Turnazione dei mezzi (vehicles-scheduling)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Turnazione dei mezzi (vehicles-scheduling)"

Transcript

1 Turnzione dei mezzi (vehicles-scheduling)

2 Definizione del prolem L fse di turnzione dei mezzi e del personle consiste nel pinificre l utilizzo nel tempo (e nello spzio) dei mezzi e del personle in modo d svolgere ttività di trsporto di cui sono noti luoghi e tempi di inizio e fine.

3 Turnzione dei mezzi e del personle L turnzione dei mezzi e del personle è un fse tipicmente di livello opertivo. A livello tttico, si nlizz l domnd di trsporto e si definisce l rete di trsporto, stilendo collegmenti e frequenze/orri stgionli. A livello strtegico si operno invece scelte di lungo periodo come disloczione delle sedi (depositi) e loro dimensionmento, composizione dell flott e loro lloczione presso le sedi. Tipicmente, dt l loro difficoltà, i prolemi di turnzione sono ffrontti sequenzilmente.

4 Turnzione dei mezzi e del personle: fsi Turnzione dei mezzi (Vehicle scheduling) Turnzione del personle Crew scheduling Crew rostering

5 Modelli di turnzione dei mezzi

6 Vehicle Scheduling Prolem (VSP) definizioni Si consideri un servizio di trsporto descritto trmite un insieme V di ttività di trsporto (trip) d effetture con un dt flott di veicoli omogenei prtire d un solo deposito. A ciscun trip è ssocito un luogo e un tempo di inizio e un luogo e tempo di fine. Un turno di un mezzo (lock) consiste in un sequenz mmissiile di trip con inizio e fine nel deposito di residenz. Un turno è mmissiile se tutte le coppie di ttività successive che lo compongo due ttività di trsporto i e j sono comptiili (i j), cioè possono essere eseguiti dllo stesso mezzo.

7 Vehicle Scheduling Prolem (VSP) definizioni (cont.) Il vehicle scheduling produce un insieme di turni dei mezzi (lock) in modo d poter espletre l insieme di ttività di trsporto (trip), minimizzndo un ssegnt funzione oiettivo (d esempio i costi) L complessità del prolem di vehicle scheduling (VSP) dipende dlle eventuli restrizioni di mmissiilità per un turno, d fttori legti ll omogeneità/disomogeneità dei veicoli, ecc. Distinguimo: il cso con un solo deposito (Single Depot:SD-VSP) in cui si ipotizz che tutti i veicoli inizino e finiscono il turno nello stesso luogo (Cpoline o deposito) il cso con un più depositi (Multi Depot:MD-VSP) in cui si ssume l presenz di più depositi in cui è possiile fr terminre i turni

8 IL METODO DEL GRAFO DI COMPATIBILITÀ (SD- VSP) Per rppresentre il prolem SD-VDP si introduce un grfo ciclico G(V, A) con V insieme delle ttività e A coppie delle ttività comptiili. Ad ogni coppi di ttività comptiile (rco) ssocio un costo cij che può essere funzione dell distnz percors, dl costo del crurnte usto, ecc

9 Esempio Supponimo occorr definire l sequenz delle seguenti ttività di trsporto che per ipotesi prtono e inizino nello stesso punto (d esempio: cpoline, deposito): Attività Or di inizio Or di fine Attività Attività Attività Attività Attività Attività Attività Attività Attività Attività

10 Il grfo di comptiilità c 14 c 16 c Deposito , Deposito

11 Soluzione del prolem di VSP L soluzione del prolem può essere individut ricercndo i cmmini dissimili che coprono tutte le ttività, in modo che si minimizzt l somm dei costi degli rchi. Un cmmino rppresent inftti un turno (lock) con costo pri ll somm degli rchi che lo compongono.

12 Un possiile soluzione c c d1 c 7 10 c 10 d c67 Deposito , Deposito

13 IL METODO DELLA DEFICIT FUNCTION (SD- VSP) DEFINIZIONE 1: dto l orrio di prtenz/rrivo delle corse (S), l funzione di deficit, d(t, k, S) d un generico cpoline k fornisce d ogni istnte t l differenz tr l cumult dei mezzi prtiti (P) d k fino ll istnte t e l cumult dei mezzi rrivti (A) in k fino ll istnte t: d( t, k, S) P( t, k, S) A( t, k, S) DEFINIZIONE 2: il mssimo di d(t, k, S) prende il nome di deficit l cpoline k: D( k, S) Mx[ d( t, k, S)] Teorem dell deficit function : per un dto numero di terminli k l dimensione dell flott è dt d: N ( S) k D( k, S)

14 IL METODO DELLA DEFICIT FUNCTION Il metodo dell deficit function consente di ridurre il numero di mezzi complessivo necessrio per esercire un prefissto insieme di ttività (Scheduling), ttrverso: 1. modifiche limitte dell orrio di prtenz di lcune corse (Vrile scheduling) 2. Introduzione di corse vuoto (Dedhed trips- DH) fissto l insieme delle ttività (Fixed Scheduling) Inoltre ttrverso l deficit function è possiile individure dei limiti inferiori ll dimensione dell flott per un dto insieme di corse

15 IL METODO DELLA DEFICIT FUNCTION ESEMPIO: riduzione dell dimensione dell flott ttrverso l introduzione di corse vuoto Fixed Schedule 3- d(,t) 2- d(,t) DH veicoli l cpoline "" Corse vuoto (Dedhed trip) veic tempo NOTA: senz vrire l orrio delle prtenze è possiile ridurre l dimensione dell flott, introducendo un cors vuoto (dedhed DH trips) d (in lu) tempo

16 IL METODO DELLA DEFICIT FUNCTION Time Fixed Schedule d(,t) D()=3 (i) d(,t) D()=2 Modifiche llo scheduling Shifts only D()=2 D()=1 (ii) Introduzione di corse vuoto DH only DH D()=2 D()=2 (iii) Corse vuoto + modifiche llo scheduling Comined shifts nd DH DH 1 Time DH 2 D()=2 D()=1 (iv)

17 ESERCIZIO Determinre l dimensione dell flott minim ttrverso l introduzione di corse vuoto

18 ESERCIZIO il numero di veicoli necessrio (il deficit) si riduce d 5 4 medinte l introduzione di tre corse vuoto tempi delle corse vuoto (DH, Ded-Hedings trip)= 2

19 ESERCIZIO clcolre il deficit e cercre di ridurlo medinte l introduzione di corse vuoto

20 IL METODO DELLA DEFICIT FUNCTION Limite inferiore dell dimensione dell flott A prtire dlle funzioni di deficit nei vri cpoline è possiile costruire l funzione g(s,t) che descrive il numero di mezzi simultnemente in esercizio: g (t,s ) k d( k,t,s ) Il mssimo di tle funzione, nel periodo di riferimento [T 1,T 2 ] considerto, costituisce un limite inferiore G(S) per l dimensione dell flott, fissto lo scheduling S: G( S) mx g( t, S), t [ T 1, T2 ],

21 IL METODO DELLA DEFICIT FUNCTION Limite inferiore migliorto E un limite inferiore dell dimensione dell flott che consente di verificre, per un dto scheduling S, se è possiile ridurre il numero di veicoli introducendo delle corse vuoto. Per clcolrlo si procede come segue: 1) Si modific lo scheduling in modo fittizio prolungndo tutte le corse fino ll istnte corrispondente ll successiv cors comptiile (nche medinte l inserimento di un cors vuoto) in prtenz d qulunque cpoline), o in su ssenz fino ll fine del periodo di riferimento; 2) Si costruisce l funzione g (t,s ) reltiv tle scheduling fittizio, S,e si clcol il mssimo di tle funzione G (S ) 3) Se risult G(S)=N(S) o G (S)= N(S) non è possiile ridurre l dimensione dell flott ttrverso l introduzione di corse vuoto

22 (1) (2) d 6 2 c 8 ESEMPIO: 1 limite inferiore migliorto c c 9 3 d d 4 d 7 1 c 2 d 3 d 4 Time IL METODO DELLA DEFICIT FUNCTION 5 c d 6 8 c 9 7 d Fine periodo di riferimento g(t) g'(t) Time G = 3 G' = 4 Il deficit N(S) per il dto scheduling risult pri 6 (D() = 3; D() = D(c) = 0; D(d) = 3). Pertnto si può procedere ricercre corse vuoto per ridurre l dimensione dell flott.

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Secondo Modulo di Ricerca Operativa Prova in corso d anno 12 giugno 2000

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Secondo Modulo di Ricerca Operativa Prova in corso d anno 12 giugno 2000 A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneri Informtic Secondo Modulo di Ricerc Opertiv Prov in corso d nno giugno Nome: Cognome: Brrre l csell corrispondente: Diplom t Lure t Esercizio

Dettagli

Determinare la posizione del centro di taglio della seguente sezione aperta di spessore sottile b << a

Determinare la posizione del centro di taglio della seguente sezione aperta di spessore sottile b << a Determinre l posizione del centro di tglio dell seguente sezione pert di spessore sottile

Dettagli

Ottimizzazione nella gestione dei progetti Capitolo 5: programmazione multiperiodale modello di flusso CARLO MANNINO

Ottimizzazione nella gestione dei progetti Capitolo 5: programmazione multiperiodale modello di flusso CARLO MANNINO Ottimizzzione nell gestione dei progetti Cpitolo 5: progrmmzione multiperiodle modello di flusso CARLO MANNINO Uniersità di Rom L Spienz Diprtimento di Informtic e Sistemistic Richimi: -tglio in un grfo

Dettagli

Unità 3 Metodi particolari per il calcolo di reti

Unità 3 Metodi particolari per il calcolo di reti Unità 3 Metodi prticolri per il clcolo di reti 1 Cos c è nell unità Metodi prticolri per il clcolo di reti con un solo genertore Prtitore di tensione Prtitore di corrente Metodi di clcolo di reti con più

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo Integrli ll integrle deinito ll integrle indeinito Indice dell lezione Integrle Deinito Rettngoloide Integrle deinito come re del rettngoloide Esempi e propriet Primitiv Teorem ondmentle del clcolo integrle

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata Cpitolo 5 Integrli 5.1 Integrli di funzioni grdint Un concetto molto semplice m di fondmentle importnz per l trttzione dell integrle di Riemnn è quello di divisione di un intervllo [, b]. In sostnz si

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

Corso di Idraulica per allievi Ingegneri Civili

Corso di Idraulica per allievi Ingegneri Civili Corso di Idrulic per llievi Ingegneri Civili Esercitzione n 1 I due sertoi e B in Figur 1, venti lrghezz comune pri, sono in comuniczione ttrverso l luce di fondo pert nel setto divisorio. Il primo,, contiene

Dettagli

ESERCIZIO DI ASD DEL 27 APRILE 2009

ESERCIZIO DI ASD DEL 27 APRILE 2009 ESERCIZIO DI ASD DEL 27 APRILE 2009 Dimetro Algoritmi. Ricordimo che un grfo non orientto, ciclico e connesso è un lero. Un lero può essere pensto come lero rdicto un volt che si si fissto un nodo come

Dettagli

I radicali. Cos è un radicale? ESERCIZIO 2.1. Determina le C.E. dei seguenti radicali e delle seguenti espressioni contenenti radicali.

I radicali. Cos è un radicale? ESERCIZIO 2.1. Determina le C.E. dei seguenti radicali e delle seguenti espressioni contenenti radicali. I rdicli Cos è un rdicle? Il simbolo si chim rdicle e si legge rdice ennesim di. - n si chim indice dell rdice e deve essere un numero nturle mggiore di zero. Qundo l indice si sottintende e il rdicle

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Introduzione e strumenti

Introduzione e strumenti Controlli utomtici Introduzione e strumenti Convenzioni generli ed elementi di bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi 2

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

FORMULE DI AGGIUDICAZIONE

FORMULE DI AGGIUDICAZIONE Mnule di supporto ll utilizzo di Sintel per stzione ppltnte FORMULE DI AGGIUDICAZIONE gin 1 di 18 Indice AZIENDA REGIONALE CENTRALE ACQUISTI - ARCA S.p.A. 1 INTRODUZIONE... 3 1.1 Mtrice modlità offert/modlità

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, }

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, } Lezione 01 Aritmetic Pgin 1 di 1 I numeri nturli I numeri nturli sono: 0,1,,,4,5,6,7,8,,10,11,1, L insieme dei numeri nturli viene indicto col simbolo. } { 0,1,,, 4,5,6,7,8,,10,11,1, } L insieme dei numeri

Dettagli

Metodi statistici per l analisi dei dati

Metodi statistici per l analisi dei dati Metodi sttistici per l nlisi dei dti Introduzione In ogni esperimento, possono essere presenti diversi fttori di disturo che mplificno l vriilità presente nei dti. In genere, si definisce fttore di disturo

Dettagli

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento Questionrio Risolvi quttro degli otto quesiti: L Città dello sport è un struttur sportiv progettt dll rchitetto Sntigo Cltrv e mi complett, situt sud di Rom Rispetto l sistem di riferimento indicto in

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

dr Valerio Curcio Le affinità omologiche Le affinità omologiche

dr Valerio Curcio Le affinità omologiche Le affinità omologiche 1 Le ffinità omologiche 2 Tringoli omologici: Due tringoli si dicono omologici se le rette congiungenti i punti omologhi dei due tringoli si incontrno in un medesimo punto. Principio dei tringoli omologici

Dettagli

In secondo luogo, dovremo registrare il pagamento del maxicanone iniziale. IVA sul maxicanone: x 20% = Canoni leasing IVA nostro credito

In secondo luogo, dovremo registrare il pagamento del maxicanone iniziale. IVA sul maxicanone: x 20% = Canoni leasing IVA nostro credito Esercitzione Lesing (B) Metodo Ptrimonile A) In dt /2006 si stipul un contrtto di lesing per l'cquisizione di un mcchinrio di produzione lle seguenti condizioni: costo complessivo 23.100 (+ IVA 20%) d

Dettagli

Il calcolo letterale

Il calcolo letterale Progetto Mtemtic in Rete Il clcolo letterle Finor imo studito gli insiemi numerici (espressioni numeriche). Ν, Ζ, Q, R ed operto con numeri In mtemtic però è molto importnte sper operre con le lettere

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anlitic Domnde, Risposte & Esercizi. Dre l definizione di iperole come luogo di punti. L iperole è un luogo di punti, è cioè un insieme di punti del pino le cui distnze d due punti fissi F e F

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

Il problema delle scorte tomo G

Il problema delle scorte tomo G Il prolem delle scorte tomo G Esercizi corretti: esercizio pg 6; esercizio 3 pg. 59 N. 5 PAG 389; N. 6 PAG. 389; N. 7 PAG 389; N. 8 PAG. 389; N 9 PAG. 390; N. 30 pg 390, N. 3 pg. 390, N. 33 pg. 390. Per

Dettagli

LEZIONE 13 MINIMIZZAZIONE DEI COSTI. Condizione per la minimizzazione dei costi. Efficienza tecnica ed efficienza economica

LEZIONE 13 MINIMIZZAZIONE DEI COSTI. Condizione per la minimizzazione dei costi. Efficienza tecnica ed efficienza economica LEZIONE 3 MINIMIZZAZIONE DEI COSTI Lungo periodo Soluzione nlitic Condizione per l minimizzzione dei costi Efficienz tecnic ed efficienz economic Rppresentzione grfic Isocosto ed isoqunto Sentiero di espnsione

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

Variabile casuale uniforme (o rettangolare)

Variabile casuale uniforme (o rettangolare) Vribile csule uniforme (o rettngolre) Le crtteristic principle è che le sue relizzzioni sono equiprobbili Si pplic nelle situzioni in cui il fenomeno: Assume vlori in un intervllo limitto [,b] L probbilità

Dettagli

Superfici di Riferimento (1/4)

Superfici di Riferimento (1/4) Superfici di Riferimento (1/4) L definizione di un superficie di riferimento nsce dll necessità di vere un supporto mtemtico su cui sviluppre il rilievo eseguito sull superficie terrestre. Tle superficie

Dettagli

Teoria in pillole: logaritmi

Teoria in pillole: logaritmi Teori in pillole: logritmi EQUAZIONI ESPONENZIALI Un'equzione si dice esponenzile qundo l'incognit compre soltnto nell'esponente di un o più potenze. L'equzione esponenzile più semplice (elementre) è del

Dettagli

Laboratorio di Matematica Computazionale A.A Lab. 11 Integrazione numerica

Laboratorio di Matematica Computazionale A.A Lab. 11 Integrazione numerica Lbortorio di Mtemtic Computzionle A.A. 2008-2009 1 Integrzione numeric Lb. 11 Integrzione numeric Un metodo di integrzione numerico consiste in un formul esplicit che permett di pprossimre il vlore di

Dettagli

COLPO D ARIETE: MANOVRE DI CHIUSURA

COLPO D ARIETE: MANOVRE DI CHIUSURA Università degli studi di Rom Tor Vergt Corso di Idrulic. Prof. P. Smmrco COLPO D ARIETE: MANOVRE DI CHIUSURA Appunti integrtivi l testo E. Mrchi, A. Rubtt - Meccnic dei Fluidi dlle lezioni del prof. P.

Dettagli

Funzioni razionali fratte

Funzioni razionali fratte Funzioni rzionli frtte Per illustrre l medizione che AlNuSet fornisce per lo studio delle funzioni rzionli frtte, inizimo con il considerre l funzione f ( ) l vrire del prmetro. L su rppresentzione nell

Dettagli

INTERVALLI NELL INSIEME R

INTERVALLI NELL INSIEME R INTEVALLI NELL INSIEME Lo studio dell topologi (1) (dl greco "nlysis situs" ossi "studio del luogo") dell'insieme è di fondmentle importnz per gli rgomenti e i prolemi di nlisi infinitesimle. Il "luogo"

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z Controlli Automtici Trsformte L e Z e schemi blocchi Esercizi sulle trsformte L e Z Esercizi sulle trsformte L e Z Proposte di esercizi e soluzioni in tempo rele trsformt L di y(t) dt trsformt Z di y(i)

Dettagli

Esercitazione Dicembre 2014

Esercitazione Dicembre 2014 Esercitzione 10 17 Dicembre 2014 Esercizio 1 Un economi chius è crtterizzt di seguenti dti: A = 400 M = 250 γ = 1.5 (moltiplictore dell politic fiscle) β = 0.8 moltiplictore dell politic monetri z = 0.25

Dettagli

Modulo o "valore assoluto" Proprietà del Valore Assoluto. Intervalli

Modulo o valore assoluto Proprietà del Valore Assoluto. Intervalli Modulo o "vlore ssoluto" Dto x definimo modulo o vlore ssoluto di x il numero rele positivo x se x 0 x = x se x < 0 Es. 5 è 5. 2.34 è 2.34 Dl punto di vist geometrico x rppresent l distnz di x d 0. x x

Dettagli

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi SUGLI INSIEMI 1.Insiemi e operzioni su di essi Il concetto di insieme è primitivo ed è sinonimo di clsse, totlità. Si A un insieme di elementi qulunque. Per indicre che è un elemento di A scriveremo A.

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

Esercizi di Informatica Teorica

Esercizi di Informatica Teorica 03-utomi--stti-finiti-0 Esercizi di Informtic Teoric Automi stti finiti Autom stti finiti (ASF) richimi utom stti finiti ASF = dove Σ = {σ, σ 2,, σ n } è un lfeto (finito) di input K= {, q,,

Dettagli

Meccanica dei Solidi. Vettori

Meccanica dei Solidi. Vettori Meccnic dei Solidi Prof. Ing. Stefno Avers Università di Npoli Prthenope.. 2005-06 Lezione 2 Vettori Definizione: Un grndezz vettorile (o un vettore) è un grndezz fisic crtterizzt oltre che d un numero

Dettagli

a a a a a a a-- REGOLAMENTO D GRADUAZONE DEGU NCARKH DllRftGENZAU Aree veterinaria sanitaria, profession&e, tecnica ed amministrathia

a a a a a a a-- REGOLAMENTO D GRADUAZONE DEGU NCARKH DllRftGENZAU Aree veterinaria sanitaria, profession&e, tecnica ed amministrathia ZSAM CCAPORME TERAMO REGOLAMENTO D GRADUAZONE DEGU NCARKH DllRftGENZAU Aree veterinri snitri, profession&e, tecnic ed mministrthi Term o, 4 prile 2017 E E -- ndice PREMESSA.3 ARTICOLO i Criteri generli

Dettagli

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito Appunti di nlisi mtemtic: Integrle Deinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle Deinito Clcolo delle ree di ig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0 Equzioni letterli di II grdo Un equzione letterle di II grdo è un equzione che contiene, oltre l letter che rppresent l incognit dell equzione, ltre lettere, dette prmetri, che rppresentno numeri ben determinti,

Dettagli

{ 3 x y=4. { x=2. Sistemi di equazioni

{ 3 x y=4. { x=2. Sistemi di equazioni Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto

Dettagli

Principi di economia Microeconomia. Esercitazione 3. Teoria del Consumatore

Principi di economia Microeconomia. Esercitazione 3. Teoria del Consumatore Principi di economi Microeconomi Esercitzione 3 Teori del Consumtore Novembre 1 1. Considerimo uno studente indifferente tr il consumo di penne nere (x n ) e blu (x b ), e che cquist ogni nno un pniere

Dettagli

Cinematica ed equilibrio del corpo rigido

Cinematica ed equilibrio del corpo rigido inemtic ed equilirio del corpo rigido Spostmenti virtuli Lvori virtuli ed equilirio Determinzione sttic Numero dei vincoli e determinzione pprofondimenti: lvoro virtule pprofondimenti: forze e momenti

Dettagli

PREFERENZE COME RELAZIONI D ORDINE

PREFERENZE COME RELAZIONI D ORDINE PREFERENZE COME RELAZIONI D ORDINE RELAZIONI Si S un insieme finito. Un relzione inri R è un sottoinsieme dell insieme prodotto crtesino S S, insieme delle coppie ordinte di elementi di S: R S S x,y R

Dettagli

Teoria di Jourawski. 1. Sezione ad T. Lê2 L Lê2. à Soluzione

Teoria di Jourawski. 1. Sezione ad T. Lê2 L Lê2. à Soluzione eori di Jourwski ü [A.. 0-03 : ultim revisione 4 gennio 03] Si pplic l teori di Jourwski l fine di clcolre l distribuzione di tensioni tngenzili su lcune sezioni soggette sforzo di tglio.. Sezione d ê

Dettagli

BREVE APPENDICE SULLE UNITA' LOGARITMICHE

BREVE APPENDICE SULLE UNITA' LOGARITMICHE BREVE APPENDICE SULLE UNITA' LOGARITMICHE Per esprimere gudgni e ttenuzioni, nonché cifre di rumore e rpporti segnle-rumore si usno frequentemente le unità logritmiche. Come risultto, l grndezz in questione

Dettagli

Cinematica ed equilibrio del corpo rigido

Cinematica ed equilibrio del corpo rigido omportmento meccnico dei mterili rtteristiche di sollecitione inemtic ed equilirio del corpo rigido rtteristiche di sollecitione efiniione delle crtteristiche Esempio 1: trve rettiline Esempio : struttur

Dettagli

RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI

RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI PROPRIETÀ DEI NUMERI INTERI, SCOMPOSIZIONI, ECC.. Se A è ugule e B è ugule, qunto vlgono m.c.m. ed M.C.D. dei numeri A e B? 0 e. Se si moltiplicno due numeri

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenzili e ritmi ESPONENZIALI Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z Sono definite: ( ) ( ) ( ) 7 7 Non sono definite:

Dettagli

Erasmo Modica. : K K K

Erasmo Modica.  : K K K L insieme dei numeri reli L INSIEME DEI NUMERI REALI Ersmo Modic helthinsurnce@tin.it www.glois.it Per introdurre l insieme dei numeri reli si hnno disposizione diversi modi. Generlmente l iennio si preferisce

Dettagli

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito Appunti di nlisi mtemtic: Integrle Deinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle Deinito Clcolo delle ree di ig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

Febbraio 2014. PROGETTO: Studio di Architettura e Urbanistica Dott. Arch. Guido Leoni Via Affò, 4 - Parma - tel. 0521.233423

Febbraio 2014. PROGETTO: Studio di Architettura e Urbanistica Dott. Arch. Guido Leoni Via Affò, 4 - Parma - tel. 0521.233423 Comune di Poviglio Provinci di Reggio Emili Relzione illustrtiv dell Delierzione Consilire di pprovzione, dei coefficienti e prmetri di conversione che ssicurno l equivlenz tr le definizioni e le modlità

Dettagli

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes I Teoremi di Green, dell divergenz o di Guss e di Stokes In R Si un sottoinsieme limitto di R semplice rispetto d entrmbi gli ssi crtesini con costituit dll unione di un numero finito di sostegni di curve

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

La funzione del benessere sociale. CLES, A.A. 2008/2009 Classe 10

La funzione del benessere sociale. CLES, A.A. 2008/2009 Classe 10 L funione del enessere socile CLES, A.A. 2008/2009 Clsse 10 L funione del enessere socile Come ggregre le preferene individuli per ottenere un ordinmento di preferen socile sull insieme delle lterntive

Dettagli

1 Il problema del calcolo dell area di una regione piana limitata

1 Il problema del calcolo dell area di una regione piana limitata Anlisi Mtemtic 2 1 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 1 INTEGRALI DI FUNZIONI DI UNA VARIABILE REALE 1 Il problem del clcolo dell re di un regione pin limitt Se si consider un

Dettagli

Esercizi di Informatica Teorica. Sommario

Esercizi di Informatica Teorica. Sommario Esercizi di Informtic Teoric Grmmtiche formli 1 Sommrio esercizi su grmmtiche e derivzioni esercizi su grmmtiche ed espressioni regolri esercizi su grmmtiche non regolri 2 1 Grmmtiche e derivzioni esercizio

Dettagli

Esercitazioni di Elettrotecnica: circuiti in regime stazionario

Esercitazioni di Elettrotecnica: circuiti in regime stazionario Università degli Studi di ssino sercitzioni di lettrotecnic: circuiti in regime stzionrio prof ntonio Mffucci Ver ottore 007 Mffucci: ircuiti in regime stzionrio ver -007 Serie, prllelo e prtitori S lcolre

Dettagli

Minimi quadrati e problemi di distanza minima

Minimi quadrati e problemi di distanza minima Minimi qudrti e problemi di distnz minim Considerimo un mtrice rettngolre B, con elementi b ij, i 1,..., n, j 1,..., m, con m < n (quindi, più righe che colonne. Voglimo risolvere il sistem linere (1 Bx

Dettagli

P8 Ponti radio terrestri e satellitari

P8 Ponti radio terrestri e satellitari P8 Ponti rdio terrestri e stellitri P8.1 Un collegmento in ponte rdio 11 GHz impieg due ntenne prboliche uguli venti gudgno G 40 db ed efficienz η 0,5. Gli pprti di ricetrsmissione sono collegti lle rispettive

Dettagli

Problemi e rappresentazione di problemi di geometria dello spazio - Claudio Cereda febbraio 2001 pag. 1

Problemi e rappresentazione di problemi di geometria dello spazio - Claudio Cereda febbraio 2001 pag. 1 Prolemi e rppresentzione di prolemi di geometri dello spzio - ludio ered ferio 00 pg. onvenzioni di disegno e di rppresentzione Nel corso dell trttzione si dotternno le seguenti convenzioni simoliche:

Dettagli

Un carrello del supermercato viene lanciato con velocità iniziale

Un carrello del supermercato viene lanciato con velocità iniziale Esempio 44 Un utomobile procede lungo l utostrd ll velocità costnte di m/s, ed inizi d ccelerre in vnti di m/s.5 proprio nell istnte in cui super un cmion fermo in un re di sost. In quel preciso momento

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

Area del Trapezoide. f(x) A f(a) f(b) f(x)

Area del Trapezoide. f(x) A f(a) f(b) f(x) Are del Trpezoide y o A f() trpezoide h B f() f() L're del trpezoide S puo' essere pprossimt dll're del trpezio AB. Per vere un migliore pprossimzione possimo suddividere il trpezio in trpezi piu' piccoli.

Dettagli

m kg M. 2.5 kg

m kg M. 2.5 kg 4.1 Due blocchi di mss m = 720 g e M = 2.5 kg sono posti uno sull'ltro e sono in moto sopr un pino orizzontle, scbro. L mssim forz che può essere pplict sul blocco superiore ffinchè i blocchi si muovno

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

1 COSTI UNITARI PER TIPOLOGIA DI IMPIANTO

1 COSTI UNITARI PER TIPOLOGIA DI IMPIANTO COSTI UNITARI PER TIPOLOGIA DI IMPIANTO I costi medi unitri, per tipologi di impinto di Aten SpA, sono definiti in relzione lle soluzioni relizztive più ricorrenti. Tli costi si intendono riferiti d opere

Dettagli

CORSO DI RAGIONERIA A.A. 2013/2014

CORSO DI RAGIONERIA A.A. 2013/2014 CORSO DI RAGIONERIA A.A. 2013/2014 MODULO A LEZIONE N. 10 LE SCRITTURE CONTABILI Il lesing IL CONTRATTO DI LEASING Il lesing è un contrtto tipico (non previsto dl Codice Civile) per mezzo del qule l ziend

Dettagli

Valutazione di una espressione. Espressioni. Espressioni semplici: variabili. Espressioni semplici: costanti

Valutazione di una espressione. Espressioni. Espressioni semplici: variabili. Espressioni semplici: costanti Espressioni Vlutzione di un espressione Ogni espressione E h: Un espressione E del linguggio C può essere definit formlmente come segue (definizione induttiv): E è un espressione semplice. Si Op n un opertore

Dettagli

Le frazioni algebriche

Le frazioni algebriche Progetto Mtemtic in Rete - Frzioni lgeriche - Le frzioni lgeriche Definizione se A e B sono due polinomi e B è diverso dl polinomio nullo, B A viene dett frzione lgeric. Esempio sono esempi di frzioni

Dettagli

LEZIONE 9-6 maggio 2016 Campi vettoriali

LEZIONE 9-6 maggio 2016 Campi vettoriali LEZIONE 9-6 mggio 216 mpi vettorili 1. Introduzione DEFINIZIONE 1.1. Dto un insieme S R 3, un cmpo vettorile F su S è un legge che ssoci d ogni punto di S un vettore F(x,y,z) di componenti (F 1 (x,y,z),f

Dettagli

COGNOME..NOME CLASSE.DATA

COGNOME..NOME CLASSE.DATA COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione

Dettagli

Verifica di Fisica 04/12/2014 Argomenti trattati durante il corso:

Verifica di Fisica 04/12/2014 Argomenti trattati durante il corso: Liceo Scientifico Augusto Righi, Cesen Corso di Fisic Generle, AS 2014/15, Clsse 1C Verific di Fisic 04/12/2014 Argomenti trttti durnte il corso: Grndezze fisiche: fondmentli e derivte Notzione scientific

Dettagli

Da 9.500,01 a 15.000,00 > 15.000,01 9.500,00 COSTO PASTO 1,15 2,30 3,45 4,60

Da 9.500,01 a 15.000,00 > 15.000,01 9.500,00 COSTO PASTO 1,15 2,30 3,45 4,60 Per l Anno Scolstico 2015/2016 l Deliber di Giunt Comunle n.25 del 16.04.2015 d oggetto: Determinzione dei criteri e ppliczione delle triffe dei servizi comunli introitti dl Comune nno 2015. Ricognizione

Dettagli

Ottica ondulatoria. Interferenza e diffrazione

Ottica ondulatoria. Interferenza e diffrazione Ottic ondultori Interferenz e diffrzione Interferenz delle onde luminose Sorgenti coerenti: l differenz di fse rest costnte nel tempo Ond luminos pin che giunge su uno schermo contenente due fenditure

Dettagli

Ottimizzazione Monodimensionale

Ottimizzazione Monodimensionale Cpitolo primo Ottimizzzione Monodimensionle Introduzione I prolemi di ottimizzzione monodimensionle sono quelli nei quli è presente un sol vriile decisionle. Essi sono riconduciili i semplici prolemi di

Dettagli

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI Considerimo un funzione f : I R, dove I è un intervllo di R. Si c un punto interno I in cui f è discontinu. Diremo che c è un punto di discontinuità di prim

Dettagli

Equivalenza tra equazioni di Lagrange e problemi variazionali

Equivalenza tra equazioni di Lagrange e problemi variazionali Equivlenz tr equzioni di Lgrnge e problemi AM Cherubini 20 Aprile 2007 1 / 21 Problemi Mostrimo or come si possono ricvre sistemi di equzioni con struttur lgrngin in un mbito diverso: prim si er crtterizzt

Dettagli

Aniello Murano NP- Completezza (seconda parte)

Aniello Murano NP- Completezza (seconda parte) Aniello Murno NP- Completezz (second prte) 15 Lezione n. Prole chive: Np-completezz Corso di Lure: Informtic Codice: Emil Docente: murno@ n.infn.it A.A. 2008-2009 Definizione di NP- COMPLETEZZA Si ricordi

Dettagli

La scomposizione in fattori dei polinomi

La scomposizione in fattori dei polinomi Progetto Mtemtic in Rete L scomposizione in fttori dei polinomi Scomporre in fttori un polinomio signific scriverlo come prodotto di polinomi di grdo inferiore. Esempio: ( )( ) Osservimo che l uguglinz,

Dettagli

F (r(t)), d dt r(t) dt

F (r(t)), d dt r(t) dt Cmpi vettorili Un cmpo vettorile è un funzione vlori vettorili F : A R, con A R n, ove in questo cso l imensione el ominio e el coominio è l stess. F ( 1, 2,..., n ) (f 1 ( 1, 2,..., n ), f 2 ( 1, 2,...,

Dettagli

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1 curdi Luc Cio e Wlter Didimo Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 1 espressioni regolri e grmmtiche regolri proprietà decidiili dei linguggi regolri teorem di Myhill-Nerode notzioni sul

Dettagli

STUDIO COMMERCIALE TRIBUTARIO TOMASSETTI & PARTNERS Corso Trieste 88 00198 Roma Tel. 06/8848666 (RA) Fax 068844588 info@mt-partners.

STUDIO COMMERCIALE TRIBUTARIO TOMASSETTI & PARTNERS Corso Trieste 88 00198 Roma Tel. 06/8848666 (RA) Fax 068844588 info@mt-partners. CIRCOLARE INFORMATIVA NR. 14 del 30/11/2012 ARGOMENTO: IMPOSTA SOSTITUIVA TFR 2013 Scde il prossimo 16 dicembre il termine per pgre l impost sostitutiv sul TFR. Tle impost rppresent l nticipo di tsse dovute

Dettagli