Insiemi disgiunti. Classificazione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Insiemi disgiunti. Classificazione"

Transcript

1 Insiemi isgiunti Vittorio Mniezzo - Università i Bologn 1/7 Clssifizione "gli nimli si iviono in: ) pprtenenti ll impertore, b)imblsmti, )omestiti, )lttonzoli, e)sirene, f) fvolosi, g)ni rngi, h)inlusi in quest lssifizione, i) he s gitno ome pzzi, j)innumerevoli, k) isegnti on un pennello finissimo i pelo i mmello, l)eeter, m)he hnno rotto il vso, n) he lontno sembrno moshe. Emporio Celeste i Conosimenti Benevoli (J.L. Borges) Vittorio Mniezzo - Università i Bologn 2/7 1

2 Clssifizione "Clssifition is the ognitive proess in whih ies n objets re reognise, ifferentite n unerstoo. Clssifition implies tht objets re groupe into tegories, usully for some speifi purpose. Ctegoriztion is funmentl in eision mking n in ll kins of intertion with the environment. " Wikipei Vittorio Mniezzo - Università i Bologn 3 Clssifizione Vittorio Mniezzo - Università i Bologn 4 2

3 L ADS per insiemi isgiunti Utilizzt priniplmente per rppresentre: relzioni i equivlenz riflessive, simmetrihe, trnsitive inuono prtizionmenti i insiemi. Algoritmi molto semplii, nlisi i omplessità molto iffiile. Vittorio Mniezzo - Università i Bologn 5 Relzioni i equivlenz Esempi? Insieme egli bitnti ell'itli e relzione "bit nello stesso omune i"? Numeri nturli e relzione "è mggiore i"? Un fmigli e relzione "è frtello i"? Un fmigli e relzione "è pre i"? Un rete i omputer e relzione "è onnesso on"?... Vittorio Mniezzo - Università i Bologn 6 3

4 Clssi i equivlenz e prtizioni Relzione i equivlenz S efinit sull insieme S={ 1, 2,, n }. Le lssi i equivlenz sono sottinsiemi isgiunti i S. Possibile ientifire in Θ(1) se ue elementi i e j sono nell stess lsse, utilizzno un mtrie espliit i imensioni n 2. Relzione impliit, usno meno memori? Algoritmi on-line? Vittorio Mniezzo - Università i Bologn 7 Strutture ti per insiemi isgiunti E to un insieme S somposto in insiemi isgiunti S 1,, S k. Ogni insieme è ientifito un suo membro rppresentnte. Si vogliono relizzre le seguenti operzioni: Mke-Set(x): inizilizz un nuovo insieme ontenente il solo elemento x Fin-Set(x): trov l insieme ui pprtiene l elemento x Union(x,y): unise gli elementi egli insiemi he ontengono x e y, S e T rispettivmente, nell unio insieme S T Vittorio Mniezzo - Università i Bologn 8 4

5 Strutture ti per insiemi isgiunti Gli insiemi possono essere rppresentti lberi riti (uptree), in ui ogni noo ontiene un elemento e ogni lbero rppresent un insieme. Ogni elemento h un punttore solo l pre. L rie ontiene il rppresentnte, he è pre i se stesso. e b f g Vittorio Mniezzo - Università i Bologn 9 Up Tree b e k f j h g i Vittorio Mniezzo - Università i Bologn 10 5

6 Up tree, mke set e fin set Mke-set(x) Inizilizz un nuovo up-treeontenente il solo noo x. Θ(1). x Fin-set(x) Perorre l ten ei punttori fino trovre il rppresentnte i x. O(h). Fin-Set(x) while x p[x] x = p[x] return x z y x Vittorio Mniezzo - Università i Bologn 11 Up Tree: unione L unione è sempliissim: si f sì he l rie ell lbero he h meno noi punti (ome pre) ll rie ell lbero on più noi. Il numero ei noi viene pprossimto l rngo (limite superiore ll'ltezz) ssoito ogni noo. b e f g Vittorio Mniezzo - Università i Bologn 12 6

7 Up Tree: Unione s e t u z h g Vittorio Mniezzo - Università i Bologn 13 Up Tree: Unione e s h t u z g Vittorio Mniezzo - Università i Bologn 14 7

8 Compressione i mmini Serve nel orso ell Fin-Set, f puntre irettmente ll rie ogni noo el mmino esso l noo to. Miglior l omplessità sintoti se si eseguono più fin he union. T 1 b T 2 T 3 T 1 b T 2 T 3 T 4 T 4 Vittorio Mniezzo - Università i Bologn 15 Algoritmi per up tree Si ssoi ogni noo x un intero rnk[x], limite superiore ll ltezz i x (num. rhi el mmino più lungo fr x e un fogli isenente). Mke-Set(x) p[x] = x rnk[x]=0 Fin-Set(x) if x p[x] then p[x] = Fin-Set(p[x]) return p[x] Union(x,y) Link(Fin-Set(x), Fin-Set(y)) Link(x,y) if rnk[x] > rnk[y] then p[y] = x else p[x] = y if rnk[x] == rnk[y] then rnk[y]++ Vittorio Mniezzo - Università i Bologn 16 8

9 Up Tree sommrio MkeSet Fin Union Θ(1) Θ(h) Θ(1) M qunto vle h? Gli lberi hnno ltezz logritmi nel numero i noi ontenuti? Neessri un premess. Vittorio Mniezzo - Università i Bologn 17 Esponenzili i esponenzili F(i) = 2 F(i 1) per ognii> 0 F(0) = 1 F(1) = 2 1 = 2 F(2) = 2 2 = 4 F(3) = 2 22 = 16 F(4) = = F(5) = = Tutti i numeri inontrti normlmente sono più pioli i F(5) Vittorio Mniezzo - Università i Bologn 18 9

10 log* log n = il più piolo i tle hef(i) n = = il più piolo i tle helog log logn 1. i volte log n 5per ogni numeroninontrto in prti Vittorio Mniezzo - Università i Bologn 19 L funzione i Akermn A(1, j) = 2 j per j 1 A(i, 1) = A(i 1, 2) per i>1 A(i, j) = A(i 1, A(i,j 1)) per i,j>1 Invers ell funzione i Akermn (per m n): α(m,n) = il più piolo i 1 tle he A(i, m/n ) > log n α(m,n) 4 per ogni vlore omune i m e n Vittorio Mniezzo - Università i Bologn 20 10

11 Up Tree, omplessità Lemm 1 Per tutte le rii x i lberi, size[x] 2 rnk[x] Dimostrzione Per inuzione. Bse, rnk[x] = 0, ovvi. T: lbero rngo r, rie x, si er il minimo size[x]. T erivto unione i T 1 e T 2, x er rie i T 1. Ipotesi inuttiv: size[t 1 ] 2 rnk[t 1 ], size[t 2 ] 2 rnk[t 2 ] Rngo i T 1 = r 1(se fosse r, size[t] >size[t 1 ] 2 rnk[t 1 ] = 2 rnk[t], per ipotesi inuttiv). Rngo i T 2 rngo i T 1, quini rngo i T 2 = r 1. size[t] 2 rnk[t 1 ] + 2 rnk[t 2 ] = 2 r r-1 = 2 2 r-1 = 2 r Per l ipotesi inuttiv, lemm imostrto. Vittorio Mniezzo - Università i Bologn 21 Up Tree: omplessità Lemm 2 Per ogni intero r 0i sono l più n/2 r noi i rngo r. Dimostrzione Senz pthompressionogni noo i rngo rè rie i un sottolbero i lmeno 2 r noi. Nessun noo el sottolbero può vere rngo r. Quini tutti i sottolberi i noi i rngo rsono isgiunti. Quini i sono l più n/2 r sottolberi, e quini noi i rngo r. Vittorio Mniezzo - Università i Bologn 22 11

12 Up Tree: omplessità Teorem Un sequenz i m operzioni Mke-Set, Link e Fin-Set, i ui n sono operzioni Mke-Set, può essere eseguit su un forest i up-tree on unione per rngo e ompressione i mmini in tempo O(mlog n). Corollrio Un sequenz i m operzioni Mke-Set, Union e Fin-Set, i ui n sono operzioni Mke-Set, può essere eseguit su un forest i up-tree on unione per rngo e ompressione i mmini in tempo O(mlog n). NOTA: entrmbi i boun sono in reltà migliorbili O(mα(m,n)), m l imostrzione è ompless. Vittorio Mniezzo - Università i Bologn 23 Un pplizione Rete i loltori, on un rete i onnessioni punto punto biirezionli. E possibile ollegrsi un qulsisi loltore qulsisi ltro? E possibile onsierre le onnessioni un ll volt e vere in ogni momento gli insiemi i loltori fr loro onnessi (risoluzione on-line)? Vittorio Mniezzo - Università i Bologn 24 12

13 Eserizio A B C D E F G H I L M N O E H D I M F G O B M A H C C N L A E B M G B D I G C Inserire i noi el grfo in orine lfbetio e eterminre l struttur egli up-tree he si ostruisono seguito elle orrisponenti himte mkeset e union. Vittorio Mniezzo - Università i Bologn 25 13

Insiemi disgiunti. Vittorio Maniezzo - Università di Bologna 1/7

Insiemi disgiunti. Vittorio Maniezzo - Università di Bologna 1/7 Insiemi disgiunti Vittorio Maniezzo - Università di Bologna 1/7 Classificazione "gli animali si dividono in: a) appartenenti all imperatore, b)imbalsamati, c)addomesticati, d)lattonzoli, e)sirene, f) favolosi,

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

ALGORITMI E COMPLESSITÀ CORSO DI LAUREA MAGISTRALE IN INFORMATICA UNIVERSITÀ DEGLI STUDI DI CATANIA ANNO ACCADEMICO 2014/15

ALGORITMI E COMPLESSITÀ CORSO DI LAUREA MAGISTRALE IN INFORMATICA UNIVERSITÀ DEGLI STUDI DI CATANIA ANNO ACCADEMICO 2014/15 ANNO ACCADEMICO 01/15 Seon sessione i esmi (I ppello) - giugno 015 (B-trees) () Si efinis l struttur ti ei B-tree. () Si T l insieme ei vlori t N per i quli l lero T in figur poss essere onsierto un B-tree

Dettagli

Esercizi per il corso di Calcolatori Elettronici

Esercizi per il corso di Calcolatori Elettronici Eserizi per il orso i loltori Elettronii svolti Muro IOVIELLO & io LUDNI Prte prim : mppe i Krnugh, metoo QM ESERIZIO : Mppe i Krnugh Minimizzre l rete rppresentt ll funzione: = {,,, 3, 4, 5,, } D = Ø

Dettagli

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO L RLZIONI L FUNZIONI serizi in più SRIZI IN PIÙ SRIZI I FIN PITOLO TST Nell insieme ell figur, l relzione rppresentt goe ell o elle proprietà: TST L relzione «essere isenente i», efinit nell insieme egli

Dettagli

GT Definizione di grafo orientato e non

GT Definizione di grafo orientato e non Grfi - efinizioni GT. 3.- Definizione i grfo orientto e non Un grfo orientto G = (V,E) è formto ll oppi i insiemi V e E oe: V è un insieme i ertii E è un insieme i rhi: oppie orinte i ertii (u,), elementi

Dettagli

Equazioni di secondo grado Capitolo

Equazioni di secondo grado Capitolo Equzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Primo compitino, 18 novembre 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Primo compitino, 18 novembre 2017 Testi 1 Primo ompitino, 8 novemre 07 Testi Prim prte, gruppo. =, = ; r = α = = 0, = 4; r = α = r = 3, α = π/3; = =. Trovre le soluzioni ell isuguglinz tn( tli he 0 π. + log log(log ; lim + os(e ; lim 4. Clolre

Dettagli

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che,

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che, CAPITOLO 6 LE SIMILITUDINI 6 Rihimi i teori Definizione Si him similituine un orrisponenz iunivo l pino in sé tle he presi ue punti qulunque A B el pino e etti A B i loro orrisponenti si h he esiste un

Dettagli

Il problema da un milione di dollari

Il problema da un milione di dollari Il prolem un milione i ollri SienzOrient: Informti Ginlu Rossi www.informti.unirom2.it (www.informti.unirom2.it) Prolem $ 000 000 / 9 Algoritmi Requisiti i un uon lgoritmo: Correttezz; Effiienz ovvero

Dettagli

Disequazioni di primo grado

Disequazioni di primo grado Cpitolo Disequzioni i primo gro Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Relazioni e funzioni. Relazioni

Relazioni e funzioni. Relazioni Relzioni e unzioni Relzioni Deinizione: dti due insiemi A e B, si deinise un relzione R tr A e B un orrispondenz stilit d un proposizione tr un elemento A e B, in tl so si die he è in relzione on e si

Dettagli

a a = 1, a a = 0; a a = 1, a a = 0; e quindi, = (a a ) (a a ) = (a a) a = 0 a = a

a a = 1, a a = 0; a a = 1, a a = 0; e quindi, = (a a ) (a a ) = (a a) a = 0 a = a Definizione 1. Si R un insieme otto i ue leggi i composizione interne e. Si ice che l struttur lgebric (R,, ) è un reticolo (lgebrico) se e verificno le proprietà: (1) x, y, z R, (x y) z = x (y z); (x

Dettagli

Esercizi per il corso di Calcolatori Elettronici. svolti da Mauro IACOVIELLO & Fabio LAUDANI

Esercizi per il corso di Calcolatori Elettronici. svolti da Mauro IACOVIELLO & Fabio LAUDANI Eserizi per il orso i loltori Elettronii svolti Muro OVELLO & Fio LUDN Prte seon : Mhine stti finiti ESERZO : Mhin i Mely Si t l seguente mhin i Mely, sintetizzre un iruito he l implementi, utilizzno un

Dettagli

Elettronica dei Sistemi Digitali Disegno del layout di porte logiche combinatorie CMOS

Elettronica dei Sistemi Digitali Disegno del layout di porte logiche combinatorie CMOS Elettroni ei Sistemi Digitli Disegno el lout i porte logihe omintorie CMOS Vlentino Lierli Diprtimento i Tenologie ell Informzione Università i Milno, 26013 Crem e-mil: lierli@ti.unimi.it http://www.ti.unimi.it/

Dettagli

L insieme Q+ Le frazioni Operazioni con le frazioni Problemi con le frazioni

L insieme Q+ Le frazioni Operazioni con le frazioni Problemi con le frazioni L insieme Q+ Le frzioni Operzioni on le frzioni Prolemi on le frzioni Le frzioni Ini l rispost estt. In un frzione il numertore ini SEZ. C in qunte prti si ivie l unità. qunti interi si onsierno. qunte

Dettagli

Tecniche di Progettazione Digitale Progettazione e layout di porte logiche combinatorie CMOS p. 2

Tecniche di Progettazione Digitale Progettazione e layout di porte logiche combinatorie CMOS p. 2 Tenihe i Progettzione Digitle Progettzione e lout i porte logihe omintorie CMOS Vlentino Lierli Diprtimento i Tenologie ell Informzione Università i Milno, 26013 Crem e-mil: lierli@ti.unimi.it http://www.ti.unimi.it/

Dettagli

FORMULARIO GENERALE DEI CORSI DI ISTITUZIONI DI MATEMATICHE

FORMULARIO GENERALE DEI CORSI DI ISTITUZIONI DI MATEMATICHE FORMULARIO GENERALE DEI CORSI DI ISTITUZIONI DI MATEMATICHE ALGEBRA LINEARE Operzioni tr mtrici Sino A = { ij } e B = {b ij } venti l stess imensione. L loro somm è l mtrice C i cui elementi sono {c ij

Dettagli

Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Sintesi Sequenzile Sinron Sintesi Comportmentle di Reti Sequenzili Sinrone Riduzione del numero degli stti per Mhine Non Completmente Speifite Comptiilità Versione del 9/12/03 Mhine non ompletmente speifite

Dettagli

Verifica per la classe seconda COGNOME... NOME... Classe... Data...

Verifica per la classe seconda COGNOME... NOME... Classe... Data... L rett Cpitolo Rett erifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt............................... Rett Rette

Dettagli

Alberi. Cosa sono gli alberi? Strutture gerarchiche di ogni tipo. Corso di Informatica 2. Generale. Colonnello 1. Colonnello k

Alberi. Cosa sono gli alberi? Strutture gerarchiche di ogni tipo. Corso di Informatica 2. Generale. Colonnello 1. Colonnello k Alei Coso i Infomti 2 Cos sono gli lei? Stuttue gehihe i ogni tipo Genele Colonnello 1 Colonnello k Mggioe 1,1 Mggioe 1,m Cpitno Mggioe k,1 Mggioe k,n Stuttue gehihe i ogni tipo Stuttue ti 1. Tipi i to

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe terza. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe terza. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse terz Suol..........................................................................................................................................

Dettagli

Minimizzazione di automi

Minimizzazione di automi Minimizzzione di utomi Teorem e per ogni stto q di un DFA si re un loo tr q e tutti gli stti equivlenti q, llor l insieme dei lohi distinti rppresent un prtizione dell insieme degli stti. Ne deriv he ogni

Dettagli

Equazioni di primo grado

Equazioni di primo grado Cpitolo Equzioni i primo gro Equzioni i primo gro erifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

j Verso la scuola superiore Verso l algebra astratta

j Verso la scuola superiore Verso l algebra astratta j erso l suol superiore erso l lger strtt +nsiemi unzioni Operzioni inrie e strutture lgerihe Relzioni Logi Proilità +nsiemi ndividu l rispost estt. Un insieme è finito se: è formto d pohi elementi. è

Dettagli

Scomposizione di polinomi 1

Scomposizione di polinomi 1 Somposizione i un polinomio Cpitolo Somposizione i polinomi 1 erifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Componenti per l elaborazione binaria dell informazione. Sommario. Sommario. Approfondimento del corso di reti logiche. M. Favalli.

Componenti per l elaborazione binaria dell informazione. Sommario. Sommario. Approfondimento del corso di reti logiche. M. Favalli. Sommrio Componenti per l elorzione inri ell informzione Approfonimento el orso i reti logihe M. Fvlli Engineering Deprtment in Ferrr Porte logihe 2 3 Aspetti tenologii 4 Reti logihe omintorie Anlisi M.

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del quinto appello, 3 luglio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del quinto appello, 3 luglio 2017 Testi 1 nlisi Mtemti I per Ingegneri Gestionle,.. 6-7 Sritto el quinto ppello, 3 luglio 7 Testi Prim prte, gruppo.. Dire per quli R l funzione f() := sin( 3 ) + 3 è resente su tutto R.. Disporre le seguenti funzioni

Dettagli

Algebra Relazionale. Operazioni nel Modello Relazionale

Algebra Relazionale. Operazioni nel Modello Relazionale lger Relzionle lger Relzionle Operzioni nel Moello Relzionle Le operzioni sulle relzioni possono essere espresse in ue ormlismi i se: lger relzionle: le interrogzioni (query) sono espresse pplino opertori

Dettagli

KIT ESTIVO MATEMATICA A.S. 2015/16 CLASSI SECONDE IeFP OPERATORE GRAFICO

KIT ESTIVO MATEMATICA A.S. 2015/16 CLASSI SECONDE IeFP OPERATORE GRAFICO ZENALE e BUTIINONE KIT ESTIVO MATEMATICA A.S. 0/ CLASSI SECONDE IeFP OPERATORE GRAFICO Al fine di tenere in llenmento le ilità mtemtihe propedeutihe ll lsse terz, onsiglimo lo svolgimento piere di eserizi

Dettagli

UNIVERSITÁ DEGLISTUDIDISALERNO C.d.L. in INGEGNERIA GESTIONALE Ricerca Operativa 12 Gennaio 2009 Prof. Saverio Salerno. Compito A

UNIVERSITÁ DEGLISTUDIDISALERNO C.d.L. in INGEGNERIA GESTIONALE Ricerca Operativa 12 Gennaio 2009 Prof. Saverio Salerno. Compito A 1. Risolvere i seguenti problemi: 12 Gennio 2009 Compito A () stbilire se il vettore (3, 2, 0) è combinzione convess i u 1 =(3, 0, 6) e u 2 =(3, 3, 3); (b) per il poliero S = (x 1,x 2 ) R 2 :0 x 1 1, 0

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

DAI POLIGONI ALLE SUPERFICI TOPOLOGICHE

DAI POLIGONI ALLE SUPERFICI TOPOLOGICHE DAI POLIGONI ALLE SUPERFICI TOPOLOGICHE E1 Avete visto ome prteno un rettngolo si possno ostruire un ilinro, un nstro i Moeius e un toro, inollno i lti seono le inizioni ei olori. Or provte utilizzre l

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

Unità D1.2 Selezione e proiezione

Unità D1.2 Selezione e proiezione (A) CONOSCENZA TEMINOLOGICA Dre un reve esrizione ei termini introotti: ienominzione Selezione Proiezione Composizione i operzioni (B) CONOSCENZA E COMPETENZA isponere lle seguenti omne proueno nhe qulhe

Dettagli

Circonferenza e cerchio La circonferenza e il cerchio Poligoni inscritti e circoscritti a una circonferenza

Circonferenza e cerchio La circonferenza e il cerchio Poligoni inscritti e circoscritti a una circonferenza ironferenz e erhio L ironferenz e il erhio Poligoni insritti e irosritti un ironferenz L ironferenz e il erhio Stilisi se le seguenti ffermzioni sono vere o flse. SEZ. M e f g h Il rpporto tr l lunghezz

Dettagli

operazioni con vettori

operazioni con vettori omposizione e somposizione + = operzioni on vettori = + = + Se un vettore può essere dto dll omposizione di due o più vettori, questi vettori omponenti possono essere selti lungo direzioni ortogonli fr

Dettagli

Lezione n.9 Peer-to-Peer Systems and Applications Capitolo 8

Lezione n.9 Peer-to-Peer Systems and Applications Capitolo 8 Università egli Stui i Pisa Dipartimento i Inormatia Lezione n. Peer-to-Peer Systems an Appliations Capitolo Pastry: proposto nel 00 a Rowstron (Rie University) e Drushel (Mirosot) Oiettivo prinipale:

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologie informtihe per l himi Dr. Sergio Brutti Mtrii Prodotto tr mtrii d Dte mtrii x Il prodotto delle due mtrii produe un nuov mtrie on un numero di righe pri l numero di righe dell mtrie e numero

Dettagli

Architettura del calcolatore Esempi dettagliati di funzionamento interno di memoria e processore

Architettura del calcolatore Esempi dettagliati di funzionamento interno di memoria e processore Corso i Cloltori Elettronii I Arhitettur el loltore Esempi ettgliti i funzionmento interno i memori e proessore ing. Alessnro Cilro Corso i Lure in Ingegneri Biomei Sommrio In quest presentzione verrnno

Dettagli

4 - TRASFORMAZIONI DI VARIABILI CASUALI

4 - TRASFORMAZIONI DI VARIABILI CASUALI 4 - RASFORMAZIONI DI VARIABILI CASUALI 4 rsformzioni i vriili suli Cominimo un esempio Si l vriile sule lnio i un o non truto : / / / 4 / 5 / / e g() si l orrisponenz: pri test ispri roe Poihé g()g(4)g()test

Dettagli

Componenti per l elaborazione binaria dell informazione. Sommario. Sommario. Approfondimento del corso di reti logiche. M. Favalli.

Componenti per l elaborazione binaria dell informazione. Sommario. Sommario. Approfondimento del corso di reti logiche. M. Favalli. Sommrio Componenti per l elorzione inri ell informzione Approfonimento el orso i reti logihe M. Fvlli Engineering Deprtment in Ferrr Porte logihe 2 Il livello swith 3 Aspetti tenologii 4 Reti logihe omintorie

Dettagli

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico I S I E. Fermi - Lu Istituto Tenio settore Tenologio nno solstio / Progrmm di MTEMTI lsse I Insegnnte Podestà Tizin Gli insiemi numerii I numeri nturli, i numeri interi, i numeri rzionli. ddizione, sottrzione,

Dettagli

Anno 2. Triangoli rettangoli e teorema delle corde

Anno 2. Triangoli rettangoli e teorema delle corde Anno Tringoli rettngoli e teorem delle orde 1 Introduzione In quest lezione impreri d pplire i teoremi di Eulide e di Pitgor e sopriri quli prtiolrità nsondono i tringoli rettngoli on ngoli prtiolri. Infine,

Dettagli

01 Matematica Liceo \ Unità Didattica N 6 La retta 1

01 Matematica Liceo \ Unità Didattica N 6 La retta 1 Mtemti Lieo \ Unità Didtti N 6 L rett Unità didtti N 6 L rett rtesin ) Equzione vettorile dell rett 2) Equzioni prmetrihe dell rett 3) Equzione dell rett pssnte per due punti 4) Equzione dell rett pssnte

Dettagli

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo:

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo: FUNZIONI MATEMATICHE Le relzioni mtemtihe utilizzte per desrivere fenomeni nturli, in iologi ome in ltre sienze, possono ovvimente essere le più svrite. Per lo più si trtt di equzioni lineri, qudrtihe,

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

ESERCIZIO DI ASD DEL 27 APRILE 2009

ESERCIZIO DI ASD DEL 27 APRILE 2009 ESERCIZIO DI ASD DEL 27 APRILE 2009 Dimetro Algoritmi. Ricordimo che un grfo non orientto, ciclico e connesso è un lero. Un lero può essere pensto come lero rdicto un volt che si si fissto un nodo come

Dettagli

UTILIA SULL INTEGRALE MULTIPLO SECONDO RIEMANN

UTILIA SULL INTEGRALE MULTIPLO SECONDO RIEMANN UTILIA SULL INTGRAL MULTIPLO SCONDO RIMANN Avvertenz: tutto iò detto nel seguito vle in R n e non solo in R 2. 1. INTGRAL DI RIMANN SU RTTANGOLI Un insieme R 2 si die essere un rettngolo (hiuso) se = [,b]

Dettagli

ESERCIZI SVOLTI DEL CORSO DI TRASMISSIONE NUMERICA

ESERCIZI SVOLTI DEL CORSO DI TRASMISSIONE NUMERICA Università egli Stui i rento Corso i Lure in Ingegneri elle eleomunizioni ESERCIZI SVOLI DEL CORSO DI RASMISSIONE NUMERICA Prof Lorenzo Bruzzone ESERCIZIO Costruire un oie vente n=3, k=2 on rità isri,

Dettagli

Alberi. ) è una sequenza ordinata, in cui a è l etichetta della radice, e

Alberi. ) è una sequenza ordinata, in cui a è l etichetta della radice, e Aleri Gli leri (finiti, ipotesi or in vnti sottintes) si possono veere ome un generlizzzione elle sequenze lineri (vettori o liste) nel senso he, mentre queste in ultime isun elemento possiee l più un

Dettagli

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi SUGLI INSIEMI 1.Insiemi e operzioni su di essi Il concetto di insieme è primitivo ed è sinonimo di clsse, totlità. Si A un insieme di elementi qulunque. Per indicre che è un elemento di A scriveremo A.

Dettagli

VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA

VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA trtto Mtemti in zione, A. Arpinti, M. Musini Mettimoi ll prov! Suol..........................................................................................................................................

Dettagli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli Ellisse ed iperole Ellisse Definizione: si definise ellisse il luogo geometrio dei punti del pino per i quli è ostnte l somm delle distnze d due punti fissi F e F detti fuohi. L equzione noni dell ellisse

Dettagli

Risoluzione dei sistemi di equazioni col metodo delle matrici

Risoluzione dei sistemi di equazioni col metodo delle matrici Risoluzione ei sistemi i equzioni ol metoo elle mtrii Un sistem i n equzioni e n inonite può essere rppresentto ome mtrie formt i soli oeffiienti. Dto il sistem: x+ y+ z= x+ y+ z= x+ y+ z= L su mtrie srà:

Dettagli

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data...

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data... Cpitolo Monomi e polinomi Monomi Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Numeri razionali COGNOME... NOME... Classe... Data...

Numeri razionali COGNOME... NOME... Classe... Data... I numeri rzionli Cpitolo Numeri rzionli Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

A.A.2009/10 Fisica 1 1

A.A.2009/10 Fisica 1 1 Mhine termihe e frigoriferi Un mhin termi è un mhin he, grzie un sequenz i trsformzioni termoinmihe i un t sostnz, proue lvoro he può essere utilizzto. Un mhin solitmente lvor su i un ilo i trsformzioni

Dettagli

ANALISI 1 ANALISI A Prima Prova Intermedia 11 novembre 2017

ANALISI 1 ANALISI A Prima Prova Intermedia 11 novembre 2017 1 Sino ti E R, x R e supponete he vlg l seguente ffermzione: Qule elle seguenti ffermzioni è neessrimente ver? x E; E ontiene infiniti punti; Nessun elle ltre tre ffermzioni è neessrimente ver; x / E e

Dettagli

Algebra» Appunti» Disequazioni esponenziali

Algebra» Appunti» Disequazioni esponenziali MATEMATICA & FISICA E DINTORNI Psqule Spiezi Algebr» Appunti» Disequzioni esponenzili DEFINIZIONE Si definisce disequzione esponenzile ogni disequzione nell qule l incognit è presente nell esponente di

Dettagli

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano Geometri nliti +l pino rtesino Le funzioni rett, prol, iperole Le trsformzioni sul pino rtesino SEZ. P +l pino rtesino Osserv le oorinte ei seguenti punti: (, 0), (, ), C(, +), D + +, E(+, 9)., Che os

Dettagli

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico I S I E. Fermi - Lu Istituto Tenio settore Tenologio nno solstio / Progrmm di MTEMTI lsse I Insegnnte Podestà Tizin Gli insiemi numerii I numeri nturli, i numeri interi, i numeri rzionli. ddizione, sottrzione,

Dettagli

Ambiguità D 11 = SS ( S S S ( S (S ) S ( S ((S )) S ( + S (( )) S (S (( )) (S) (S (( )) ( ) ( (( )) ( )

Ambiguità D 11 = SS ( S S S ( S (S ) S ( S ((S )) S ( + S (( )) S (S (( )) (S) (S (( )) ( ) ( (( )) ( ) Amiguità D 11 = ( ( ( ) ( (( )) ( (( )) ( (( )) () ( (( )) ( ) ( (( )) ( )! ( ) ( )! Un Grmmti si die migu se medesime stringhe sono generte d leri sintttii di differente struttur ovvero on due distinte

Dettagli

quattro trasformazioni

quattro trasformazioni ilo di rnot e un ilo termio ostituito d quttro trsformzioni p() reversibili di un gs perfetto : un espnsione isoterm d tempertur un espnsione dibti d un ompressione isoterm d tempertur un ompressione dibti

Dettagli

! è l'insieme A degli attributi di ! $ B IL PROBLEMA DELLE VISTE MATERIALIZZATE: PROBLEMI IL PROBLEMA DELLE VISTE MATERIALIZZATE

! è l'insieme A degli attributi di ! $ B IL PROBLEMA DELLE VISTE MATERIALIZZATE: PROBLEMI IL PROBLEMA DELLE VISTE MATERIALIZZATE IL PROBLEMA DELLE VISTE MATERIALIZZATE IL PROBLEMA DELLE VISTE MATERIALIZZATE: PROBLEMI Le viste nei DBMS relzionli Utilità elle viste mterilizzte per l'eseuzione i interrogzioni Venite(ProutI, NegozioI,

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli

). Poiché tale funzione è una parabola, il suo

). Poiché tale funzione è una parabola, il suo PROBLEMA ) Il rggio dell circonferenz di centro B vri tr i vlori: x b) ( x x ) ( PQCR) = ( ABC) ( APR) ( BPQ) = ( x) x = + 8 6 8 I vlori di x che rendono minim o mssim l funzione rendono, rispettivmente,

Dettagli

Codici di Huffman. Codici prefissi. Sia dato un file di 120 caratteri con frequenze:

Codici di Huffman. Codici prefissi. Sia dato un file di 120 caratteri con frequenze: Codii di Huffmn Codii di Huffmn I odii di Huffmn vengono mpimente usti nell ompressione dei dti (pkzip, jpeg, mp3). Normlmente permettono un risprmio ompreso tr il 2% ed il 9% seondo il tipo di file. Sull

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013 Appunti di Algebr Linere Mppe Lineri 0 mggio 203 Indie Ripsso di Teori 2. Cos è un mpp linere.................................. 2.2 Aluni ftti importnti................................... 3 2 Eserizi 4

Dettagli

GEOMETRIA EUCLIDEA PROF. VINCENZO LO PRESTI CONCETTI GEOMETRICI FONDAMENTALI

GEOMETRIA EUCLIDEA PROF. VINCENZO LO PRESTI CONCETTI GEOMETRICI FONDAMENTALI GEOMETRI EUCLIDE PROF. VINCENZO LO PRESTI CONCETTI GEOMETRICI FONDMENTLI 1 GEOMETRI Letterlmente geometri signific misur (metron) dell terr (geo). Lo scopo principle dell geometri è quello di studire e

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse Prim Suol..........................................................................................................................................

Dettagli

COGNOME... NOME... Classe... Data...

COGNOME... NOME... Classe... Data... Cpitolo I tringoli Criteri i ongruenz - Tringoli isoseli erifi per l lsse prim Clsse.................................... Dt............................... Congruenz Tringolo isosele Teorem Quesiti 186

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri i Primo Gro Clsse Prim Suol..........................................................................................................................................

Dettagli

Trigonometria 1 Teorema 2 Teorema

Trigonometria 1 Teorema 2 Teorema r cos Trigonometri Teorem In un tringolo rettngolo, l misur i un cteto è ugule l prootto ell misur ell ipotenus per il coseno ell ngolo icente oppure per il seno ell ngolo opposto. r sin cos sin r Teorem

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita 86 Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di

Dettagli

Argomento 10 Integrali impropri

Argomento 10 Integrali impropri Premess Argomento Integrli impropri Nell Arg. 9 è stt introdott l nozione di integrle definito f() d per funzioni ontinue f : [, b] R. Un derog ll ontinuità di f è nhe stt introdott, m solo per onsiderre

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di seondo

Dettagli

Fondamenti di Informatica Ingegneria Meccanica, Elettrica, Gestionale Prova scritta del 13 Aprile 2004

Fondamenti di Informatica Ingegneria Meccanica, Elettrica, Gestionale Prova scritta del 13 Aprile 2004 A Fonamenti i Informatia Ingegneria Meania, Elettria, Gestionale Prova sritta el 13 Aprile 200 NOME MATRICOLA Eserizio 1 Desrivere quale funzione i e n alola l algoritmo espresso al iagramma i flusso a

Dettagli

Verifica 10 ESPONENZIALI E LOGARITMI

Verifica 10 ESPONENZIALI E LOGARITMI Verific 0 SPONNZIALI LOGARITMI TST I FIN APITOLO Qule delle seguenti figure non rppresent un funzione? A È dt l funzione f : R R, descritt dll legge 4. Qunto vle l immgine di 0? A 0... 4. 4. L funzione

Dettagli

Calcolo integrale per funzioni di una variabile

Calcolo integrale per funzioni di una variabile Clolo integrle per unzioni di un vriile Clolo integrle Integrle deinito Si :[,] R, limitt ξ ξ ξ ξ 4 ξ 5 = 4 5 = Costruimo l somm di Cuhy-Riemnn n n S n j j j j j n j Dove l suddivisione dell intervllo

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

Erasmo Modica. : K K K

Erasmo Modica.  : K K K L insieme dei numeri reli L INSIEME DEI NUMERI REALI Ersmo Modic helthinsurnce@tin.it www.glois.it Per introdurre l insieme dei numeri reli si hnno disposizione diversi modi. Generlmente l iennio si preferisce

Dettagli

Unità Didattica N 02. I concetti fondamentali dell aritmetica

Unità Didattica N 02. I concetti fondamentali dell aritmetica 1 Unità Didttic N 0 I concetti fondmentli dell ritmetic 01) Il concetto di potenz 0) Proprietà delle potenze 0) L nozione di rdice ritmetic 0) Multipli e divisori di un numero 05) Criteri di divisibilità

Dettagli

Esercizi di Informatica Teorica

Esercizi di Informatica Teorica 6-myhill-nerode- Esercizi di Informtic Teoric Linguggi regolri: espressioni regolri e grmmtiche, proprietà decidiili e teorem di Myhill-Nerode Teorem di Myhill-Nerode richimi teorem si L un linguggio sull

Dettagli

Le basi della geometria piana Punti, rette, piani Segmenti, angoli, rette parallele e perpendicolari

Le basi della geometria piana Punti, rette, piani Segmenti, angoli, rette parallele e perpendicolari Le si ell geometri pin Punti, rette, pini Segmenti, ngoli, rette prllele e perpeniolri SEZ. D Punti, rette, pini 1 Stilisi se le seguenti ffermzioni sono vere o flse. e f g Per un punto pssno infinite

Dettagli

c β Figura F2.1 Angoli e lati in un triangolo rettangolo.

c β Figura F2.1 Angoli e lati in un triangolo rettangolo. F. Trigonometri F. Risoluzione dei tringoli rettngoli Risolvere un tringolo rettngolo signifi trovre tutti i suoi lti e tutti i suoi ngoli. Un ngolo lo si onose già ed è l ngolo retto. Le inognite sono

Dettagli

Esercizi. Prima parte Soluzioni e risoluzioni

Esercizi. Prima parte Soluzioni e risoluzioni Eserizi. Prim rte Soluzioni e risoluzioni Soluzioni. ) ;. ) ; 3. 4) ; 4. ) ;. ) ; 6. ) ; 7. 3) ; 8. 4) Risoluzioni. Avete visto uli sono le risoste estte. Vi onviene, rim i veere ome si rriv ll soluzione,

Dettagli

Esercitazione n. 2. Gian Carlo Bondi VERO/FALSO

Esercitazione n. 2. Gian Carlo Bondi VERO/FALSO Eseritzioni svolte 2010 Suol Duemil 1 Eseritzione n. 2 Aspetti eonomii e lusole el ontrtto i omprvenit Risultti ttesi Spere: gli spetti tenii, giuriii e eonomii el ontrtto i omprvenit. Sper fre: eterminre

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio Il Moello elzionle Proposto E. F. o nel 1970 per vorire l inipenenz ei ti e reso isponiile ome moello logio in DM reli nel 1981 si s sul onetto mtemtio i relzione, questo ornise l moello un se teori he

Dettagli

Informatica Teorica. Proprietà dei linguaggi regolari

Informatica Teorica. Proprietà dei linguaggi regolari Informti Teori Proprietà dei Linguggi Regolri 1 Proprietà dei linguggi regolri pumping lemm hiusur rispetto d operzioni insiemistihe unione, omplementzione, intersezione ontenzione, stell rpporti on espressioni

Dettagli

INSIEMI, RETTA REALE E PIANO CARTESIANO

INSIEMI, RETTA REALE E PIANO CARTESIANO INSIEMI, ETTA EALE E PIANO CATESIANO ICHIAMI DI TEOIA SUGLI INSIEMI Un insieme E è definito ssegnndo i suoi elementi, tutti distinti tr loro: se x è un elemento di E scrivimo x E, mentre, se non lo è,

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA

VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA trtto d Mtemti in zione, A. Arpinti, M. Musini Mettimoi ll prov! Suol..........................................................................................................................................

Dettagli

Lezione 4: Introduzione al calcolo integrale

Lezione 4: Introduzione al calcolo integrale Lezione 4: Introduzione l clcolo integrle PARTE In quest prim prte si introdurrnno i concetti di integrle indenito, denito e improprio. In prticolre si cercherà di trttre in modo intuitivo l'interpretzione

Dettagli

a è detta PARTE LETTERALE

a è detta PARTE LETTERALE I MONOMI Si die MONOMIO un espressione letterle in ui le unihe operzioni presenti sino il prodotto e l divisione. Esempio è detto COEFFICIENTE del monomio e è dett PARTE LETTERALE Un monomio si die ridotto

Dettagli

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio Il Moello elzionle Proposto E. F. o nel 1970 per vorire l inipenenz ei ti e reso isponiile ome moello logio in DM reli nel 1981 si s sul onetto mtemtio i relzione, questo ornise l moello un se teori he

Dettagli