capacità si può partire dalla sua definizione: C = e dalla relazione fra la differenza di potenziale ed il campo elettrico: V

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "capacità si può partire dalla sua definizione: C = e dalla relazione fra la differenza di potenziale ed il campo elettrico: V"

Transcript

1 secizio (ll ppello 6/7/4) n conenstoe pino è costituito ue mtue qute i lto b septe un istnz. Il conenstoe viene completmente cicto ll tensione e poi scollegto ll bttei ust pe ciclo, così est isolto ll esteno. n lst qut i lto b, costnte ielettic, e spessoe pi l 5% ell istnz t le mtue è inseit centlmente t le mtue el conenstoe (vei figu). Si etemini, opo l inseimento ell lst nel conenstoe: ) l su cpcità; b) l enegi immgzzint l suo inteno (ttenzione il sistem è sempe isolto e scollegto ll bttei). Si noti che in questo poblem l bttei viene scollegt pim i cmbie l cpcità el sistem, quini l cic pesente sulle mtue non può ne nessun pte; questo è un pocesso cic costnte. Se vessimo tenuto collegt l bttei invece vemmo vuto un pocesso potenzile costnte in cui sebbe stt l cic sulle mtue vie. Inizimo il conto consieno, come chiee il poblem, un conenstoe vuoto. Pe il clcolo ell cpcità si può ptie ll su efinizione: e ll elzione f l iffeenz i potenzile e il cmpo elettico: x. In effetti l cic pesente nelle mtue el conenstoe ipene l potenzile pplicto, così come il cmpo elettico. uini se iesco espimee il potenzile in funzione ell cic ttveso il cmpo elettico, posso spee i potel semplifice con il numetoe. In questo moo ottengo un cpcità non ipenente l potenzile pplicto, quini ipenente solo lle ctteistiche geometiche e fisiche el conenstoe, come eve essee. eimo unque come espimee il potenzile in funzione ell cic. Supponeno che quest vlg llo pplico il teoem i Guss e peno un cilino con sse pepenicole ll pist supeioe e supefici sop e sotto i ess. In questo moo posso tove il cmpo elettico ll inteno el conenstoe: 3 n volt tovto il cmpo pplico l efinizione i potenzile cpcità come: Mente l enegi vle: x e posso così espimee l

2 O inseisco il ielettico e pe cpie che succee mi evo icoe come si compot un mteile el genee quno viene posto in un egione see i un cmpo elettico: le sue molecole si polizzno cecno i nnulle il cmpo esteno. n po come fnno i conuttoi, m non veno elettoni completmente libei è meno efficiente e non iesce nnulle completmente il cmpo l suo inteno, m solo iminuilo i un fttoe. Inolte come pe le lste el conenstoe possimo consiee le ue supefici polizzte el blocchetto come ue pini infiniti. pplicno Guss tovimo che il loo contibuto l cmpo totle è iveso zeo solo nell egione i spzio che st f loo, mente il contibuto è nullo fuoi l ielettico. In questo moo bbimo suiviso lo spzio ento il conenstoe in 3 egioni: quell supeioe e quell infeioe in cui conoscimo già qunto vle il cmpo elettico peché non cmbi ispetto l cso el conenstoe nco vuoto e l egione ento il ielettico in cui il cmpo quini vle: onosceno il vloe el cmpo elettico lungo tutto il pecoso f le ue lste, possimo use nco l efinizione i iffeenz i potenzile: 3 qui ottenimo pe l cpcità: ( ) he un un enegi finle: ( ) ( ) Ricono che è sempe mggioe i, possimo veee csi limite: se sostituimo nell espessione sop ottenimo cioè sebbe come non ve inseito niente. Se nell lto limite è molto gne o meglio tene un vloe infinito si ottiene un. In effetti quest ultimo cso equivle inseie un conuttoe e questo tsfom il conenstoe inizile in ue conenstoi in seie con istnze f le mtue uguli.

3 secizio Due conenstoi hnno l stess e elle mtue 4* -4 m, l istnz f le lste el pimo è -3 m. Il secono è iempito con ielettico i 3. e igiità ielettic 6 volts/m. Se collego i ue conenstoi in seie, clcole l istnz minim f le mtue el secono conenstoe in moo che il sistem poss soppote un iffeenz i potenzile i 4 senz che si istugg il ielettico. lcole inolte l enegi immgzzint nel sistem in quest conizione. L igiità ielettic i un mteile è il mssimo cmpo che può soppote pim che si geneino sciche elettiche con l su conseguente istuzione. Pe isolvee il poblem possimo esempio tove il cmpo cui è sottoposto il secono conenstoe in funzione ell istnz f le sue mtue, polo ugule ll igiità ielettic e invetie l fomul pe itove tle istnz. Ptimo con l cpcità ei ue conenstoi in seie: O ossevimo che l cic sulle mtue el pimo conenstoe sà ugule quell sul secono e ess si può espimee in funzione ell cpcità ell seie e ell iffeenz i potenzile totle: Il cmpo ll inteno el secono conenstoe si può tove pplicno il teoem i Guss con il solito cilino pepenicole un elle ue mtue, fceno ttenzione che o ll inteno el conenstoe non bbimo il vuoto m un ielettico, quini bisogn sostituie con : uesto è il cmpo pesente nel secono conenstoe e obbimo fe in moo che si infeioe ll su igiità ielettic: > < < <

4 Nel cso bbi il vloe limite tovto o, l enegi immgzzint isult: secizio 3 Due conenstoi i cpcità e vengono cicti con l stess iffeenz i potenzile. n volt cichi sono scollegti ll p e collegti f loo in moo invetie le polità. lcole l cic finle sulle loo mtue e l enegi inizile e finle el sistem. uno cico i ue conenstoi su ognuno v un cet cic in bse ll su cpcità: uini l enegi totle el sistem è: ( ) O stcco i conenstoi, quini l cic totle pesente sul mio sistem non può più cmbie. ollegnoli con le polità ovescite, si và un iistibuzione ell cic. Se chimimo T l cic complessiv pesente su un lto comune ei conenstoi, il potenzile finle comune cui giungono e e le ciche finli su ciscun lto ei conenstoi, possimo scivee il seguente sistem i equzioni: T T isolveno il sistem si ottiene: ( ) ( ) e un enegi:

5 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) uini si h un enegi finle ives zeo solo se le ue cpcità sono ivese loo. In effetti se peno ue conenstoi uguli, li cico con l stess p e poi li collego l ovescio loo hnno esttmente l stess cic sulle mtue m mess con il segno opposto; l momento el conttto ess si iistibuisce e tutto ton come se non li vessi cicti. D note che l enegi finle è minoe i quell inizile. In effetti noi ci stimo occupno solo ello stto inizile e finle e non i come ci si iv. omunque l enegi che mnc se ne è nt pe effetti issiptivi come il cloe fomto pe effetto Joule unte il pssggio i cic un conenstoe ll lto. secizio 4 (ll ppello 6/7/4 B) ) n conenstoe pino è costituito ue mtue qute i lto septe un istnz 4. Il conenstoe viene completmente cicto ll tensione tmite un bttei e est collegto quest ultim. n lst conuttice qut i lto e spessoe pi l 5% ell istnz t le mtue è inseit centlmente t le mtue metà st el conenstoe (vei figu). Si etemini opo l inseimento ell lst nel conenstoe: ) l su cpcità; b) l enegi immgzzint l suo inteno (ttenzione: il conenstoe è sempe collegto ll bttei). Inizilmente l cpcità el conenstoe vle: 4 Inseisco l lst teneno l bttei collegt, questo vuol ie che il suo potenzile non cmbi m ci sà uno spostmento i ciche. ll fine ottengo un egione i spzio nell qule pe spostmi ll mtu potenzile negtivo quell potenzile positivo, posso scegliee f ue pecosi: quello che pss ttveso l lst i metllo e quello che pss nel vuoto. uesto vuol ie che ho che fe con ue conenstoi in pllelo. lcolimo le cpcità i entmbi. Pe quello contenente solo il vuoto si pplic iettmente l fomul clssic ell cpcità, stno ttenti consiee l supeficie giust, cioè * (se vi est ifficile veee quest supeficie povte isegne il sistem el conenstoe con l lst infilt fino metà lto, visti ll lto: le mtue iventno ei quti i lto ) :

6 8 4 Pe clcole l cpcità ell lt metà contenente il metllo si può use il metoo i espimee il potenzile in funzione el cmpo elettico e quest ultimo in funzione ell cic. Intnto clcolimo il cmpo elettico nelle ivese egioni ll inteno ei quest zon: pplicno il teoem i Guss su un cilino con sse pepenicole ll lst supeioe el conenstoe e supefici i ue lti i questo, si tov: S S uesto cmpo è lo stesso si nell pte i spzio sop l lst i metllo inseit nel conenstoe che in quell sotto. ll inteno ell lst il cmpo è nullo peché ppunto si ttt i un metllo. O ll efinizione i potenzile si può scivee: q q x quini l cpcità i questo conenstoe sà: q 6 ll fine l cpcità isultnte sà: mente l su enegi sà: 48 7 In questo cso esseno l cpcità finle mggioe, nche l enegi finle el sistem è mggioe.

Ingegneria Elettronica. Compito di Fisica giugno 2010

Ingegneria Elettronica. Compito di Fisica giugno 2010 Ingegnei Elettonic. ompito i Fisic 5 giugno x y Esecizio Un uot, ssimilbile un cilino i mss M e ggio R, sle lungo un pino inclinto (i un ngolo θ ispetto l pino oizzontle) sotto l zione i un momento motoe

Dettagli

Problemi: dinamica. blocco M: blocco m: i due corpi hanno stressa accelerazione a!!! T + decimali e cifre significative!!

Problemi: dinamica. blocco M: blocco m: i due corpi hanno stressa accelerazione a!!! T + decimali e cifre significative!! Poblemi: inmic. Un blocco i mss M. k scoe su un supeicie oizzontle senz ttito. le blocco è leto meinte un une che pss ttveso un pulei un secono blocco i mss m. k. une e pulei sono pive i mss. Mente il

Dettagli

1) Una carica puntiforme q si trova al centro di una sfera cava conduttrice di raggio

1) Una carica puntiforme q si trova al centro di una sfera cava conduttrice di raggio 1) Un cic puntifome si tov l cento di un sfe cv conduttice di ggio inteno e spessoe. Clcole nel cso di conduttoe isolto: il cmpo elettico, il potenzile e l enegi elettosttic in tutto lo spzio. Cso ()

Dettagli

F (r(t)), d dt r(t) dt

F (r(t)), d dt r(t) dt Cmpi vettorili Un cmpo vettorile è un funzione vlori vettorili F : A R, con A R n, ove in questo cso l imensione el ominio e el coominio è l stess. F ( 1, 2,..., n ) (f 1 ( 1, 2,..., n ), f 2 ( 1, 2,...,

Dettagli

3) Il campo elettrostatico nella regione di spazio compresa tra il filo ed il cilindro (cioè per 0<r<R 1 ) è

3) Il campo elettrostatico nella regione di spazio compresa tra il filo ed il cilindro (cioè per 0<r<R 1 ) è Fcoltà i Ingegnei Pov Scitt i Fisic II - 3 Febbio 4 uesito n. Un lungo cilino metllico cvo i ggio inteno e ggio esteno viene cicto con un ensità i cic linee pi. Lungo il suo sse viene inseito un lungo

Dettagli

Campo elettrico in un conduttore

Campo elettrico in un conduttore Cmpo elettico in un conduttoe In entmbi i csi se il conduttoe è isolto e possiede un cic totle, dett cic si dispone sull supeficie esten del conduttoe; se così non fosse inftti ci sebbe un foz sulle ciche

Dettagli

11. Geometria piana ( ) ( ) 1. Formule fondamentali. Rettangolo. A = b = h = = b h. b = base h = altezza. Quadrato

11. Geometria piana ( ) ( ) 1. Formule fondamentali. Rettangolo. A = b = h = = b h. b = base h = altezza. Quadrato 11. Geometi pin 1. Fomule fonmentli Rettngolo = h = h = h p= + h p= + h h= p = p h + ( ) = h = h h = = se = igonle p = peimeto h = ltezz = e p = semipeimeto Quto = l l = = l l = l = lto = igonle = e p

Dettagli

). Per i tre casi indicati sarà allora: 1: L L 2

). Per i tre casi indicati sarà allora: 1: L L 2 apitolo 0 Enegia potenziale elettica Domane. Il lavoo pe spostae una caica ta ue punti è: L 0(! ). Pe i te casi inicati saà alloa: L (50! 00 ) (50 ) : 0 0 : L 0! 0 3: L 0! 0 [5 ( 5 )] (50 ) [ 0 ( 60 )]

Dettagli

Meccanica Gravitazione

Meccanica Gravitazione Meccnic 08-09 Gvitzione Newton mm F -G u egge i gvitzione univesle E un foz centle F ± F() u mm S T 4p G m T T. Il momento ngole si consev. tiettoi si mntiene sullo stesso pino 3. velocità ele è costnte

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

In generale i piani possono essere tra loro

In generale i piani possono essere tra loro Leione 7 - Alge e Geometi - Anno emio 9/ In genele i pini possono essee t loo Pini istinti inienti in un ett ppesentt l sistem sop sitto se. Pini plleli se istinti se, oinienti se. Eseiio tem esme) Si

Dettagli

MATEMATICA FINANZIARIA CAP. 14 20

MATEMATICA FINANZIARIA CAP. 14 20 MTEMTIC FINNZIRI CP. 42 pputi di estimo INTERESSE SEMPLICE Iteesse semplice I C M C ( ) = fzioe di o [] C M G F M M G L S O N D Motte semplice di te costti 2 3 M R R R... R [2] 2 2 2 2 Poiché l fomul è

Dettagli

a) Progettare lo strato dielettrico, scegliendo una opportuna constante dielettrica εr2 e minimo spessore dmin (usare le opportune approssimazioni)

a) Progettare lo strato dielettrico, scegliendo una opportuna constante dielettrica εr2 e minimo spessore dmin (usare le opportune approssimazioni) secizio i vuole mssimizze l efficienz di un iveltoe di luce elizzto in silicio depositndo sop l supeficie un sottile stto di mteile dielettico (senz pedite. Lo stto deve gntie mssimo tsfeimento di potenz

Dettagli

Facoltà di Ingegneria Compito scritto di Fisica II Compito B

Facoltà di Ingegneria Compito scritto di Fisica II Compito B ε = 8.85 1 1 C N ; Fcoltà i Ingegnei Copito scitto i Fisic II 17.7.6 Copito B = 1 7 T A Esecizio n.1 α Un filo ettilineo inefinito è pecoso un coente I(t)= t (l coente e iett veso l lto, con α positivo).

Dettagli

Politecnico di Milano Facoltà di Ingegneria dell Automazione INFORMATICA INDUSTRIALE Appello COGNOME E NOME. 11 febbraio 2008 RIGA COLONNA MATRICOLA

Politecnico di Milano Facoltà di Ingegneria dell Automazione INFORMATICA INDUSTRIALE Appello COGNOME E NOME. 11 febbraio 2008 RIGA COLONNA MATRICOLA Politecnico i Milno Fcoltà i Ingegneri ell Automzione INFORMATICA INDUSTRIALE Appello COGNOME E NOME ebbrio 2008 RIGA COLONNA MATRICOLA Il presente plico pinzto, composto i quttro ogli (ronte/retro)eve

Dettagli

Fluidodinamica applicata Esercizi (Navier Stokes)

Fluidodinamica applicata Esercizi (Navier Stokes) ESERCIZIO (N.S.: COETTE p) Cnle iimensionle infinito. Pete speioe in moto con velocità. iente i pessione. Clcole: Pe qle vloe i è nllo lo sfozo viscoso sll pete speioe? Pe qle vloe i è nllo lo sfozo viscoso

Dettagli

Problema 1. Una distribuzione continua di carica vale, in coordinate cilindriche,

Problema 1. Una distribuzione continua di carica vale, in coordinate cilindriche, Corso i Lure in Mtemtic Prim prov in itinere i Fisic 2 (Prof. E. Sntovetti) 18 novemre 2016 Nome: L rispost numeric eve essere scritt nell pposito riquro e giustifict cclueno i clcoli reltivi. Prolem 1.

Dettagli

www.scuolainweb.altervista.org Problemi di Fisica La Dinamica

www.scuolainweb.altervista.org Problemi di Fisica La Dinamica www.suolinweb.ltevist.og L Dinmi Poblemi di isi L Dinmi PROBLEA N. Un opo di mss m 4 kg viene spostto on un foz ostnte 3 N su un supefiie piv di ttito pe un ttto s,3 m. Supponendo he il opo inizilmente

Dettagli

Campo elettrostatico nei conduttori

Campo elettrostatico nei conduttori Campo elettostatico nei conduttoi Consideeemo conduttoi metallici (no gas, semiconduttoi, ecc): elettoni di conduzione libei di muovesi Applichiamo un campo elettostatico: movimento di caiche tansiente

Dettagli

Fisica II. 2 Esercitazioni

Fisica II. 2 Esercitazioni Poitecnico i Toino Fisic II Esecitzioni Esecizi svoti Esecizio. Su i un fio i unghezz infinit è istibuit un cic unifome pe unità i unghezz λ 5 nc/m. Ccoe i cmpo eettico in un punto che ist 5 cm fio. Souzione:

Dettagli

Energia potenziale e dinamica del punto materiale

Energia potenziale e dinamica del punto materiale Enegia potenziale e dinamica del punto mateiale Definizione geneale di enegia potenziale (facoltativo) In modo geneale, la definizione di enegia potenziale può esee pesentata come segue. Sia un punto di

Dettagli

Momento di una forza rispettto ad un punto

Momento di una forza rispettto ad un punto Momento di un fo ispettto d un punto Rihimimo lune delle definiioni e popietà sui vettoi già disusse ll iniio del oso Podotto vettoile: ϑ ϑ sin sin θ Il vettoe è dietto lungo l pependiole l pino individuto

Dettagli

Qualche appunto sulle trasformazioni affini.

Qualche appunto sulle trasformazioni affini. Qulhe ppunto sulle tsfomzioni ffini. Due efinizioni i ffinità. Def. si ie ff i n ità un oisponenz iunivo t punti el pino A : he h ome invinti l llinemento ei punti e il pllelismo. Ossevzioni * A un ffinità

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

Dinamica: Applicazioni delle leggi di Newton

Dinamica: Applicazioni delle leggi di Newton Fisic Fcolà di Scienze MM FF e, Uniesià Snnio Dinmic: Appliczioni delle leggi di ewon Gionni Filell (filell@unisnnio.i) Il poblem genele dell dinmic Quindi se conoscimo ue le foze che giscono su un oggeo

Dettagli

I equazione cardinale della dinamica

I equazione cardinale della dinamica I equzione cdinle dell dinic I Sistei di pticelle Un siste di pticelle è un insiee di punti teili, definito dll ss e dll posizione di ciscun pticell. Il più seplice siste di pticelle è foto d due soli

Dettagli

Note su esperienza con il volano

Note su esperienza con il volano Note su espeienz con il olno 1 Cos è un olno? un mss più o meno "gnde" collegt solidlmente ll'lbeo motoe di un mcchin. A cos see un olno nelle mcchine? see d ccumule enegi cinetic nelle fsi di eccesso

Dettagli

MATRICI SIMILI E MATRICI DIAGONALIZZABILI

MATRICI SIMILI E MATRICI DIAGONALIZZABILI MATRICI SIMILI E MATRICI DIAGONALIZZABILI DEFINIZIONE: Due mtici qudte A e B, dello stesso odine n, si dicono simili se esiste un mtice non singole S, tle che isulti: B S A S L mtice S si chim nche mtice

Dettagli

Fisica II. 6 Esercitazioni

Fisica II. 6 Esercitazioni Esecizi svolti Esecizio 61 Un spi cicole di ggio è pecos d un coente di intensità i Detemine il cmpo B podotto dll spi in un punto P sul suo sse, distnz x dl cento dell spi un elemento infinitesimo di

Dettagli

Dischi e cilindri assialsimmetrici. Accoppiamenti forzati Dischi e cilindri

Dischi e cilindri assialsimmetrici. Accoppiamenti forzati Dischi e cilindri Dischi e cilini ssilsimmetici Accoppimenti fozti Dischi e cilini sempi Copi ssilsimmetici elstici elzioni i se O y h x Se Rh Stto pino i tensione z 0 0 z z R Ipotesi i se

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica II

Facoltà di Ingegneria Prova scritta di Fisica II Fcoltà di ngegnei Pov scitt di Fisic..7 7 Tm Not: ε = 8.85, 4 = π Nm A Esecizio n. Dto il cmpo elettico E = î x y z ( V / m) si detemini l densità di cic ρ nel punto P=(,,) e l cic totle in un cuo vente

Dettagli

ELETTROMAGNETI IBK Elettromagneti per l automazione flessibile

ELETTROMAGNETI IBK Elettromagneti per l automazione flessibile INDUCTIVE COMPONENTS I 0 I 0 IBK ELETTROMAGNETI IBK Elettomneti e l utomzione flessibile Ctloo eli elettomneti IBK e l zionmento ei sistemi oscillnti Eizione Mio 2004 www.eoitli.it/ootti/feee.tml Elettomneti

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

Esempi di campi magnetici e calcolo di induttanze.

Esempi di campi magnetici e calcolo di induttanze. 5d_EAEE_APPLCAZON CAMP MAGNETC STATC (ultim modific 7/10/017) Esempi di cmpi mgnetici e clcolo di induttnze. M. Usi 5d_EAEE_APPLCAZON CAMP MAGNETC STATC 1 Conduttoe ettilineo indefinito Si considei un

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

Compito di Fisica I. Ingegneria elettronica. A. A luglio 2010

Compito di Fisica I. Ingegneria elettronica. A. A luglio 2010 omito di Fisic I. Ingegnei elettonic... 9- - 7 luglio Esecizio Un unto mteile uo` muovesi in un dimensione soggetto d un foz F kx. ove: ) l enegi otenzile U(x) eltiv tle foz, onendo come zeo dell enegi

Dettagli

(in funzione di L, x e M).

(in funzione di L, x e M). SCA GENERAE T-A gennio 03 pof. spighi (Cd ingegnei Enegetic Un stellite tificile di mss m pecoe obite cicoli di ggio R ttono ll lun di mss M. Supponendo che il ggio dell obit R coincid con il ggio dell

Dettagli

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è:

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è: Titolzione Acido Debole Bse Forte L rezione che vviene nell titolzione di un cido debole HA con un bse forte NOH è: HA(q) NOH(q) N (q) A (q) HO Per quest rezione l costnte di equilibrio è: 1 = = >>1 w

Dettagli

d coulomb d volt b trasformatore d alternatore b amperometro d reostato

d coulomb d volt b trasformatore d alternatore b amperometro d reostato ppunti 7 TEST DI VERIFICA 1 Unità i misur ell ri elettri: henry weer volt oulom 2 Unità i misur ell pità elettri: oulom henry fr volt 3 Gener orrente lternt: umultore resistenz 4 Misur l tensione: resistometro

Dettagli

CINEMATICA DEL MOTO ROTATORIO DI UNA PARTICELLA

CINEMATICA DEL MOTO ROTATORIO DI UNA PARTICELLA CINEMAICA DEL MOO OAOIO DI UNA PAICELLA MOO CICOLAE: VELOCIA ANGOLAE ED ACCELEAZIONE ANGOLAE Si considei un pticell P in moto cicole che descive un co di ciconfeenz s. L ngolo di otzione ispetto d un sse

Dettagli

Fisica II. 1 Esercitazioni

Fisica II. 1 Esercitazioni isic II Esecizi svolti Esecizio. Clcole l foz che gisce sull cic Q µc, dovut lle ciche Q - µc e Q 7 µc disposte come ipotto in figu Q Q α 5 cm 6 cm Q Soluzione: L foz che gisce sull cic Q è dt dll composizione

Dettagli

Fisica II - Ingegneria Biomedica - A.A. 2016/ Appello del 4/7/2017

Fisica II - Ingegneria Biomedica - A.A. 2016/ Appello del 4/7/2017 sc II - Ingegne omedc -.. 6/ - ppello del // ---------------------------------------------------------------------------------------------------------------------- Nome ognome N o Mtcol -----------------------------------------------------------------------------------------------------------------------

Dettagli

A.A.2009/10 Fisica 1 1

A.A.2009/10 Fisica 1 1 Mhine termihe e frigoriferi Un mhin termi è un mhin he, grzie un sequenz i trsformzioni termoinmihe i un t sostnz, proue lvoro he può essere utilizzto. Un mhin solitmente lvor su i un ilo i trsformzioni

Dettagli

Note su esperienza con il volano

Note su esperienza con il volano Note su espeienz con il olno 1 Cos è un olno? un mss più o meno "gnde" collegt solidlmente ll'lbeo motoe di un mcchin. A cos see un olno nelle mcchine? see d ccumule enegi cinetic nelle fsi di eccesso

Dettagli

Elementi di Cinematica COORDINATE CARTESIANE. r r. & r COOORDINATE LOCALI COORDINATE POLARI. r = r. λ r

Elementi di Cinematica COORDINATE CARTESIANE. r r. & r COOORDINATE LOCALI COORDINATE POLARI. r = r. λ r Elementi di Cinemtic COORDINTE CRTESINE O P j y i x j y i x j y i x COOORDINTE LOCLI ( ) µ ϑ ϑ λ ϑ ) ( - µ λ ϑ λ COORDINTE POLRI τ ϑ ρ τ ρ n Elementi di Cinemtic MOTO RETTILINEO j O i COORDINTE CRTESINE

Dettagli

Geometria elementare. Sezione Prima Geometria nel piano

Geometria elementare. Sezione Prima Geometria nel piano pitolo 3 Geometi elemente Sezione Pim Geometi nel pino 1 Enti geometii fondmentli 113 on il temine Geometi, pol ompost di oigine ge he signifi lettelmente misuzione dell te, s intende l sienz zionle he

Dettagli

Classe 4 G dicembre 2010.

Classe 4 G dicembre 2010. Clsse 4 G dicembe 2010. Legge di Newton pe il ffeddmento (iscldmento). Due copi tempetu diffeente se posti in conttto temico si scmbino cloe. L'ossevzione speimentle indic che essi si potno d un tempetu

Dettagli

1 O 1 3. 2, calcola l area della regione piana delimitata da C dalla curva di equazione y = gl(x) nell intervallo [-2;

1 O 1 3. 2, calcola l area della regione piana delimitata da C dalla curva di equazione y = gl(x) nell intervallo [-2; Risolvi uno dei due poblemi e ispondi 5 quesiti del questionio PROBLEMI VERSO L ESAME In un loclità sull Oceno Atlntico l me h un notevole escusione e pe questo è impotnte pevedene l ndmento In pim ppossimzione

Dettagli

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes I Teoremi di Green, dell divergenz o di Guss e di Stokes In R Si un sottoinsieme limitto di R semplice rispetto d entrmbi gli ssi crtesini con costituit dll unione di un numero finito di sostegni di curve

Dettagli

θ 2 º Esercizio 1

θ 2 º Esercizio 1 ecizio ) Si θ l ngolo ipetto ll veticle dell fune di lunghezz pim che m veng lcit lie di muovei velocità v di m l momento dell uto con m i ottiene imponendo l conevzione dell enegi: m v m g ( coθ ) v g

Dettagli

Meccanica Dinamica del corpo rigido

Meccanica Dinamica del corpo rigido eccnic 8-9 Dinmic del copo igido 8 y P C v oz omento f N C v Equzione del momento: Polo Dinmic del copo igido Rotolmento L velocità del punto di conttto C è null l conttto in C è mntenuto femo dll ttito

Dettagli

a a = 1, a a = 0; a a = 1, a a = 0; e quindi, = (a a ) (a a ) = (a a) a = 0 a = a

a a = 1, a a = 0; a a = 1, a a = 0; e quindi, = (a a ) (a a ) = (a a) a = 0 a = a Definizione 1. Si R un insieme otto i ue leggi i composizione interne e. Si ice che l struttur lgebric (R,, ) è un reticolo (lgebrico) se e verificno le proprietà: (1) x, y, z R, (x y) z = x (y z); (x

Dettagli

Problema 1 Consideriamo 3 cariche in figura con q 1 =-q, q 2 = 2q, q 3 =- 2q, q=1 mc; sia a =3 cm; il punto P ha coordinate (x=0, y=a) a) Calcolare

Problema 1 Consideriamo 3 cariche in figura con q 1 =-q, q 2 = 2q, q 3 =- 2q, q=1 mc; sia a =3 cm; il punto P ha coordinate (x=0, y=a) a) Calcolare P 4 Poblem onsideimo ciche in figu con -,, -, m; si cm; il punto P h coodinte (0, ) ) lcole le componenti lungo gli ssi, del cmpo elettico totle geneto dlle ciche nel punto P b) lcole l ngolo che l diezione

Dettagli

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante Prof.. Di Muro Moto rettilineo uniformemente ccelerto ( m.r.u.. ) Il moto rettilineo uniformemente ccelerto è un moto che iene su un rett con ccelerzione costnte. Dll definizione di ccelerzione t t t t

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MDELLI SCHEDA DI LAVR La clessida ad acqua Ipotizziamo che la clessida ad acqua mostata in figua sia fomata da due coni pefetti sovapposti La clessida impiega,5 minuti pe svuotasi e supponiamo

Dettagli

-STRUTTURE DI LEWIS SIMBOLI DI LEWIS

-STRUTTURE DI LEWIS SIMBOLI DI LEWIS STRUTTURE DI LEWIS SIMBLI DI LEWIS ELETTRI DI VALEZA: sono gli elettroni del guscio esterno, i responsbili principli delle proprietà chimiche di un tomo e quindi dell ntur dei legmi chimici che vengono

Dettagli

Lezioni L4. 1. Potenziale Elettrico; 3. Generatore di Van de Graff. FISICA GENERALE II, Cassino A.A Carmine E.

Lezioni L4. 1. Potenziale Elettrico; 3. Generatore di Van de Graff. FISICA GENERALE II, Cassino A.A Carmine E. Lezioni L4 1. Potenzile Elettico; 2. Potenzile Elettico vs Enegi Potenzile; 3. Genetoe di Vn de Gff. 2005 Cmine E. Pglione Potentile Elettico Un cic q in un Cmpo Elettico si compot in mnie nlog d un mss

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

Fisica II - Ing. Marittima e Sicurezza, prof. Schiavi A.A Foglio di Esercizi n. 1

Fisica II - Ing. Marittima e Sicurezza, prof. Schiavi A.A Foglio di Esercizi n. 1 Fisic II - Ing. Mrittim e Sicurezz, prof. Schivi A.A. 2003-2004 Foglio i Esercizi n. 1 1.1. (**) Un cric elettrosttic è istribuit uniformemente, con ensità linere, su un semirett che gice sull sse i un

Dettagli

SISTEMA BINARIO DI DUE LIQUIDI VOLATILI TOTALMENTE MISCIBILI che seguono Raoult

SISTEMA BINARIO DI DUE LIQUIDI VOLATILI TOTALMENTE MISCIBILI che seguono Raoult SISTEM INRIO DI DUE IQUIDI OTII MENTE MISCIII che seguono Raoult Consideriamo due liquidi e totalmente miscibili di composizione χ e χ presenti in un contenitore ad una certa temperatura T=T 1. o strato

Dettagli

UNITÀ DI GUIDA E SLITTE

UNITÀ DI GUIDA E SLITTE UNITÀ DI GUIDA E SLITTE TIPOLOGIE L gmm di unità di guid e di slitte proposte è molto mpi. Rggruppimo le guide in fmiglie: Unità di guid d ccoppire cilindri stndrd Si trtt di unità indipendenti, cui viene

Dettagli

Teorema di Sostituzione

Teorema di Sostituzione Teorema i Sostituzione Le Fiure (a) e (b) i seuito riportate, si riferiscono al Teorema i sostituzione che afferma: Una impeenza Z a percorsa a una corrente, può essere sostituita un eneratore i tensione

Dettagli

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli:

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli: Acidi Deboli Si definisce cido debole un cido con < 1 che risult perciò solo przilmente dissocito in soluzione. Esempi di cidi deboli: Acido cetico (H OOH) 1.75 1-5 Acido scorbico (vitmin ) 1 6.76 1-5.5

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MODELLI SCHEDA DI LAVORO 1 La siepe Sul eto di una villetta deve essee ealizzato un piccolo giadino ettangolae di m, ipaato da una siepe posta lungo il bodo Dato che un lato del giadino è occupato

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

2. Politiche di gestione delle scorte

2. Politiche di gestione delle scorte Gestione ell Inventaio. Politiche i gestione elle scote.. Moelli singolo punto, singolo pootto, omana eteministica costante Gli appovvigionamenti sono peioici e l obiettivo è minimizzae il costo meio nel

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

Le molle. M. Guagliano

Le molle. M. Guagliano Le molle M. Guagliano Introuzione Le molle sono organi meccanici che hanno la proprietà i eformarsi molto sotto carico, ma rimaneno nel campo elastico el materiale i cui sono costituite, ovvero non accumulano

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

Operatori divergenza e rotore in coordinate cilindriche

Operatori divergenza e rotore in coordinate cilindriche Opeatoi divegena e otoe Univesità di Roma To Vegata Pof. Ing. Paolo Sammaco Opeatoi divegena e otoe in coodinate cilindiche Dott. Ing. Macello Di Risio 1 Sistema di ifeimento Si assume il sistema di ifeimento

Dettagli

Appunti di Matematica 1 - I polinomi - Polinomi. I vari monomi che compongono il polinomio si chiamano termini del polinomio.

Appunti di Matematica 1 - I polinomi - Polinomi. I vari monomi che compongono il polinomio si chiamano termini del polinomio. ppunti di Mtemtic Polinomi Un polinomio è un somm lgebric di monomi. Esempio: b ; y y ; b c sono polinomi. I vri monomi che compongono il polinomio si chimno termini del polinomio. Un monomio può nche

Dettagli

Vettori e scalari. Scalari: sono completamente definite quando se ne conosce la sola misura (es. tempo, massa, temperatura, GRANDEZZE FISICHE

Vettori e scalari. Scalari: sono completamente definite quando se ne conosce la sola misura (es. tempo, massa, temperatura, GRANDEZZE FISICHE Vettoi e scli GRNDEZZE FISICHE Scli: sono completmente definite qundo se ne conosce l sol misu (es. tempo, mss, tempetu, volume ) Vettoili: ichiedono un mggio contenuto infomtivo (es. velocità, cceleione,

Dettagli

MACCHINE SEMPLICI e COMPOSTE

MACCHINE SEMPLICI e COMPOSTE OBIETTIVI: MCCHINE SEMLICI e COMOSTE (Distillzione veticle) conoscenz del pincipio di funzionmento delle mcchine spee svolgee ppliczioni sulle mcchine Mcchin (def.) Foz esistente (def.) Foz motice (def.)

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

LE INCERTEZZE E LA LORO PROPAGAZIONE NELLE MISURE INDIRETTE

LE INCERTEZZE E LA LORO PROPAGAZIONE NELLE MISURE INDIRETTE LE INCERTEZZE E LA LORO PROPAGAZIONE NELLE MISURE INDIRETTE Pof. Agelo Ageletti -.s. 006/007 1) COME SI SCRIVE IL RISULTATO DI UNA MISURA Il modo miglioe pe espimee il isultto di u misu è quello di de,

Dettagli

rispetto alla direzione iniziale. Ricordando i valori della carica e della massa dell elettrone, e = C e m e = kg, si calcoli:

rispetto alla direzione iniziale. Ricordando i valori della carica e della massa dell elettrone, e = C e m e = kg, si calcoli: Esme scritto di Elettromgnetismo del 15 Luglio 2011 -.. 2010-2011 proff. S. Gigu, F. Lcv, F. Ricci Elettromgnetismo 10 o 12 crediti: esercizi 1,3,4 tempo 3 h e 30 min; Elettromgnetismo 5 crediti: esercizio

Dettagli

(- ½ ; 2) (1-1; -1) EQUAZIONI DISEQUAZIONI - PL C. 1

(- ½ ; 2) (1-1; -1) EQUAZIONI DISEQUAZIONI - PL C. 1 Commercio (C M) - Matematica Preparazione lavoro scritto /II semestre / Maggio 0 EQUAZIONI ISEQUAZIONI - PL A. B 6 0 5 0 0 C. ( ) ( ) (a) (b). Un commerciante ordina delle canne da pesca di tipo A e di

Dettagli

Note su esperienza con il volano

Note su esperienza con il volano Note su espeienz con il volno 1 Cos è un volno? un mss più o meno "gnde" collegt solidlmente ll'lbeo motoe di un mcchin. A cos seve un volno nelle mcchine? seve d ccumule enegi cinetic nelle fsi di eccesso

Dettagli

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano Geometri nliti +l pino rtesino Le funzioni rett, prol, iperole Le trsformzioni sul pino rtesino SEZ. P +l pino rtesino Osserv le oorinte ei seguenti punti: (, 0), (, ), C(, +), D + +, E(+, 9)., Che os

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Lagrangiane. Fenomenologia delle Interazioni Forti. Diego Bettoni Anno Accademico

Lagrangiane. Fenomenologia delle Interazioni Forti. Diego Bettoni Anno Accademico Lgngine Fenomenologi delle Intezioni Foti Diego Bettoni Anno Accdemico 8-9 D. Bettoni Fenomenologi Intezioni Foti Notzione Reltivistic ( ) ( ) ( ),, ;,, ;,, ; g g b b b b b tensoe metico somm sugli indici

Dettagli

a colori Nuova Matematica Leonardo Sasso Edizione ARANCIONE per la riforma. Quinto anno con elementi di Informatica

a colori Nuova Matematica Leonardo Sasso Edizione ARANCIONE per la riforma. Quinto anno con elementi di Informatica Leondo Ssso Nuov Mtemtic coloi nuovo ZONAMtemtic Misue di supefici e di volumi Complementi di clcolo integle Complementi di pobbilità e sttistic 5 con elementi di Infomtic Edizione ARANCIONE pe l ifom.

Dettagli

U IN. Condensatori. (a) Realizzato il collegamento in figura si ha: Q TOT = 2q ; C eq = C 1 + C 2 ; (b) Le cariche finali sono:

U IN. Condensatori. (a) Realizzato il collegamento in figura si ha: Q TOT = 2q ; C eq = C 1 + C 2 ; (b) Le cariche finali sono: secitazione n 5 FII PRIMNTL II (L Ing Mecc /L) (Pof Gabiele Fava) / onensatoi Due conensatoi i capacità μf e 5 μf vengono caicati sepaatamente in moo a ottenee su ciascuno i essi la caica 3 μ uccessivamente

Dettagli

ESERCITAZIONE 2. e si calcoli l effetto della non linearità sulla probabilità di errore di simbolo della costellazione ridotta.

ESERCITAZIONE 2. e si calcoli l effetto della non linearità sulla probabilità di errore di simbolo della costellazione ridotta. ESERCITAZIONE Si consieri l seguente costellzione 16 QAM: jϕk s = ρ e, k =1,...,16 k k Si suppong che il moultore si progettto in moo tle che quno le conizioni i propgzione sono problemtiche si usino solo

Dettagli

Principio conservazione energia meccanica. Problemi di Fisica

Principio conservazione energia meccanica. Problemi di Fisica Problemi di isic Principio conservzione energi meccnic Su un corpo di mss M0kg giscono un serie di forze 0N 5N 37N N (forz di ttrito), secondo le direzioni indicte in figur, che lo spostno di 0m. Supponendo

Dettagli

Progressioni geometriche

Progressioni geometriche Progressioi geometriche Comicimo co due esempi: Esempio Cosiderimo l successioe di umeri:, 6,, 4, 48, 96 L successioe è tle che si pss d u termie l successivo moltiplicdo il precedete per. Si dice che

Dettagli

Equivalenza tra equazioni di Lagrange e problemi variazionali

Equivalenza tra equazioni di Lagrange e problemi variazionali Equivlenz tr equzioni di Lgrnge e problemi AM Cherubini 20 Aprile 2007 1 / 21 Problemi Mostrimo or come si possono ricvre sistemi di equzioni con struttur lgrngin in un mbito diverso: prim si er crtterizzt

Dettagli

IL MOMENTO ANGOLARE E IL MOMENTO D INERZIA

IL MOMENTO ANGOLARE E IL MOMENTO D INERZIA . L'IMPULS 0 DI MT IL MMENT NGLRE E IL MMENT D INERZI Il momento angolae nalizziamo alcuni moti di otazione. Se gli attiti sono tascuabili, una uota di bicicletta messa in otazione può continuae a giae

Dettagli

Omotopia, forme chiuse e esatte

Omotopia, forme chiuse e esatte Omotopi, forme chiuse e estte Per curv intenimo un curv orientt regolre trtti. Dt un curv enoteremo con l curv ottenut cmbino orientzione, si h ω = ω per ogni form ω (1) Due curve, tli che il punto finle

Dettagli

VERIFICA DI MATEMATICA 1^F Liceo Sportivo 15 marzo 2018 Rispondere su un foglio protocollo e riconsegnare entro il 22 marzo 2018 NOME E COGNOME

VERIFICA DI MATEMATICA 1^F Liceo Sportivo 15 marzo 2018 Rispondere su un foglio protocollo e riconsegnare entro il 22 marzo 2018 NOME E COGNOME VERIFICA DI MATEMATICA 1^F Liceo Sportivo 15 mrzo 2018 Risponere su un foglio protocollo e riconsegnre entro il 22 mrzo 2018 NOME E COGNOME 1 Eseguire le seguenti moltipliczioni tr monomi, scriveno il

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Esercizi sulle curve in forma parametrica

Esercizi sulle curve in forma parametrica Esercizi sulle curve in form prmetric Esercizio. L Elic Cilindric. Dt l curv di equzioni prmetriche: xt cos t yt sin t t 0 T ] > 0 b IR zt bt trovre: versore tngente normle binormle vettore curvtur rggio

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Primo compitino, 18 novembre 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Primo compitino, 18 novembre 2017 Testi 1 Primo ompitino, 8 novemre 07 Testi Prim prte, gruppo. =, = ; r = α = = 0, = 4; r = α = r = 3, α = π/3; = =. Trovre le soluzioni ell isuguglinz tn( tli he 0 π. + log log(log ; lim + os(e ; lim 4. Clolre

Dettagli

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO L RLZIONI L FUNZIONI serizi in più SRIZI IN PIÙ SRIZI I FIN PITOLO TST Nell insieme ell figur, l relzione rppresentt goe ell o elle proprietà: TST L relzione «essere isenente i», efinit nell insieme egli

Dettagli

UNIVERSITÁ DEGLISTUDIDISALERNO C.d.L. in INGEGNERIA GESTIONALE Ricerca Operativa 12 Gennaio 2009 Prof. Saverio Salerno. Compito A

UNIVERSITÁ DEGLISTUDIDISALERNO C.d.L. in INGEGNERIA GESTIONALE Ricerca Operativa 12 Gennaio 2009 Prof. Saverio Salerno. Compito A 1. Risolvere i seguenti problemi: 12 Gennio 2009 Compito A () stbilire se il vettore (3, 2, 0) è combinzione convess i u 1 =(3, 0, 6) e u 2 =(3, 3, 3); (b) per il poliero S = (x 1,x 2 ) R 2 :0 x 1 1, 0

Dettagli

Fisica Generale - Modulo Fisica II Esercitazione 3 Ingegneria Gestionale-Informatica POTENZIALE ELETTRICO ED ENERGIA POTENZIALE

Fisica Generale - Modulo Fisica II Esercitazione 3 Ingegneria Gestionale-Informatica POTENZIALE ELETTRICO ED ENERGIA POTENZIALE PTNZIL LTTRIC D NRGI PTNZIL Ba. Una caica elettica q mc si tova nell oigine di un asse mente una caica negativa q 4 mc si tova nel punto di ascissa m. Sia Q il punto dell asse dove il campo elettico si

Dettagli

Linguaggi e Traduttori Esercizi LR(1) e SLR(1)

Linguaggi e Traduttori Esercizi LR(1) e SLR(1) Linguggi e Truttori Esercizi LR(1) e LR(1) Esercizio 1 Prof. Mrco Gvnelli 10 giugno 2018 i consieri l grmmtic G = {,,},{,,},P,, ove: P = ǫ i ic se l grmmtic è LR(1). Qulor l grmmtic risulti LR(1), si mostri

Dettagli