali: 4 alle oe. pesso aula G8 gli studenti inteessati a visionae lo scitto sono pegati di pesentasi il giono dell'oale; Nuovo odinamento voto AMATO MATTIA CASLLA ALSSANDO

Dettagli

Lo schema seguente spiega come passare da una equazione all altra e al grafico della circonferenza. Svolgere i calcoli.

Lo schema seguente spiega come passare da una equazione all altra e al grafico della circonferenza. Svolgere i calcoli. D4. Ciconfeenza D4.1 Definizione di ciconfeenza come luogo di punti Definizione: una ciconfeenza è fomata dai punti equidistanti da un punto detto cento. La distanza (costante) è detta aggio. Ci sono due

Dettagli