Traduzione di espressioni in assembly Motorola 68000

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Traduzione di espressioni in assembly Motorola 68000"

Transcript

1 Trduzione di espressioni in ssemly Motorol Dniele Polo Scrpzz Politecnico di Milno Ultimo ggiornmento: 10 Mggio 2005

2 Trduzione e ssemlggio Trduzione: dto un progrmm, espresso in un linguggio d lto livello (per esempio C) preprre il progrmm corrispondente, in linguggio ssemly; Assemlggio: trdurre il progrmm ssemly in codice oggetto, direttmente eseguiile dl processore;

3 Trduzione Svolgere l'operzione nelle seguenti fsi: 1. ricvre l'lero sintttico; 2. numerre i nodi interni dell'lero secondo un visit postordine; 3. coprire l'lero con le tegole prefisste; 4. llocre i istri (nell'ordine di numerzione, senz ottimizzzioni, rispettndo i vincoli); 5. codificre in ssemly le tegole (nell'ordine di numerzione, con i istri llocti);

4 1. Determinre l'lero sintttico Espressione di esempio: Z = (A B) (C D) 5 Determinzione dell'lero sintttico: Z 5 A B C D

5 2. Numerzione dei nodi dell'lero Numerri i nodi interni (cioè tutti i nodi trnne le foglie) secondo un visit postordine; Ricordte: dto un lero, un visit dei suoi nodi è un sequenz ordint in cui ogni nodo compre esttmente un volt; L visit postordine si ottiene considerndo i nodi come rccomndto dll' lgoritmo ricorsivo (pseudocodice C): void VisitPostordine(Nodo * pn) { VisitPostordine(pn->figlio1); VisitPostordine(pn->figlio2);... /* eventuli ltri figli, numerti d sx dx */ ConsiderNodo(pn); }

6 2. Numerzione dei nodi dell'lero Applichimo l visit postordine dei nodi interni: Z A B C D

7 3. Copertur dell'lero con tegole Avete disposizione un insieme di tegole prefissto (vedere prossime pgine), ftte d esempio come segue: vr... vr Disponete le tegole in modo che comcino con i nodi dell'lero; ogni nodo interno (slvo l rdice) si coperto d due tegole; Le tegole sono przilmente sovrpposte; le zone sovrpposte devono comcire; Ignorte per or i simoli in rosso, essi vincolno l fse successiv di lloczione dei istri;

8 Tegole d usre per l copertur Per le istruzioni di trsferimento dti: move D, vr vr move #, vr vr move vr, D vr move D, D move #, D (Per uniformità, ttenersi lle tegole dte, nche se non sono ottime)

9 Tegole d usre per l copertur Operzioni ritmetiche: dd D, D dd #, D dd #, D Queste due tegole hnno l stess trduzione ssemly in virtù dell commuttività dell'opertore. su D, D su #, D Not: Attenzione ll'ordine degli operndi! Attenzione ll'ordine degli operndi! Quest tegol non esiste! Se si present questo sottolero, spostre in un istro e poi usre l prim tegol sinistr. (Per uniformità, ttenersi lle tegole dte, nche se non sono ottime)

10 Tegole d usre per l copertur Ancor operzioni ritmetiche: (come prim) muls D, D muls #, D muls #, D Queste due tegole hnno l stess trduzione ssemly in virtù dell commuttività dell'opertore. divs D, D divs #, D Not: : : : Attenzione ll'ordine degli operndi! Attenzione ll'ordine degli operndi! Quest tegol non esiste! Se si present questo sottolero, spostre in un istro e poi usre l prim tegol sinistr. (Per uniformità, ttenersi lle tegole dte, nche se non sono ottime)

11 Tegole d usre per l copertur Push dei prmetri di funzione: move D, -(A7) pil move #, -(A7) pil Chimt di funzione: BSR func ADD #N, A7 (ex: 2 prmetri L in ingresso sull pil e vlore di ritorno in D0) func() D0 move vr, -(A7) pil pil (con 3 prmetri,...) pil vr func() D0 Attenzione: eccezione ll ol di numerzione dei nodi; se dovete cricre i prmetri sull pil in ordine inverso, le tegole push vnno numerte d destr sinistr, invece che d sinistr destr; pil etc... pil pil

12 3. Coprire l'lero con le tegole Z A vr B vr C vr D vr

13 4. Allocre i istri [TO DO: NO D0] Allocre i istri: nell'ordine di numerzione del psso precedente; rispettndo i vincoli indicti nelle tegole (segnlti in rosso); inizio dl istro D1 (D0 è riservto per vlori di ritorno); 7 D3 Z 8 9 D3 5 3 D2 6 D3 Not: i soli istri in gillo sono llocti liermente; gli ltri sono vincolti; D1 1 2 D2 4 D3 5 A vr B vr C vr D vr D4

14 5. Codificre il progrmm 7 Z 8 D3 3 D2 6 D1 1 2 D2 9 D3 4 D3 5 D3 5 D4 Codificre in ssemly le tegole con i istri llocti: 1. MOVE.L A, D1 2. MOVE.L B, D2 3. ADD.L D1,D2 4. MOVE.L C, D3 5. MOVE.L D, D4 6. SUB.L D4,D3 7. MULS D2,D3 8. ADD.L #5,D3 9. MOVE.L D3,Z A vr B vr C vr D vr

15 Progrmm finle Relizzre il progrmm completo che clcol: Z = (A B) (C D) 5 con i seguenti vlori: A = 1 B = 2 C = 3 D = 4 Z (clcolt) = 26 Codific ssemly ricvt: 1. MOVE.L A, D1 2. MOVE.L B, D2 3. ADD.L D1,D2 4. MOVE.L C, D3 5. MOVE.L D, D4 6. SUB.L D4,D3 7. MULS D2,D3 8. ADD.L #5,D3 9. MOVE.L D3,Z * Alloczione delle vriili, long word A EQU $100 B EQU $104 C EQU $108 D EQU $10C Z EQU $110 START ORG $1000 * Inizilizzzione delle vriili MOVE.L #1, A MOVE.L #2, B MOVE.L #3, C MOVE.L #-4,D MOVE.L #0,Z * Clcolo dell'espressione MOVE.L A, D1 MOVE.L B, D2 ADD.L D1,D2 MOVE.L C, D3 MOVE.L D, D4 SUB.L D4,D3 MULS D2,D3 * Attn: 1616 it ADD.L #5,D3 MOVE.L D3,Z STOP #$2000 END START

CORSO DI INFORMATICA 2 POLITECNICO DI MILANO

CORSO DI INFORMATICA 2 POLITECNICO DI MILANO prof. Luc reveglieri mggio 00 prof. Luc reveglieri mggio 00 ORSO I INFORMTI POLITENIO I MILNO MTERILE ITTIO I SUPPORTO TRUIONE I ESPRESSIONI RITMETIHE E LOGIHE LINGUGGIO I LTO LIVELLO -NSI LINGUGGIO MHIN

Dettagli

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE.

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE. L prol In figur è trccito il grfico di un prol con sse di simmetri verticle. Si vede suito dl grfico ce: l curv è simmetric rispetto l suo sse di simmetri il suo punto più in sso è il vertice il vertice

Dettagli

Puntatori e gestione dinamica della memoria

Puntatori e gestione dinamica della memoria Punttori e gestione dinmic dell memori Corso di Informtic 2.. 23/4 Lezione 4 Vntggi nell uso dei vettori Sono legti ll ccesso diretto gli elementi utilizzndo gli indici. v d = dimensione elemento 678 indirizzo

Dettagli

Esercizio riassuntivo di traduzione e assemblaggio da linguaggio C ad assembly Motorola

Esercizio riassuntivo di traduzione e assemblaggio da linguaggio C ad assembly Motorola Esercizio riassuntivo di traduzione e assemblaggio da linguaggio C ad assembly Motorola 68000. Ultima modifica: 10 Maggio 2005. Autore: Daniele Paolo Scarpazza. Per segnalare eventuali difficoltà o problemi,

Dettagli

Ambiguità D 11 = SS ( S S S ( S (S ) S ( S ((S )) S ( + S (( )) S (S (( )) (S) (S (( )) ( ) ( (( )) ( )

Ambiguità D 11 = SS ( S S S ( S (S ) S ( S ((S )) S ( + S (( )) S (S (( )) (S) (S (( )) ( ) ( (( )) ( ) Amiguità D 11 = ( ( ( ) ( (( )) ( (( )) ( (( )) () ( (( )) ( ) ( (( )) ( )! ( ) ( )! Un Grmmti si die migu se medesime stringhe sono generte d leri sintttii di differente struttur ovvero on due distinte

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

ESERCIZIO DI ASD DEL 27 APRILE 2009

ESERCIZIO DI ASD DEL 27 APRILE 2009 ESERCIZIO DI ASD DEL 27 APRILE 2009 Dimetro Algoritmi. Ricordimo che un grfo non orientto, ciclico e connesso è un lero. Un lero può essere pensto come lero rdicto un volt che si si fissto un nodo come

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è un scrittur in cui compiono operzioni tr numeri rppresentti, tutti o in prte, d lettere. Per clcolre il vlore numerico di

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è.... Per clcolre il vlore numerico di un espressione letterle isogn...... c. Non si possono ssegnre lle lettere che compiono

Dettagli

Funzioni razionali fratte

Funzioni razionali fratte Funzioni rzionli frtte Per illustrre l medizione che AlNuSet fornisce per lo studio delle funzioni rzionli frtte, inizimo con il considerre l funzione f ( ) l vrire del prmetro. L su rppresentzione nell

Dettagli

Valutazione di una espressione. Espressioni. Espressioni semplici: variabili. Espressioni semplici: costanti

Valutazione di una espressione. Espressioni. Espressioni semplici: variabili. Espressioni semplici: costanti Espressioni Vlutzione di un espressione Ogni espressione E h: Un espressione E del linguggio C può essere definit formlmente come segue (definizione induttiv): E è un espressione semplice. Si Op n un opertore

Dettagli

Unità 3 Metodi particolari per il calcolo di reti

Unità 3 Metodi particolari per il calcolo di reti Unità 3 Metodi prticolri per il clcolo di reti 1 Cos c è nell unità Metodi prticolri per il clcolo di reti con un solo genertore Prtitore di tensione Prtitore di corrente Metodi di clcolo di reti con più

Dettagli

Sistemi Intelligenti Reinforcement Learning: Sommario

Sistemi Intelligenti Reinforcement Learning: Sommario Sistemi Intelligenti Reinforcement Lerning: Itertive policy evlution Alberto Borghese Università degli Studi di Milno Lbortorio di Sistemi Intelligenti Applicti (AIS-Lb) Diprtimento di Scienze dell Informzione

Dettagli

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y Differenzile Considerimo l vrizione finit, dell vriile indipendente cui corrisponde un vrizione finit dell funzione f, f y Δf 1 Δ 2 L vrizione dell vriile dipendente puo' essere molto piccol, infinitesim

Dettagli

Appendice 2B: Probabilità e densità di probabilità

Appendice 2B: Probabilità e densità di probabilità Appendice B: Proilità e densità di proilità Concetto di proilità normlmente pplicto eventi csuli non predeterminili! Esempi di eventi cusli: Vlori limite: P A 0 : A P : A uscit dell fcci 6 nel lncio di

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

Rappresentazione doppi bipoli. Lezione 21 1

Rappresentazione doppi bipoli. Lezione 21 1 Rppresentzione doppi bipoli Lezione 21 1 Connessioni doppi bipoli Lezione 21 2 Connessioni Generlità I bipoli hnno solo due possibilità di connessione: serie prllelo Avendo due porte i doppi bipoli hnno

Dettagli

Esercizi svolti a lezione

Esercizi svolti a lezione Esercizi svolti lezione Sistemi Informtivi T Versione elettronic: 0.esercizi.pdf NB: Questo file viene ggiornto periodicmente Versione del 27/09/2017 02.1 Normlizzzione in 1NF (1) Not: l numerzione (es.

Dettagli

Variabile casuale uniforme (o rettangolare)

Variabile casuale uniforme (o rettangolare) Vribile csule uniforme (o rettngolre) Le crtteristic principle è che le sue relizzzioni sono equiprobbili Si pplic nelle situzioni in cui il fenomeno: Assume vlori in un intervllo limitto [,b] L probbilità

Dettagli

Risoluzione verifica di matematica 3C del 17/12/2013

Risoluzione verifica di matematica 3C del 17/12/2013 Problem 1 Risoluzione verific di mtemtic C del 17/1/01 Si clcolno le intersezioni tr le rette generiche del fscio proprio y x y 1, risolvendo il sistem: x y 1 y mx Si ottengono i punti di coordinte espresse

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Secondo Modulo di Ricerca Operativa Prova in corso d anno 12 giugno 2000

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Secondo Modulo di Ricerca Operativa Prova in corso d anno 12 giugno 2000 A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneri Informtic Secondo Modulo di Ricerc Opertiv Prov in corso d nno giugno Nome: Cognome: Brrre l csell corrispondente: Diplom t Lure t Esercizio

Dettagli

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0 Equzioni letterli di II grdo Un equzione letterle di II grdo è un equzione che contiene, oltre l letter che rppresent l incognit dell equzione, ltre lettere, dette prmetri, che rppresentno numeri ben determinti,

Dettagli

Teoria in pillole: logaritmi

Teoria in pillole: logaritmi Teori in pillole: logritmi EQUAZIONI ESPONENZIALI Un'equzione si dice esponenzile qundo l'incognit compre soltnto nell'esponente di un o più potenze. L'equzione esponenzile più semplice (elementre) è del

Dettagli

Variabili Casuali e Distribuzioni di Probabilità Definizione: VARIABILI CASUALI VARIABILI CASUALI PROBABILITÀ

Variabili Casuali e Distribuzioni di Probabilità Definizione: VARIABILI CASUALI VARIABILI CASUALI PROBABILITÀ Vriili Csuli e Distriuzioni di Proilità Un vriile csule X è un vriile numeric il cui vlore misurto può cmire ripetendo lo stesso esperimento di misur X può essere un vriile continu o discret 1 Esempi di

Dettagli

Area del Trapezoide. f(x) A f(a) f(b) f(x)

Area del Trapezoide. f(x) A f(a) f(b) f(x) Are del Trpezoide y o A f() trpezoide h B f() f() L're del trpezoide S puo' essere pprossimt dll're del trpezio AB. Per vere un migliore pprossimzione possimo suddividere il trpezio in trpezi piu' piccoli.

Dettagli

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE II

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE II Ingegneri Elettric Politecnico di Torino Luc Crlone ControlliAutomticiI LEZIONE II Sommrio LEZIONE II Sistemi lineri e proprietà di unicità Concetto di Stilità Stilità intern ed estern Criterio di Routh

Dettagli

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le Sched Sei ESPONENZIALI E LOGARITMI L funzione esponenzile Assegnto un numero rele >0, si dice funzione esponenzile in bse l funzione Grfici dell funzione esponenzile Se = l funzione esponenzile è costnte:

Dettagli

VOLUMI, MASSE, DENSITÀ

VOLUMI, MASSE, DENSITÀ VOLUMI, MASSE, DENSITÀ In clsse è già stt ftt un'esperienz di misur dell densità prtire d misure di mss e di volume. In quel cso è stt misurt l mss in mnier dirett con un bilnci, e il volume in mnier indirett.

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

Integrazione Numerica

Integrazione Numerica Integrzione Numeric Si f un funzione integrbile sull intervllo [, b]. Il suo integrle I (f ) = b f (x) dx può essere difficile d clcolre (può nche non essere vlutbile in form esplicit). Un formul esplicit

Dettagli

Passaggio di Parametri per Valore o Indirizzo

Passaggio di Parametri per Valore o Indirizzo Passaggio di Parametri per Valore o Indirizzo Come in C, l assembler permette di passare un dato per valore (copia) o per indirizzo, nel secondo caso rendendo modificabile il dato stesso da dentro una

Dettagli

Sezione Esercizi ; ; ; 1 4. f ) 13 + g ) , 100, 125; f ) 216; 8 27 ; ; e ) g ) 0; h )

Sezione Esercizi ; ; ; 1 4. f ) 13 + g ) , 100, 125; f ) 216; 8 27 ; ; e ) g ) 0; h ) Sezione Esercizi Esercizi Esercizi dei singoli prgrfi - Rdici Determin le seguenti rdici qudrte rzionli (qundo è possiile clcolrle) 00 l ) m ) n ) o ) 0,0 0,0 0,000 0, Determin le seguenti rdici qudrte

Dettagli

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO EQUAZIONI DI ECONDO GRADO Riepilogo delle soluzioni in bse l segno di < φ : b > : b b Prof I voi, EQUAZIONI DI ECONDO GRADO EQUAZIONI PURE DI ECONDO GRADO : EEMPI ) ) ) 7 7 ) > φ (impossibile) ) impossibil

Dettagli

RAPPRESENTAZIONE GRAFICA DELLA PARABOLA a ( ) { } f con, è la parabola di equazione y = ax + bx + c. Vogliamo disegnarla. 2

RAPPRESENTAZIONE GRAFICA DELLA PARABOLA a ( ) { } f con, è la parabola di equazione y = ax + bx + c. Vogliamo disegnarla. 2 APPENDICE 1 AL CAPITOLO 3: RAPPRESENTAZIONE GRAFICA DELLA PARABOLA Per 0 l insieme,y / y = + + c, grfico dell funzione f = + + c { } f con, è l prol di equzione y = + + c Voglimo disegnrl non è difficile

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Corso di : FISICA MEDICA A.A. 015 /016 Docente: Dott. Chiucchi Riccrdo il:rchiucchi@unite.it Medicin Veterinri: CFU 5 (corso

Dettagli

Organizzazione della Memoria usata dai Processi

Organizzazione della Memoria usata dai Processi Orgnizzzione dell Memori ust di Processi Indirizzi m stck hep dt 0 tet 1 L struttur dti Stck (o Pil) LIFO (lst in - first out) Operzioni: Push (ggiunge un elemento in cim llo stck (che cresce verso gli

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenzili e ritmi ESPONENZIALI Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z Sono definite: ( ) ( ) ( ) 7 7 Non sono definite:

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

Sottoprogrammi in linguaggio assembly del Motorola 68000

Sottoprogrammi in linguaggio assembly del Motorola 68000 Sottoprogrammi in linguaggio assembly del Motorola 68000 Daniele Paolo Scarpazza daniele.scarpazza@elet.polimi.it Politecnico di Milano Ultimo aggiornamento: 10 Maggio 2005 Bibliografia Sezioni 4.9, 5.6

Dettagli

Invocazione di funzioni. Passaggio parametri Creazione record di attivazione (anche chiamato stack frame o area di attivazione)

Invocazione di funzioni. Passaggio parametri Creazione record di attivazione (anche chiamato stack frame o area di attivazione) Invocazione di funzioni Passaggio parametri Creazione record di attivazione (anche chiamato stack frame o area di attivazione) Passaggio parametri F(a,b,c) { } Z = g(x, y, z) Record di attivazione o registri

Dettagli

Reazioni vincolari in. Strutture isostatiche

Reazioni vincolari in. Strutture isostatiche ezioni vincolri in Strutture isosttiche ezioni trsmesse di vincoli terr I vincoli terr trmettono ll struttur rezioni corrispondenti i gdl impediti F Il crrello trsmette un forz dirett come l'sse del crrello

Dettagli

La dimostrazione per assurdo

La dimostrazione per assurdo L dimostrzione per ssurdo L dimostrzione per ssurdo in mtemtic è uno strumento utile per dimostrre certi teoremi. Ess procede secondo i seguenti pssi: 1. Si suppone che il teorem si flso. Si f vedere,

Dettagli

Strumenti Matematici per la Fisica

Strumenti Matematici per la Fisica Strumenti Mtemtici per l Fisic Strumenti Mtemtici per l Fisic Approssimzioni Notzione scientific (o esponenzile) Ordine di Grndezz Sistem Metrico Decimle Equivlenze Proporzioni e Percentuli Relzioni fr

Dettagli

Bilancio d'esercizio: le scritture di fine anno

Bilancio d'esercizio: le scritture di fine anno Bilncio d'esercizio: le scritture di fine nno In prossimità dell chiusur dell nno, i fini dell redzione del bilncio di esercizio occorre pportre delle scritture che integrino o modifichino quelle esistenti

Dettagli

LINGUAGGI FORMALI Esercizi

LINGUAGGI FORMALI Esercizi LINGUAGGI FORMALI Esercizi PPPPPP Nicol Fnizzi LINGUAGGI DI PROGRAMMAZIONE Corso di Informtic T.P.S. Diprtimento di Informtic Università di Bri Aldo Moro [2014/01/28-13:30:23] [ 2 / 14 ] Indice 1 Introduzione

Dettagli

Dimostriamo innanzitutto una limitazione sull altezza degli alberi

Dimostriamo innanzitutto una limitazione sull altezza degli alberi Alberi di ricerc 161 3 5 2 4 8 10 11 2 3 4 5 8 10 11 15 25 30 31 45 47 50 Figur 6.20 Esempio di lbero Inodiinterniconduefiglimntengonoil mssimo del sottolbero sinistro ( ); i nodi interni con tre figli

Dettagli

Integrale definito. Introduzione: il problema delle aree

Integrale definito. Introduzione: il problema delle aree Integrle definito Introduzione: il prolem delle ree Il prolem delle ree è uno dei tre grndi prolemi che ci sono stti trmndti dgli ntichi, che lo definivno come il prolem dell qudrtur del cerchio: trovre,

Dettagli

Cinematica ed equilibrio del corpo rigido

Cinematica ed equilibrio del corpo rigido inemtic ed equilirio del corpo rigido Spostmenti virtuli Lvori virtuli ed equilirio Determinzione sttic Numero dei vincoli e determinzione pprofondimenti: lvoro virtule pprofondimenti: forze e momenti

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

Circuiti digitali notevoli: ALU

Circuiti digitali notevoli: ALU Architettur degli Elortori e delle Reti Lezione 6 Circuiti digitli notevoli: ALU F. Pederini Diprtimento di Scienze dell Informzione Univerità degli Studi di Milno L 6 /3 ALU: Arithmetic-Logic Unit! Eegue

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

Introduzione e strumenti

Introduzione e strumenti Controlli utomtici Introduzione e strumenti Convenzioni generli ed elementi di bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi 2

Dettagli

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza Alri Informtic II Cpitolo 5 Alri E' un gnrlizzzion dll struttur squnz Si rilss il rquisito di linrità: ogni lmnto (nodo) h un solo prdcssor m può vr più succssori. Il numro di succssori (figli) può ssr

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

Anno 1. Numeri reali: proprietà e applicazioni di uso comune

Anno 1. Numeri reali: proprietà e applicazioni di uso comune Anno Numeri reli: proprietà e ppliczioni di uso comune Introduzione L insieme dei numeri rzionli è composto d numeri che si ottengono dl rpporto tr due numeri interi. Tle rpporto, o frzione, è sempre ssociile

Dettagli

Organizzazione della Memoria usata dai Processi

Organizzazione della Memoria usata dai Processi Orgnizzzione dell Memori ust di Processi Indirizzi m stck hep dt 0 tet 1 L struttur dti Stck (o Pil) LIFO (lst in - first out) Operzioni: Push (ggiunge un elemento in cim llo stck (che cresce verso gli

Dettagli

Cinematica ed equilibrio del corpo rigido

Cinematica ed equilibrio del corpo rigido omportmento meccnico dei mterili rtteristiche di sollecitione inemtic ed equilirio del corpo rigido rtteristiche di sollecitione efiniione delle crtteristiche Esempio 1: trve rettiline Esempio : struttur

Dettagli

Equazioni parametriche di primo grado

Equazioni parametriche di primo grado Polo Sivigli Equzioni prmetriche di primo grdo Premess Come si s dll lgebr elementre, si chim equzione un uguglinz fr due espressioni letterli che si verific soltnto ttribuendo prticolri vlori lle lettere,

Dettagli

ipotenusa cateto adiacente ad α cateto opposto ad α ipotenusa cateto adiacente ad α ipotenusa cateto adiacente ad α

ipotenusa cateto adiacente ad α cateto opposto ad α ipotenusa cateto adiacente ad α ipotenusa cateto adiacente ad α Trigonometri I In quest prim prte dell trigonometri denimo le funzioni trigonometriche seno, coseno e tngente e le loro funzioni inverse. Vedremo nche come utilizzrle nell risoluzione dei tringoli. Comincimo

Dettagli

Linguaggi di Programmazione Corso C. Parte n.5 Automi a Stati Finiti. Nicola Fanizzi

Linguaggi di Programmazione Corso C. Parte n.5 Automi a Stati Finiti. Nicola Fanizzi Linguggi di Progrmmzione Corso C Prte n.5 Automi Stti Finiti Nicol Fnizzi (fnizzi@di.uni.it) Diprtimento di Informtic Università degli Studi di Bri Automi Stti Finiti Dto un lfeto X, un utom stti finiti

Dettagli

Componenti per l aritmetica binaria. Motivazioni. Sommario. Sommario. M. Favalli

Componenti per l aritmetica binaria. Motivazioni. Sommario. Sommario. M. Favalli Sommrio Componenti per l ritmetic inri M. Fvlli Engineering Deprtment in Ferrr Introduzione 2 3 Appliczioni di n-it dder 4 Sommtore CLA Sommrio (ENDIF) Reti logiche / 27 Introduzione Motivzioni (ENDIF)

Dettagli

1 Espressioni polinomiali

1 Espressioni polinomiali 1 Espressioni polinomili Un monomio è un espressione letterle in un vribile x che contiene un potenz inter (non negtiv, cioè mggiori o uguli zero) di x moltiplict per un numero rele: x n AD ESEMPIO: sono

Dettagli

Alberi ed Alberi Binari

Alberi ed Alberi Binari Alberi ed Alberi Binari Il tipo di dato Albero Un albero è una struttura di data organizzata gerarchicamente. È costituito da un insieme di nodi collegati tra di loro: ogni nodo contiene dell informazione,

Dettagli

Organizzazione della lezione

Organizzazione della lezione Costruzione di un unità ritmetico-logic Orgnizzzione dell lezione Operzioni logiche Addizione e sottrzione Hlf dder e Full dder ( bit) Complemento e sottrzione Altre operzioni Set on less thn, test di

Dettagli

I radicali. Cos è un radicale? ESERCIZIO 2.1. Determina le C.E. dei seguenti radicali e delle seguenti espressioni contenenti radicali.

I radicali. Cos è un radicale? ESERCIZIO 2.1. Determina le C.E. dei seguenti radicali e delle seguenti espressioni contenenti radicali. I rdicli Cos è un rdicle? Il simbolo si chim rdicle e si legge rdice ennesim di. - n si chim indice dell rdice e deve essere un numero nturle mggiore di zero. Qundo l indice si sottintende e il rdicle

Dettagli

Visite di alberi binari. Laboratorio di Algoritmi e Strutture Dati

Visite di alberi binari. Laboratorio di Algoritmi e Strutture Dati Visite di alberi binari Laboratorio di Algoritmi e Strutture Dati Visita di Alberi Gli alberi possono essere visitati (o attraversati) in diversi modi: Visita in Preordine: prima si visita il nodo e poi

Dettagli

a a a a a a a-- REGOLAMENTO D GRADUAZONE DEGU NCARKH DllRftGENZAU Aree veterinaria sanitaria, profession&e, tecnica ed amministrathia

a a a a a a a-- REGOLAMENTO D GRADUAZONE DEGU NCARKH DllRftGENZAU Aree veterinaria sanitaria, profession&e, tecnica ed amministrathia ZSAM CCAPORME TERAMO REGOLAMENTO D GRADUAZONE DEGU NCARKH DllRftGENZAU Aree veterinri snitri, profession&e, tecnic ed mministrthi Term o, 4 prile 2017 E E -- ndice PREMESSA.3 ARTICOLO i Criteri generli

Dettagli

Progettazione strutturale per elementi finiti Sergio Baragetti

Progettazione strutturale per elementi finiti Sergio Baragetti Progettzione strutturle per elementi finiti Sergio Brgetti Fcoltà di Ingegneri Università degli Studi di Bergmo Il metodo degli Elementi Finiti permette di risolvere il problem dell determinzione dello

Dettagli

MATEMATIKA OLASZ NYELVEN

MATEMATIKA OLASZ NYELVEN Mtemtik olsz nyelven középszint 061 É RETTSÉGI VIZSGA 007. október 5. MATEMATIKA OLASZ NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Indiczioni

Dettagli

COGNOME..NOME CLASSE.DATA

COGNOME..NOME CLASSE.DATA COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione

Dettagli

Organigramma Gerarchia. (Tree) Nessuna persona può avere più di un superiore Ogni persona può essere superiore di altre

Organigramma Gerarchia. (Tree) Nessuna persona può avere più di un superiore Ogni persona può essere superiore di altre Alberi Struttura dati Albero Organigramma Gerarchia (Tree) Nessuna persona può avere più di un superiore Ogni persona può essere superiore di altre Esempio di un organigramma di un azienda Tree terminology

Dettagli

Catalogo Interregionale dell Alta Formazione Edizione 2013 Adeguamento monetario delle tabelle di riferimento per il calcolo dei costi forfettari

Catalogo Interregionale dell Alta Formazione Edizione 2013 Adeguamento monetario delle tabelle di riferimento per il calcolo dei costi forfettari Allegto B) Ctlogo Interregionle dell Alt Formzione Edizione 2013 Adegumento monetrio delle tbelle di riferimento per il clcolo dei costi forfettri Nell mbito del Ctlogo Interregionle Alt Formzione, per

Dettagli

Le superfici nascoste. Le superfici nascoste. Le superfici nascoste. Le superfici nascoste. Le superfici nascoste

Le superfici nascoste. Le superfici nascoste. Le superfici nascoste. Le superfici nascoste. Le superfici nascoste Le superfici nscoste Fino d or imo visto come proiettre un punto d uno spzio tridimensionle d uno idimensionle...... e come determinre il colore dei punti di un superfice. Le superfici nscoste Le superfici

Dettagli

Ottimizzazione nella gestione dei progetti Capitolo 5: programmazione multiperiodale modello di flusso CARLO MANNINO

Ottimizzazione nella gestione dei progetti Capitolo 5: programmazione multiperiodale modello di flusso CARLO MANNINO Ottimizzzione nell gestione dei progetti Cpitolo 5: progrmmzione multiperiodle modello di flusso CARLO MANNINO Uniersità di Rom L Spienz Diprtimento di Informtic e Sistemistic Richimi: -tglio in un grfo

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

Radicali. Definizioni Variazioni di radicali Operazioni Razionalizzazione Radicali doppi Potenze con esponente razionale Esercizi

Radicali. Definizioni Variazioni di radicali Operazioni Razionalizzazione Radicali doppi Potenze con esponente razionale Esercizi Rdicli Definizioni Vrizioni di rdicli Operzioni Rzionlizzzione Rdicli doppi Potenze con esponente rzionle Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni n L espressione è comunemente dett rdice

Dettagli

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo Lure triennle in Scienze dell Ntur.. 2009/200 Regole di Clcolo In queste note esminimo lcune conseguenze degli ssiomi reltivi lle operzioni e ll ordinmento nell insieme R dei numeri reli. L obiettivo principle

Dettagli

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi.

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi. Corso di Anlisi: Algebr di Bse ^ Lezione Rdicli. Proprietà dei rdicli. Equzioni irrzionli. Disequzioni irrzionli. Allegto Esercizi. RADICALI : Considerto un numero rele ed un numero intero positivo n,

Dettagli

Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 PROBLEMA ) L prbol di equzione V ' (0,0). y h sse di simmetri prllelo ll sse delle ordinte e vertice in L prbol di equzione

Dettagli

2. Teoremi per eseguire operazioni con i limiti in forma determinata

2. Teoremi per eseguire operazioni con i limiti in forma determinata . Teoremi per eseguire operzioni con i iti in form determint Vedimo dunque i teoremi che consentono il clcolo dei iti, ttrverso i quli si riconducono le situzioni rticolte semplici operzioni lgebriche

Dettagli

Alberi Binari di Ricerca

Alberi Binari di Ricerca Alberi Binari di Ricerca Algoritmi su gli alberi binari: visite Dato un puntatore alla radice di un albero vogliamo scandire in modo sistematico tutti i nodi di tale albero In una lista abbiamo una unica

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

Unità logico-aritmetica (ALU) Architetture dei Calcolatori (Lettere. Blocchi di base per costruire l ALUl. Passi per costruire l ALUl

Unità logico-aritmetica (ALU) Architetture dei Calcolatori (Lettere. Blocchi di base per costruire l ALUl. Passi per costruire l ALUl Unità logio-ritmeti (ALU) Arhitetture dei Cloltori (Lettere A-I) Unit Logio-Aritmeti (ALU) Prof. Frneso Lo Presti E l prte del proessore he svolge le operzioni ritmetio- logihe Rete omintori Operzioni

Dettagli

dc b dph dph dph 1 0 è grande SOLUZIONI TAMPONE POTERE TAMPONE C b grande phpiccolo

dc b dph dph dph 1 0 è grande SOLUZIONI TAMPONE POTERE TAMPONE C b grande phpiccolo SOLUZIONI TAMPONE Sono chimte soluzioni tmpone quelle soluzioni il cui ph non tende vrire sensibilmente si ll ggiunt di cidi che ll ggiunt di bsi. Hnno mrct proprietà tmpone le soluzioni cquose in cui

Dettagli

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata Cpitolo 5 Integrli 5.1 Integrli di funzioni grdint Un concetto molto semplice m di fondmentle importnz per l trttzione dell integrle di Riemnn è quello di divisione di un intervllo [, b]. In sostnz si

Dettagli

Cap. 4 - Algebra vettoriale

Cap. 4 - Algebra vettoriale Mssimo Bnfi Cp. 4 - Algebr vettorile Cpitolo 4 Algebr vettorile 4.1. Grndezze sclri Si definiscono sclri quelle grndezze fisiche che sono descritte in modo completo d un numero con l reltiv unità di misur.

Dettagli

Matrici: Definizioni e Proprietà

Matrici: Definizioni e Proprietà Mtrici: Definizioni e Proprietà Alcune figure di questi ppunti riportno nei commenti esempi in linguggio MATLAB In tli esempi i crtteri di peso normle sono prodotti dl computer mentre i crtteri in grssetto

Dettagli

Esercitazioni di Elettrotecnica: circuiti in regime stazionario

Esercitazioni di Elettrotecnica: circuiti in regime stazionario Università degli Studi di ssino sercitzioni di lettrotecnic: circuiti in regime stzionrio prof ntonio Mffucci Ver ottore 007 Mffucci: ircuiti in regime stzionrio ver -007 Serie, prllelo e prtitori S lcolre

Dettagli

BREVE APPENDICE SULLE UNITA' LOGARITMICHE

BREVE APPENDICE SULLE UNITA' LOGARITMICHE BREVE APPENDICE SULLE UNITA' LOGARITMICHE Per esprimere gudgni e ttenuzioni, nonché cifre di rumore e rpporti segnle-rumore si usno frequentemente le unità logritmiche. Come risultto, l grndezz in questione

Dettagli

FORMULE DI AGGIUDICAZIONE

FORMULE DI AGGIUDICAZIONE Mnule di supporto ll utilizzo di Sintel per stzione ppltnte FORMULE DI AGGIUDICAZIONE gin 1 di 18 Indice AZIENDA REGIONALE CENTRALE ACQUISTI - ARCA S.p.A. 1 INTRODUZIONE... 3 1.1 Mtrice modlità offert/modlità

Dettagli

X X Y 2 1 0,5 0,25 Y 0,25 1 2,25 4. Disegna i grafici delle rette rappresentate dalle seguenti equazioni

X X Y 2 1 0,5 0,25 Y 0,25 1 2,25 4. Disegna i grafici delle rette rappresentate dalle seguenti equazioni Funzioni Consider le seguenti telle e stilisci se e sono direttmente proporzionli, inversmente proporzionli o se vi è un proporzionlità qudrtic. Scrivi l espressione nlitic delle funzioni e rppresentle

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Alberi. Gli alberi sono una generalizzazione delle liste che consente di modellare delle strutture gerarchiche come questa: Largo. Fosco.

Alberi. Gli alberi sono una generalizzazione delle liste che consente di modellare delle strutture gerarchiche come questa: Largo. Fosco. Alberi Alberi Gli alberi sono una generalizzazione delle liste che consente di modellare delle strutture gerarchiche come questa: Largo Fosco Dora Drogo Frodo Dudo Daisy Alberi Gli alberi sono una generalizzazione

Dettagli

Ellisse riferita al centro degli assi

Ellisse riferita al centro degli assi Appunti delle lezioni tenute in clsse: ellisse e iperole Ellisse riferit l centro degli ssi Dti due punti F ed F detti fuochi, l ellisse è il luogo geometrico dei punti P del pino per cui è costnte l somm

Dettagli

Unità logico-aritmetica (ALU) Unità logico-aritmetica. Passi per costruire l ALU. Blocchi di base per costruire l ALU

Unità logico-aritmetica (ALU) Unità logico-aritmetica. Passi per costruire l ALU. Blocchi di base per costruire l ALU Unità logio-ritmeti (ALU) Unità logio-ritmeti Arhitetture dei Cloltori (lettere A-I) E l prte del proessore he svolge le operzioni ritmetio-logihe Potenz di lolo del proessore Insieme di iruiti omintori

Dettagli

COMBINAZIONI DI CARICO SOLAI

COMBINAZIONI DI CARICO SOLAI COMBINAZIONI DI CARICO SOLAI (ppunti di Mrio Zfonte in fse di elorzione) Ai fini delle verifihe degli stti limite, seondo unto indito dll normtiv, in generle le ondizioni di rio d onsiderre, sono uelle

Dettagli

George Boole ( )

George Boole ( ) Mtemtic Alger di Boole Cpitolo 5 Ivn Zivko George Boole (1815-1864) Mtemtico inglese del dicinnovesimo secolo, ffrontò in modo originle prolemi di logic. Le sue teorie trovno forte ppliczione un secolo

Dettagli

RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI

RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI PROPRIETÀ DEI NUMERI INTERI, SCOMPOSIZIONI, ECC.. Se A è ugule e B è ugule, qunto vlgono m.c.m. ed M.C.D. dei numeri A e B? 0 e. Se si moltiplicno due numeri

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli