Le proprietà fondamentali del campo magnetico

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Le proprietà fondamentali del campo magnetico"

Transcript

1 1) Ftti sperimentli. Le proprietà fonmentli el mpo mgnetio Riportimo ue ftti sperimentli: ) Un filo rettilineo infinito perorso orrente I gener un mpo mgnetio on le seguenti proprietà: l intensità ument linermente on I m erese linermente on r ovvero B I r, quini le linee i mpo sono ironferenze onentrihe ttorno l filo il verso elle linee i mpo è legto l verso ell orrente ll regol ell mno estr:se il pollie è orientto nel verso ell orrente, l urvtur elle it ini il verso elle linee el mpo mgnetio. (vei fig.1) I I I B K B (legge i Biot-Svrt) r r r B fig. 1 on µ =41-7 Tm/A (permeilità mgneti el vuoto) ) Vle il prinipio i sovrpposizione. Se l orrente I 1 gener un mpo mgnetio B 1 e l orrente I gener un mpo mgnetio B, il mpo totle in ogni punto ello spzio se entrme le orrenti sono presenti è to BT B1 B 1

2 ) Interzione fr ue fili prlleli perorsi orrente Sino e ue fili rettilinei, infiniti, prlleli perorsi orrente I e I on verso onore, ome in fig.. B F F B F B F I B I I I fig. L orrente I nel filo gener nei punti ello spzio oupti l filo un mpo I B on irezione e verso in fig. Il filo, perorso un orrente I, trovnosi immerso nel mpo B, sente un forz F I B. II In moulo, si h: F IB sin 9 on irezione e verso in fig., ossi il filo sente un forz F he lo ttre verso il filo. Inverteno il ruolo el filo on quello el filo, possimo ire he il filo sente I I un forz F he lo ttre verso il filo (vei fig ) on F F. I B F F Se le orrenti sorrono nei fili in verso opposto, si vee he l irezione e verso elle forze F e F è quell init in fig. 3 ossi orrenti prllele e onori si ttrggono mentre orrenti prllele e isori si respingono. B I fig. 3

3 3) Definizione ell unit i misur: Ampere (A) Si or = l = 1 m, posto I = I = 1 A ottenimo: F II Quini l Ampere è quell intensità i orrente ostnte he, se mntenut in ue onuttori prlleli e infiniti, posti istnz i 1 m proue su isuno ei onuttori un forz i 1-7 per metro i lunghezz. Tm m m ; T F A ma A ma m Verifi unità i misur: A A 4) Il Teorem i Ampere Esso è l formlizzzione i qunto si osserv sperimentlmente ossi he le orrenti generno ei mpi mgnetii. Disutimo qui il so stzionrio ossi il so i orrenti ostnti nel tempo, riorno he le orrenti stzionrie possono esistere solo in iruiti hiusi quini in si stzionri le linee i orrente sono hiuse. Pertnto, se seglimo un line geometri ritrri hius, le linee elle orrenti rispetto ess possono essere o ontente (non possono essere sfilte ) o non ontente (possono essere llontnte inefinitmente ). Questo è shemtizzto in fig. 4 ove sono presenti tre orrenti (I 1, I, I 3 ) e tre possiili linee hiuse ( 1,, 3 ). I i1 n I 1 I 3 l B 1 3 fig. 4 3

4 Risult essere: I 1 ontent on 1, I 1 non ontent on 3 I ontent on 1 I non ontent on, 3 I 3 ontent on, 3 I 3 non ontent on 1. Essenoi più orrenti, in ogni punto ello spzio esisterà un mpo: B B B. 1 B3 Divis un urv in elementi l possimo lolre, per ogni l, il termine B l B l os, quini sommno tutti i ontriuti ottenimo: Bl os B l Si trov he B l I (teorem i Ampere) ossi l iruitzione el mpo mgnetio lungo un urv hius ipene solo e soltnto lle orrenti ontente I. Questo nonostnte B si reto, per il prinipio i sovrpposizione, tutte le orrenti presenti!! Il teorem i Ampere è un proprietà el mpo meit lungo un urv, ontrrimente l prinipio i sovrpposizione he fornise un proprietà puntule el mpo. ell I, le orrenti ontente possono essere positive o negtive. Fissto un verso positivo i perorrenz ell urv rest fisst, on l regol ell mno estr, il verso ell normle n ll re rhius Se il verso I ll interno i è onore on n, I è positiv Se il verso I ll interno i è isonore on n, I è negtiv. Quini, nell situzione rppresentt in fig. 4 si h: 1 B l o I1 I, B l oi I3, 3 B l I Osservzione: Il teorem i Ampere ie nhe he il mpo mgnetio non è onservtivo. o 3 4

5 Giustifihimo il teorem i Ampere nel so i un filo rettilineo infinito perorso orrente I. Il prinipio i sovrpposizione i permetterà poi i estenere il risultto qulsisi onfigurzione i orrenti stzionrie. I situzione (fig. 5): il filo perorso orrente è interno ll line i iruitzione, quini l orrente I è ontent on l line. Quest oinie on un line i mpo i rggio r. ir B l i r ir ir l i Bl l ir r i r i r.v. I B l fig. 5 II situzione (fig. 6): il filo perorso orrente è esterno ll line i iruitzione, ovvero l orrente I non ontent on l line. Sieglimo (vefi fig. 6) ostituit ue trtti rili (trtto 1 e 3) e ue trtti lungo ue linee i forz (trtto e 4) i rggio rispettivmente r e r. B l B l B l B l B l B l e B l B l 1 perhè 3 B l B" l B l, perhè prllelo B l B' l perhè B ntiprllelo l, 4 4 i i on B" e B' r" r' r I r (1) (4) (3) () fig. 6 quini B l B" l i B' l l m per efinizione i rinte r lunghezz ( ) / r" lunghezz ( 4 ) / r' i l l i B l ( ) ( 4 4 r" r' 4 l r" i e osservimo he 4 l r' i ) ( ).v. Qunto ppen ftto i permette i osservre, nel so i un mpo B reto un filo rettilineo, he i trtti rili non nno ontriuto ll iruitzione mentre gli 5

6 rhi i ironferenze lungo un linee i mpo nno un ontriuto l ngolo in rinti sotteso ll ro. I on Questo i permette i generlizzre l imostrzione urve generihe inftti, ome è I mostrto in fig. 7, r s B l B r B s. l s r Se l orrente è ontent on l urv (fig. 7) si h: I I l B I fig. 7 l s r Se l orrente non è ontent on l urv (fig. 7) si h: I B l fig. 7 6

7 Applizione 1: Cmpo i un filo ilinrio infinito perorso orrente I Consierimo un ilinro i rggio R perorso un orrente I usente. L orrente è istriuit uniformemente nell sezione on ensità J=I/R (fig 8). Per onservre l simmetri ilinri nello spzio see el mpo B, le linee i forz evono essere elle ironferenze onentrihe e ossili l ilinro e l intensità el mpo eve essere l stess in tutti i punti istnte r ll sse. Corrente usente r e r i R Linee hiuse B R r fig. 8 fig. 8 Applihimo il teorem i Ampere, preneno ome line un ironferenz (oiniente on un line i forz) i rggio r i < R B l i m B ostnte B esseno l i B // l i Br Bl i i i I Ir Iri i J ri ri quini : Bri R R R I 1) B r il mpo B è irettmente proporzionle r (per r<r) R Applihimo nor il teorem i Ampere, preneno ome line un ironferenz (oiniente on un line i forz) i rggio r e > R. Il lolo ell iruitzione è ientio, mentre i i Bre i I ) B il mpo B è inversmente proporzionle r ( per r>r) r Il moulo el mpo in funzione i r è mostrto in fig. 8 ove si not he entrme le formule nno lo stesso vlore i B (mssimo) per r = R. 7

8 Applizione : Cmpo i un solenoie Il solenoie (fig.9) è un oin i filo onuttore ostituit molte spire irolri viine fr loro. fig. 9 Per pire l onfigurzione el mpo, prtimo quello prootto un spir irolre e usimo il prinipio i sovrpposizione, ome mostrto in fig. 1. Linee i mpo per un spir irolre Fig. 1 Linee i mpo per n 1 spire () e per n spire () on n 1 < n Si not he, l resere el numero elle spire, il mpo si intensifi ll interno e iminuise ll esterno, ll interno tene ivenire uniforme e prllelo ll sse el solenoie, il verso el mpo interno è fissto on l regol ell mno estr: se le it segnno il verso ell orrente nelle spire, il pollie il verso el mpo. 8

9 Al limite per un solenoie infinito (numero i spire infinito e spire strettmente unite), he iremo solenoie iele, (fig. 11) si h he: il mpo esterno è nullo il mpo ll interno, iverso zero, è prllelo ll sse. punti equiistnti rilmente ll sse, evono vere lo stesso vlore i B. Un solenoie rele può essere onsierto iele se le sue imensioni trsversli sono molto minori ell lunghezz. Il mpo mgnetio ll interno i un solenoie iele, etto n il numero i spire el solenoie per unità i lunghezz, può essere lolto usno il teorem i Ampere e l urv i iruitzione isegnt in fig. 11. Cmpo i un solenoie iele fig. 11 B l i B l B l B l B l i B l Bl B l Bh esseno B // l e B ostnte B l e B l esseno B l in un trtto e B nel restnte trtto B l esseno B su tutto il trtto i i( nh ) Bh inh B = in Conlusione: il mpo ll interno i un solenoie iele è uniforme e ostnte, prllelo ll sse el solenoie e on verso fissto ll regol ell mno estr. 9

10 5) Il teorem i Guss per il Mgnetismo Un hett i un mgnete nturle present l suo esterno un mpo B le ui linee i mpo sono shemtizzte in fig. 1. L nmento, ll esterno ell hett, elle linee i mpo è ientio quello reltivo l mpo elettrio E generto un opportun ri elettri epositt sugli estremi i un hett isolnte. B E S fig. 1 Questo può suggerire l esistenz i rihe mgnetihe he giono lo stesso ruolo elle rihe elettrihe. Tli eventuli rihe sono stte himte or e Su on le linee i mpo usenti lle rihe or e entrnti nelle rihe Su, in nlogi l mpo mgnetio terrestre. I ue estremi sono etti poli mgnetii. B S E S fig. 13 M l similituine on le rihe elettrihe finise qui; inftti se iviimo le ue hette on lo sopo i isolre le rispettive rihe su un elle estremità osservimo he iò è possiile solo per le rihe elettrihe. Le ue prti el mgnete nturli, inftti, ontinuno presentre nor entrmi i poli e l onfigurzione el mpo B risultnte è ompletmente ivers, ome shemtizzto in fig

11 Per qunto piolo si poss fre un mgnete nturle (fig. 14), esso presenterà sempre i ue poli, ovvero non è possiile sperimentlmente isolre l ri mgneti e quini simo ostretti onluere he: l ri mgneti non esiste. S ll fig. 14 Le linee i mpo si originno e terminno sulle rihe; non esisteno le rihe mgnetihe le linee el mpo B evono essere elle linee hiuse (fig.15). S 1 S 5 S S 3 S 4 fig. 15 Di onseguenz, qulunque superfiie hius (ome S 1, S, S 3, S 4, S 5,) immers in un mpo mgnetio B è ttrverst llo stesso numero i linee i mpo entrnti e usenti ll superfiie (fig. 15). 11

12 Riorno il onetto i flusso, iò equivle ire he il flusso el mpo mgnetio B ttrverso un superfiie hius è sempre nullo, formlmente B S. S Quest ffermzione è not ome: teorem i Guss per il mgnetismo e esprime formlmente l osservzione sperimentle ell non esistenz ell ri mgneti. Riorno il teorem i Ampere, oimo onluere he le sorgenti i mpi mgnetii stzionri sono solo le orrenti; m llor os gener il mgnetismo nturle? L rispost ettglit quest omn è fuori gli sopi el orso, m intuitivmente riorimo he l mteri è ftt i tomi e he ogni elettrone oritle i un tomo è tutti gli effetti un miro orrente stzionri. Ess gener, in oro on il teorem i Ampere, un eolissimo mpo mgnetio B e, i. Questi mpi poo intensi, uno per isuno egli elettroni presenti in un mterile, sono istriuiti sulmente e generlmente suee he per qusi tutti i mterili B B. Solo in luni mterili ferrosi, per un effetto quntistio, un erto numero i elettroni << re mpi B e, i onori fr loro in moo he ' Be,i BT. Il mterile present quini un mpo mgnetio intrinseo ovvero è un mgnete nturle. e, i T 1

d coulomb d volt b trasformatore d alternatore b amperometro d reostato

d coulomb d volt b trasformatore d alternatore b amperometro d reostato ppunti 7 TEST DI VERIFICA 1 Unità i misur ell ri elettri: henry weer volt oulom 2 Unità i misur ell pità elettri: oulom henry fr volt 3 Gener orrente lternt: umultore resistenz 4 Misur l tensione: resistometro

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

Esercizi 5 Campo magnetico

Esercizi 5 Campo magnetico Esercizi 5 mpo mgnetico 1. Due lunghi fili rettilinei e prlleli, posti istnz, sono percorsi correnti uguli e opposte. lcolre il cmpo mgnetico nei punti equiistnti i fili. I θ I1 L sol componente che soprvvive

Dettagli

A.A.2009/10 Fisica 1 1

A.A.2009/10 Fisica 1 1 Mhine termihe e frigoriferi Un mhin termi è un mhin he, grzie un sequenz i trsformzioni termoinmihe i un t sostnz, proue lvoro he può essere utilizzto. Un mhin solitmente lvor su i un ilo i trsformzioni

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri i Primo Gro Clsse Prim Suol..........................................................................................................................................

Dettagli

F (r(t)), d dt r(t) dt

F (r(t)), d dt r(t) dt Cmpi vettorili Un cmpo vettorile è un funzione vlori vettorili F : A R, con A R n, ove in questo cso l imensione el ominio e el coominio è l stess. F ( 1, 2,..., n ) (f 1 ( 1, 2,..., n ), f 2 ( 1, 2,...,

Dettagli

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO L RLZIONI L FUNZIONI serizi in più SRIZI IN PIÙ SRIZI I FIN PITOLO TST Nell insieme ell figur, l relzione rppresentt goe ell o elle proprietà: TST L relzione «essere isenente i», efinit nell insieme egli

Dettagli

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che,

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che, CAPITOLO 6 LE SIMILITUDINI 6 Rihimi i teori Definizione Si him similituine un orrisponenz iunivo l pino in sé tle he presi ue punti qulunque A B el pino e etti A B i loro orrisponenti si h he esiste un

Dettagli

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo:

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo: FUNZIONI MATEMATICHE Le relzioni mtemtihe utilizzte per desrivere fenomeni nturli, in iologi ome in ltre sienze, possono ovvimente essere le più svrite. Per lo più si trtt di equzioni lineri, qudrtihe,

Dettagli

SOLUZIONE PROBLEMI Insegnamento di Fisica dell Atmosfera Seconda prova in itinere

SOLUZIONE PROBLEMI Insegnamento di Fisica dell Atmosfera Seconda prova in itinere Doente: rof Dino Zri serittore: in lessio Bertò OLUZION PROBLMI Insenento i Fisi ell tosfer eon rov in itinere /3 Vlori elle ostnti Rio terrestre eio: 637 Rio solre eio: 7 5 Distnz ei terr-sole : 9 6 Vlore

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri i Primo Gro Clsse Prim Suol..........................................................................................................................................

Dettagli

Componenti per l elaborazione binaria dell informazione. Sommario. Sommario. Approfondimento del corso di reti logiche. M. Favalli.

Componenti per l elaborazione binaria dell informazione. Sommario. Sommario. Approfondimento del corso di reti logiche. M. Favalli. Sommrio Componenti per l elorzione inri ell informzione Approfonimento el orso i reti logihe M. Fvlli Engineering Deprtment in Ferrr Porte logihe 2 Il livello swith 3 Aspetti tenologii 4 Reti logihe omintorie

Dettagli

Formule di Gauss Green

Formule di Gauss Green Formule di Guss Green In queste lezioni voglimo studire il legme esistente tr integrli in domini bidimensionli ed integrli urvilinei sull frontier di questi. In seguito i ouperemo del problem nlogo nello

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse Prim Suol..........................................................................................................................................

Dettagli

Sondaggio piace l eolico?

Sondaggio piace l eolico? Songgio pie l eolio? Durnte l inugurzione i Stell sono stti istriuiti ei questionri per vlutre l inie i grimento ell eolio prte ell popolzione Sono stti ompilti e quini nlizzti 50 questionri Quest presentzione

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Terza. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Terza. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse Terz Suol..........................................................................................................................................

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

Circonferenza e cerchio La circonferenza e il cerchio Poligoni inscritti e circoscritti a una circonferenza

Circonferenza e cerchio La circonferenza e il cerchio Poligoni inscritti e circoscritti a una circonferenza ironferenz e erhio L ironferenz e il erhio Poligoni insritti e irosritti un ironferenz L ironferenz e il erhio Stilisi se le seguenti ffermzioni sono vere o flse. SEZ. M e f g h Il rpporto tr l lunghezz

Dettagli

Robotica industriale. Motori a magneti permanenti. Prof. Paolo Rocco (paolo.rocco@polimi.it)

Robotica industriale. Motori a magneti permanenti. Prof. Paolo Rocco (paolo.rocco@polimi.it) Rooti industrile Motori mgneti permnenti Prof. Polo Roo (polo.roo@polimi.it) Generzione di oppi L legge di Lorentz i die he un ri elettri q in moto on veloità v in un mpo mgnetio di intensità B è soggett

Dettagli

Elettronica dei Sistemi Digitali Disegno del layout di porte logiche combinatorie CMOS

Elettronica dei Sistemi Digitali Disegno del layout di porte logiche combinatorie CMOS Elettroni ei Sistemi Digitli Disegno el lout i porte logihe omintorie CMOS Vlentino Lierli Diprtimento i Tenologie ell Informzione Università i Milno, 26013 Crem e-mil: lierli@ti.unimi.it http://www.ti.unimi.it/

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

IL CAMPO MAGNETICO. V Scientifico Prof.ssa Delfino M. G.

IL CAMPO MAGNETICO. V Scientifico Prof.ssa Delfino M. G. IL CAMPO MAGNETICO V Scientifico Prof.ssa Delfino M. G. UNITÀ - IL CAMPO MAGNETICO 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano Geometri nliti +l pino rtesino Le funzioni rett, prol, iperole Le trsformzioni sul pino rtesino SEZ. P +l pino rtesino Osserv le oorinte ei seguenti punti: (, 0), (, ), C(, +), D + +, E(+, 9)., Che os

Dettagli

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE.

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE. FCA D UN CCUTO SSTO CONTNNT PÙ GNATO CON UN TMNAL COMUN SNZA TMNAL COMUN. Si verifino quttro iruiti on due genertori: genertori on polrità onorde e un terminle omune genertori on polrità disorde e un terminle

Dettagli

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz

Dettagli

parabola curva coniche cono piano parallelo generatrice

parabola curva coniche cono piano parallelo generatrice LA ARABOLA L rol è un urv molto imortnte e lle moltelii rorietà. Ess er onosiut i Grei (Aollonio e Arhimee II e III seolo.c.). Aollonio er rimo, in un fmoso trttto, sorì he l rol f rte i un lsse iù generle

Dettagli

Esercitazione n. 2. Gian Carlo Bondi VERO/FALSO

Esercitazione n. 2. Gian Carlo Bondi VERO/FALSO Eseritzioni svolte 2010 Suol Duemil 1 Eseritzione n. 2 Aspetti eonomii e lusole el ontrtto i omprvenit Risultti ttesi Spere: gli spetti tenii, giuriii e eonomii el ontrtto i omprvenit. Sper fre: eterminre

Dettagli

Tecniche di Progettazione Digitale Progettazione e layout di porte logiche combinatorie CMOS p. 2

Tecniche di Progettazione Digitale Progettazione e layout di porte logiche combinatorie CMOS p. 2 Tenihe i Progettzione Digitle Progettzione e lout i porte logihe omintorie CMOS Vlentino Lierli Diprtimento i Tenologie ell Informzione Università i Milno, 26013 Crem e-mil: lierli@ti.unimi.it http://www.ti.unimi.it/

Dettagli

VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA

VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA trtto Mtemti in zione, A. Arpinti, M. Musini Mettimoi ll prov! Suol..........................................................................................................................................

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del quinto appello, 3 luglio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del quinto appello, 3 luglio 2017 Testi 1 nlisi Mtemti I per Ingegneri Gestionle,.. 6-7 Sritto el quinto ppello, 3 luglio 7 Testi Prim prte, gruppo.. Dire per quli R l funzione f() := sin( 3 ) + 3 è resente su tutto R.. Disporre le seguenti funzioni

Dettagli

27/05/2013. essendo μ 0 la permeabilità magnetica nel vuoto:

27/05/2013. essendo μ 0 la permeabilità magnetica nel vuoto: 7/05/013 L unità i carica magnetica nel S.I. è il Weber (Wb). L espressione qualitativa elle interazioni magnetiche è ata alla legge i Coulomb per il magnetismo: F K 0 1 1 4 0 1 esseno μ 0 la permeabilità

Dettagli

tan tan = angolo formato dalla normale p,q = lunghezze dei segmenti misurati a partire dall origine n = distanza della retta dall origine

tan tan = angolo formato dalla normale p,q = lunghezze dei segmenti misurati a partire dall origine n = distanza della retta dall origine G. Di Mri Forulrio i geoetri nliti Forulrio i geoetri nliti G. Di Mri Rette For generle (ipliit) For riott (espliit) For norle 0 q For segentri os sin n 0 p q p,q = lunghezze ei segenti stti ll rett sugli

Dettagli

Prova Scritta Elettromagnetismo (a.a. 2016/17, S. Giagu/F. Lacava/S. Petrarca)

Prova Scritta Elettromagnetismo (a.a. 2016/17, S. Giagu/F. Lacava/S. Petrarca) Prov Sritt Elettromgnetismo - 24.7.2017 (.. 2016/17, S. Gigu/F. Lv/S. Petrr) reupero primo esonero: risolvere l eserizio 1: tempo mssimo 1.5 ore. reupero seondo esonero: risolvere l eserizio 2: tempo mssimo

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

DAI POLIGONI ALLE SUPERFICI TOPOLOGICHE

DAI POLIGONI ALLE SUPERFICI TOPOLOGICHE DAI POLIGONI ALLE SUPERFICI TOPOLOGICHE E1 Avete visto ome prteno un rettngolo si possno ostruire un ilinro, un nstro i Moeius e un toro, inollno i lti seono le inizioni ei olori. Or provte utilizzre l

Dettagli

Problema: Calcolo dell'area di una superficie piana

Problema: Calcolo dell'area di una superficie piana Corso di Lure in Disegno Industrile Corso di Metodi Numerii per il Design Lezione 7 Novemre 00 Integrle definito F. Cliò Prolem: Clolo dell're di un superfiie pin Metodi Numerii per il Design - Lezione

Dettagli

a a = 1, a a = 0; a a = 1, a a = 0; e quindi, = (a a ) (a a ) = (a a) a = 0 a = a

a a = 1, a a = 0; a a = 1, a a = 0; e quindi, = (a a ) (a a ) = (a a) a = 0 a = a Definizione 1. Si R un insieme otto i ue leggi i composizione interne e. Si ice che l struttur lgebric (R,, ) è un reticolo (lgebrico) se e verificno le proprietà: (1) x, y, z R, (x y) z = x (y z); (x

Dettagli

8. Calcolo integrale.

8. Calcolo integrale. Politenio di Milno - Foltà di Arhitettur Corso di Lure in Edilizi Istituzioni di Mtemtihe - Appunti per le lezioni - Anno Ademio 200/20 26 8 Clolo integrle 8 Signifito geometrio dell integrle definito

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Primo compitino, 18 novembre 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Primo compitino, 18 novembre 2017 Testi 1 Primo ompitino, 8 novemre 07 Testi Prim prte, gruppo. =, = ; r = α = = 0, = 4; r = α = r = 3, α = π/3; = =. Trovre le soluzioni ell isuguglinz tn( tli he 0 π. + log log(log ; lim + os(e ; lim 4. Clolre

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe terza. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe terza. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse terz Suol..........................................................................................................................................

Dettagli

Numeri razionali COGNOME... NOME... Classe... Data...

Numeri razionali COGNOME... NOME... Classe... Data... I numeri rzionli Cpitolo Numeri rzionli Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI 1 se 0, per ogni R ; Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se >0: Sono definite: se >0: Non sono definite: Csi prticolri: Le proprietà delle

Dettagli

-STRUTTURE DI LEWIS SIMBOLI DI LEWIS

-STRUTTURE DI LEWIS SIMBOLI DI LEWIS STRUTTURE DI LEWIS SIMBLI DI LEWIS ELETTRI DI VALEZA: sono gli elettroni del guscio esterno, i responsbili principli delle proprietà chimiche di un tomo e quindi dell ntur dei legmi chimici che vengono

Dettagli

Equazioni di primo grado

Equazioni di primo grado Cpitolo Equzioni i primo gro Equzioni i primo gro erifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Vettori - Definizione

Vettori - Definizione Vettori - Definizione z Verso Origine Modulo Direzione V y Form geometri x Form nliti Un vettore è un ente geometrio definito d: - Direzione: rett sull qule gie il vettore, he ne indi l orientmento nello

Dettagli

1) Un filo rettilineo infinito percorso da corrente i genera un campo magnetico con le seguenti proprietà:

1) Un filo rettilineo infinito percorso da corrente i genera un campo magnetico con le seguenti proprietà: Ogne el Cmpo Mgneto Rpotmo ue ftt spementl. 1) Un flo ettlneo nfnto peoso oente gene un mpo mgneto on le seguent popetà: l ntenstà ument lnemente on m eese lnemente on ovveo B, qun le lnee mpo sono onfeenze

Dettagli

Fisica II - Ing. Marittima e Sicurezza, prof. Schiavi A.A Foglio di Esercizi n. 1

Fisica II - Ing. Marittima e Sicurezza, prof. Schiavi A.A Foglio di Esercizi n. 1 Fisic II - Ing. Mrittim e Sicurezz, prof. Schivi A.A. 2003-2004 Foglio i Esercizi n. 1 1.1. (**) Un cric elettrosttic è istribuit uniformemente, con ensità linere, su un semirett che gice sull sse i un

Dettagli

Disequazioni di primo grado

Disequazioni di primo grado Cpitolo Disequzioni i primo gro Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

] + [ ] [ ] def. ] e [ ], si ha subito:

] + [ ] [ ] def. ] e [ ], si ha subito: OPE OPERAZIONI BINARIE Definizione di operzione inri Dto un insieme A non vuoto, si him operzione (inri) su A ogni pplizione di A in A In generle, un'operzione su A viene indit on il simolo Se (x, y) è

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

Allegato 3 Elenco BAT ed esempio interventi efficientamento

Allegato 3 Elenco BAT ed esempio interventi efficientamento Allegto 3 Eleno BAT e esempio interventi effiientmento LINEE GUIDA per l onuzione ell ignosi energeti nel settore rtrio Pg. 1 i 6 Riepilogo BAT sul onsumo e sull effiienz energetii estrtte ll DECISIONE

Dettagli

L insieme Q+ Le frazioni Operazioni con le frazioni Problemi con le frazioni

L insieme Q+ Le frazioni Operazioni con le frazioni Problemi con le frazioni L insieme Q+ Le frzioni Operzioni on le frzioni Prolemi on le frzioni Le frzioni Ini l rispost estt. In un frzione il numertore ini SEZ. C in qunte prti si ivie l unità. qunti interi si onsierno. qunte

Dettagli

operazioni con vettori

operazioni con vettori omposizione e somposizione + = operzioni on vettori = + = + Se un vettore può essere dto dll omposizione di due o più vettori, questi vettori omponenti possono essere selti lungo direzioni ortogonli fr

Dettagli

Le molle. M. Guagliano

Le molle. M. Guagliano Le molle M. Guagliano Introuzione Le molle sono organi meccanici che hanno la proprietà i eformarsi molto sotto carico, ma rimaneno nel campo elastico el materiale i cui sono costituite, ovvero non accumulano

Dettagli

Relazioni e funzioni. Relazioni

Relazioni e funzioni. Relazioni Relzioni e unzioni Relzioni Deinizione: dti due insiemi A e B, si deinise un relzione R tr A e B un orrispondenz stilit d un proposizione tr un elemento A e B, in tl so si die he è in relzione on e si

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Formule di Gauss Green

Formule di Gauss Green Formule di Guss Green In queste lezioni voglimo studire il legme esistente tr integrli in domini bidimensionli ed integrli urvilinei sull frontier di questi. In seguito i ouperemo del problem nlogo nello

Dettagli

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data...

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data... Cpitolo Monomi e polinomi Monomi Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Definizione opposto: Somma. Definizione vettore 0:

Definizione opposto: Somma. Definizione vettore 0: Somm Operzioni in R n : somm :... n n Definizione ettore : Definizione opposto: :... :... n Rispetto tle operzione R n risult un gruppo elino. Cioè l somm h le seguenti proprietà: S5) Commutti S) Intern

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

Sorgenti di campo magnetico. Esempio 1. Soluzione 1. Campo magnetico generato da un lungo filo rettilineo percorso da corrente

Sorgenti di campo magnetico. Esempio 1. Soluzione 1. Campo magnetico generato da un lungo filo rettilineo percorso da corrente Cmpo mgnetico generto d un lungo filo rettilineo percorso d corrente Sorgenti di cmpo mgnetico Ingegneri Energetic Docente: Angelo Crone Il cmpo mgnetico dovuto d un filo rettilineo è inversmente proporzionle

Dettagli

! è l'insieme A degli attributi di ! $ B IL PROBLEMA DELLE VISTE MATERIALIZZATE: PROBLEMI IL PROBLEMA DELLE VISTE MATERIALIZZATE

! è l'insieme A degli attributi di ! $ B IL PROBLEMA DELLE VISTE MATERIALIZZATE: PROBLEMI IL PROBLEMA DELLE VISTE MATERIALIZZATE IL PROBLEMA DELLE VISTE MATERIALIZZATE IL PROBLEMA DELLE VISTE MATERIALIZZATE: PROBLEMI Le viste nei DBMS relzionli Utilità elle viste mterilizzte per l'eseuzione i interrogzioni Venite(ProutI, NegozioI,

Dettagli

capacità si può partire dalla sua definizione: C = e dalla relazione fra la differenza di potenziale ed il campo elettrico: V

capacità si può partire dalla sua definizione: C = e dalla relazione fra la differenza di potenziale ed il campo elettrico: V secizio (ll ppello 6/7/4) n conenstoe pino è costituito ue mtue qute i lto b septe un istnz. Il conenstoe viene completmente cicto ll tensione e poi scollegto ll bttei ust pe ciclo, così est isolto ll

Dettagli

Equazioni di secondo grado Capitolo

Equazioni di secondo grado Capitolo Equzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Test diagnostici. Un po di definizioni: test: (a+c)) / n. a+c. Malattia NO. a+b TEST. c+d. n= a+b+c+d. b+d POS NEG TOT TOT

Test diagnostici. Un po di definizioni: test: (a+c)) / n. a+c. Malattia NO. a+b TEST. c+d. n= a+b+c+d. b+d POS NEG TOT TOT Test ignostii Un po i efinizioni: proilità pre-test test: (+)) / n POS SI Mltti NO + TEST NEG + + + n= +++ 1 sensiilità el test: / (+( +) proilità he, t l mltti M, il test T si positivo SI Mltti NO POS

Dettagli

4 - TRASFORMAZIONI DI VARIABILI CASUALI

4 - TRASFORMAZIONI DI VARIABILI CASUALI 4 - RASFORMAZIONI DI VARIABILI CASUALI 4 rsformzioni i vriili suli Cominimo un esempio Si l vriile sule lnio i un o non truto : / / / 4 / 5 / / e g() si l orrisponenz: pri test ispri roe Poihé g()g(4)g()test

Dettagli

Esercizi per il corso di Calcolatori Elettronici

Esercizi per il corso di Calcolatori Elettronici Eserizi per il orso i loltori Elettronii svolti Muro IOVIELLO & io LUDNI Prte prim : mppe i Krnugh, metoo QM ESERIZIO : Mppe i Krnugh Minimizzre l rete rppresentt ll funzione: = {,,, 3, 4, 5,, } D = Ø

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

Problemi di collegamento delle strutture in acciaio

Problemi di collegamento delle strutture in acciaio 1 Problemi di collegmento delle strutture in cciio Unioni con bulloni soggette tglio Le unioni tglio vengono generlmente utilizzte negli elementi compressi, quli esempio le unioni colonn-colonn soggette

Dettagli

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003 Liceo Scientifico Sperimentle nno - Problem Bernrdo Pedone ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI nno - PROBLEMA Nel pino sono dti: il cerchio γ di dimetro OA =, l rett t tngente γ

Dettagli

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes I Teoremi di Green, dell divergenz o di Guss e di Stokes In R Si un sottoinsieme limitto di R semplice rispetto d entrmbi gli ssi crtesini con costituit dll unione di un numero finito di sostegni di curve

Dettagli

CORSO DI LAUREA IN FISICA ANNO ACCADEMICO 2013-14 PROVA DI INGRESSO

CORSO DI LAUREA IN FISICA ANNO ACCADEMICO 2013-14 PROVA DI INGRESSO CORSO DI LAUREA IN FISICA ANNO ACCADEMICO 2013-14 PROVA DI INGRESSO 20 Settembre 2013 Fisica 1. La figura è una vista dall alto di quattro scatole identiche, S 1, S 2, S 3, S 4, appoggiate su un piano

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di seondo

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit 0) L definizione di equzione di seondo grdo d un inognit 0) L risoluzione delle equzioni di

Dettagli

11. Geometria piana ( ) ( ) 1. Formule fondamentali. Rettangolo. A = b = h = = b h. b = base h = altezza. Quadrato

11. Geometria piana ( ) ( ) 1. Formule fondamentali. Rettangolo. A = b = h = = b h. b = base h = altezza. Quadrato 11. Geometi pin 1. Fomule fonmentli Rettngolo = h = h = h p= + h p= + h h= p = p h + ( ) = h = h h = = se = igonle p = peimeto h = ltezz = e p = semipeimeto Quto = l l = = l l = l = lto = igonle = e p

Dettagli

EQUAZIONI DI SECONDO GRADO

EQUAZIONI DI SECONDO GRADO Autore: Enrio Mnfui - 30/04/0 EQUAZIONI DI SECONDO GRADO Le equzioni di seondo grdo in un inognit sono uguglinze di due polinomi di ui lmeno uno è di seondo grdo e l ltro è di grdo minore o ugule due.

Dettagli

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi.

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi. I PRODOTTI NOTEVOLI Nel lolo letterle pit spesso di inontrre moltiplizioni tr prtiolri polinomi. I reltivi sviluppi si ottengono pplindo le regole fin qui viste, m i risultti, opportunmente semplifiti,

Dettagli

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Mhin non ompltmnt spifit Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spifit Comptiilità Vrsion l 5/12/02 Sono mhin in ui pr lun onfigurzioni

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse Prim Suol..........................................................................................................................................

Dettagli

COMBINAZIONI DI CARICO SOLAI

COMBINAZIONI DI CARICO SOLAI COMBINAZIONI DI CARICO SOLAI (ppunti di Mrio Zfonte in fse di elorzione) Ai fini delle verifihe degli stti limite, seondo unto indito dll normtiv, in generle le ondizioni di rio d onsiderre, sono uelle

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli

Cinematica rotazionale. 28 febbraio 2009 PIACENTINO - PREITE (Fisica per Scienze Motorie)

Cinematica rotazionale. 28 febbraio 2009 PIACENTINO - PREITE (Fisica per Scienze Motorie) Cinemti rotzionle 8 febbrio 009 PIACENTINO - PEITE (Fisi per Sienze Motorie) 1 Moto Cirolre Uniforme Un oggetto he si muove su un ironferenz on un veloità ostntev, ompie unmotoirolreuniforme. Il modulo

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

H ds = 2πRH = Ni H = Ni 2πR. N(k m 1) M = 0.05A

H ds = 2πRH = Ni H = Ni 2πR. N(k m 1) M = 0.05A Esercizio Un anello toroiale i piccola sezione avente raggio meio R = 0cm è fatto i ferro con permeabilità magnetica relativa = 5000. Una bobina con N = 000 spire è avvolta sulla superficie ell anello.

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile Elementi di ottica L ottica si occupa dello studio dei percorsi dei raggi luminosi e dei fenomeni legati alla propagazione della luce in generale. Lo studio dell ottica nella fisica moderna si basa sul

Dettagli

MAGNETISMO - prima parte. pina di vito 1

MAGNETISMO - prima parte. pina di vito 1 MAGNETISMO - prima parte 1 Magneti magneti naturali: magnetite (minerale del ferro Fe3O4) magneti artificiali: composti di Fe, Ni, Co poli magnetici: Nord e Sud I nomi dei poli magnetici derivano dall

Dettagli

Lezione 18. Magnetismo WWW.SLIDETUBE.IT

Lezione 18. Magnetismo WWW.SLIDETUBE.IT Lezione 18 Magnetismo Cenni di magnetismo Già a Talete (600 a.c.) era noto che la magnetitite ed alcune altre pietre naturali (minerali di ferro, trovati a Magnesia in Asia Minore) avevano la proprietà

Dettagli

Teoria in sintesi ESPONENZIALI. Potenze con esponente reale. La potenza. Sono definite: Non sono definite: Casi particolari :

Teoria in sintesi ESPONENZIALI. Potenze con esponente reale. La potenza. Sono definite: Non sono definite: Casi particolari : Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se >, per ogni R se, per tutti e soli gli R se

Dettagli

Algebra Relazionale. Operazioni nel Modello Relazionale

Algebra Relazionale. Operazioni nel Modello Relazionale lger Relzionle lger Relzionle Operzioni nel Moello Relzionle Le operzioni sulle relzioni possono essere espresse in ue ormlismi i se: lger relzionle: le interrogzioni (query) sono espresse pplino opertori

Dettagli

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione SOLUZIONE PROBLEMA 1 Punto 1 Osservimo nzitutto che l funzione g(x) = (x b)e,-,. è continu e derivbile in R in qunto composizione di funzioni continue e derivbili. Per discutere l presenz di punti di mssimo

Dettagli

Circuiti Sequenziali Macchine Non Completamente Specificate

Circuiti Sequenziali Macchine Non Completamente Specificate CEFRIEL Consorzio pr l Formzion l Rir in Inggnri ll Informzion Politnio i Milno Ciruiti Squnzili Mhin Non Compltmnt Spifit Introuzion Comptiilità Riuzion l numro gli stti Mtoo gnrl FSM non ompltmnt spifit

Dettagli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli Ellisse ed iperole Ellisse Definizione: si definise ellisse il luogo geometrio dei punti del pino per i quli è ostnte l somm delle distnze d due punti fissi F e F detti fuohi. L equzione noni dell ellisse

Dettagli

Equivalenza tra equazioni di Lagrange e problemi variazionali

Equivalenza tra equazioni di Lagrange e problemi variazionali Equivlenz tr equzioni di Lgrnge e problemi AM Cherubini 20 Aprile 2007 1 / 21 Problemi Mostrimo or come si possono ricvre sistemi di equzioni con struttur lgrngin in un mbito diverso: prim si er crtterizzt

Dettagli

Matematica I, Funzione integrale

Matematica I, Funzione integrale Mtemtic I, 24.0.2. Funzione integrle Definizione Sino f : A R, funzione continu su A intervllo, e c in A. L funzione che ssoci d ogni in A l integrle di f sull intervllo [c, ], viene dett funzione integrle

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli