Limiti. Esercizi svolti. Federico Amici

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Limiti. Esercizi svolti. Federico Amici"

Transcript

1 Limiti Esercizi svolti Federico Amici

2 Questa kermesse di esercizi svolti sui iti è ua carrellata che ha come uico criterio di suddivisioe la fote da cui ho attito. Alcui fra questi ascoo già come esercizi svolti ma soo riproposti co qualche spiegazioe aggiutiva perchè mi sembravao iteressati: l iteto o è certo quello di copiare. Professor Pricipato (esercitatore di Bellettii) Calcolare i segueti iti di successioe: 1) a + 1 a R I casi che vegoo esamiati derivao dall adameto della fuzioe espoeziale. I caso: a>0 Se a>0, a sarà u umero sempre più positivo, perciò: o a + 1 a (1+ 1 II caso: 0 a 1 a ) a a a Se 0 a 1, a tederà a 0 (immagiate ad esempio 1, compreso sicuramete tra 0 ed 1, dove il umeratore sarà diviso da u deomiatore che tede ad ifiito). Avremo: a a<1 a III caso: a<0 Se a<0 valgoo i ragioameti fatti per il caso i cui a>0 poichè l espoete a cui è elevato risulta pari, implicado così la perpetua positività di a. a + 1 -a + 1 -a (1+ 1 -a ) -a a a a IV caso: a 1 L uica eccezioe delle a miori di 0 è -1. Ifatti, riflettedo u attimo, ci accorgiamo di ritorare al caso i cui a1 (esamiato poco sopra), perciò avremo: a ) 1+ 1!! è il fattoriale di, ovvero il prodotto fra tutti i umeri compresi tra 1 ed, co u po di simbologia diveta: k1 k 1**3* *-1* Alla luce della defiizioe, possiamo riscrivere! come (-1)! o come (-1)(-)!, a secoda delle esigeze (utile ad esempio se si vuole semplificare umeratore e deomiatore i u rapporto). La cosa importate da teere be presete è il fatto che il fattoriale prevede il prodotto da fio ad 1. U esempio i cui questo aspetto viee sottolieato è questo.

3 1+ 1! 1+ 1 * 1+ 1 (-1)! 1+ 1 * * ! dove si vuol far otare lo sfilacciameto progressivo del fattoriale. Così cotiuado abbiamo: 1+ 1 * * * * * * 1+ 1 * * * 1+ 1 * 1+ 1 A questo puto otiamo che i termii al deomiatore tedoo tutti ad 1 i quato 1 tede ovviamete a 0. Allo stesso modo ache i umeratori tedoo ad 1, perciò a tede ad 1. 3) I questo caso abbiamo l occasioe di itrodurre il cocetto di o piccolo: Cosideriamo due fuzioi f(x) e g(x), defiite i u itoro di x 0. Si dice che f(x) è o piccolo di g(x) se il rapporto f(x) g(x) 0 per x x 0 e si scrive f(x)o(g(x)). Ad esempio, cosideriamo f(x) 1 e g(x) x (f(x)1 è ua fuzioe costate). Il rapporto tra queste due fuzioi, 1 x, per x (quidi x 0 ) tede a 0 e duque 1o(x ). U altro esempio lo facciamo cosiderado x 0 0. Se f(x)x e g(x)x f(x) g(x) x x 0 per x 0 x quidi x o(x) Fatta questa piccola premessa, procediamo el calcolo: (1+ 9 )- 4 (1-1 4) (1+ ) 3 (1+o())- 4 (1-o( 4 ) (1+o( ) raccogeto a fattor comue utilizzo le defiizioi di o piccolo 3-4 se aggiugiamo o togliamo ad 1 ua quatità che tede a 0, la somma di questi due termii tederà ad 1, di qui i semplici prodotti

4 3 4 - applichiamo la defiizioe di radice come elevameto a poteza razioale e separiamo gli addedi (è facile covicersi che ripetedo la somma dei due termii torerete al passaggio precedete) e procediamo co il calcolo teedo coto che il ite della somma è la somma dei iti A questo puto otiamo che 3 < ed all ifiito questo rapporto tederà a 0, metre ) a + a a R I caso: a > 0 Questo è il caso relativamete più ituitivo poichè, se a è u umero positivo e diverso da 0, etrambi gli addedi sarao umeri sempre più positivi, duque: a II caso: 0 a<1 I questo caso a tederà a 0 ed a sarà u umero elevato ad espoete razioale che tede parimeti ad ifiito: a III caso: a -1 Questo è il caso più particolare, se volete. Ifatti a -1 1 che tede a 0 metre a -1, cioè ua successioe oscillate che o ha ite. Quidi per a-1 a o ammette ite. IV caso: a < 0 I questa circostaza a -a 1 a che tede a 0, a -a che tederà all ifiito egativo, perciò a - 5) + cos Questo ite è l occasioe per itrodurre il teorema del cofroto (o dei due carabiieri) che spesso si rivela utile ella risoluzioe di iti i cui soo preseti fuzioi trigoometriche.

5 Cosideriamo due successioi a e b che covergao allo stesso ite l R. Cosideriamo ora ua terza successioe c che ha la caratteristica di essere compresa tra a e b, cioè a c b. c covergerà allora allo stesso ite l R. Ad esempio vogliamo calcolare il si. La fuzioe seo assume valori compresi tra -1 e 1 (estremi iclusi), perciò -1 si 1, e queste due successioi soo etrambe ifiitesime. si covergerà duque a 0, per + cos (1 + cos ) Applichiamo il teorema del cofroto alla successioe k cos e otiamo che - cos Ma le due successioi che compredoo k soo etrambe ifiitesime i quato l espoeziale è di ordie di ifiito maggiore rispetto alla fuzioe poteza. Perciò ache k tederà a 0. Richiamado la defiizioe di o piccolo si può dire che cos o( ). Cotiuado co i calcoli si ha quidi: (1 +o( )), 6) l I questo ite si sfruttao le ozioi sugli ordii di ifiito e sugli o piccolo, se volete. Idividuato l ordie di ifiito maggiore, raccogliamo a fattor comue dove questo fattore sarà proprio quel termie che tederà ad ifiito prima degli altri, che i questo caso è 3. l l (1+o 3 ) 3 3 a coverge duque a 3.

6 7) e 3! + si(!) + L iteto è quello di separare le difficoltà e qui ci viee icotro la separazioe della frazioe ella somma di due termii co lo stesso deomiatore. Di qui procediamo teedo presete che il ite della somma è la somma dei iti, ricapitolado: e 3! + si(!) e 3! si(!) e 3! si(!) + 3 Ora possiamo occuparci di u problema per volta. Comiciado dal secodo addedo, applichiamo il teorema del cofroto a questa successioe, perveedo alla coclusioe che tede a 0. 1 si(!) Per quato riguarda il primo addedo comiciamo co il otare che + va come. Se preferite: + 3 (1 + 3 ) (1 + o( )) Quidi, ricapitolado tutte le iformazioi, ci rimae da studiare il e 3! Visto che lo svolgimeto della fuzioe fattoriale o è molto illumiate ai fii della risoluzioe del calcolo, ci viee icotro u approssimazioe della stessa, ovvero la formula di Stirlig:! π e Il ite diveta e 3 π e e π + 8)! Servedoci acora ua volta della formula di Stirlig procediamo co il calcolo:

7 ! π e e π e π e π 1 È facile covicersi del fatto che sia u ordie di ifiito maggiore di, perciò 1 tederà a 0 più velocemete di quato teda ad ifiito, quidi il deomiatore tede ad 1 ed il ite di questa successioe è uguale ad e. 9) log(!) Questo è il particolare caso i cui il logaritmo risulta di ordie superiore ad u altra fuzioe, i questo caso. Serviamoci di Stirlig: log(!) log( π e ) Ora ci serviamo della proprietà del logaritmo secodo cui log(a/b) loga logb e separiamo la frazioe i due addedi come già fatto i precedeza: log( π ) log( π) 1 log( π) log e log( π) - loge log(a b ) b*loga che per tede a +.

8 Professor Berretti (apputi sui iti) I questi apputi ci serviremo ache degli sviluppi i serie di Taylor che potete trovare su Wikipedia a questo idirizzo. Esercizio Per risolvere questo ite seguiamo l ispirazioe di voler sfruttare il ite otevole di e, trovado ua via per farlo saltare fuori. È presto fatto: e ovvero abbiamo moltiplicato e diviso l espoete per 3 i modo da ricodurci al ite otevole. Per le proprietà delle poteze (poteza di poteza) arriviamo ad avere e elevato ad u espoete compreso tra 0 ed 1 che quidi tede a 0 se elevato ad. Si deduce allora che il ite è uguale ad 1. Esercizio e x3 -cos(six) x 0 log(1+tg3x ) I questo ite ci serviremo degli sviluppi i serie di Taylor, ache se i maiera molto ridotta poichè ci fermeremo al secodo ordie. Comiciamo duque co l approssimare il cos(six): cos(y) 1 - y per x 0 y si(x) x per x 0 e x3 ex3-1 - x -cos(six) x 0 log(1+tg3x ) log(1+tg3x ) I questo modo possiamo approssimare ache e x3-1 (o se preferite solamete e x3, perverrete allo stesso risultato). e y 1 + y per y 0 quidi, visto che la ostra y vale x 3 avremo che e x3 1+x 3 per x 0 e co u semplice passaggio algebrico abbiamo che e x3-1 x 3. x 0 x 3 - x log(1+tg3x ) Procediamo a spro battuto co l approssimazioe del deomiatore:

9 log(1+y) y per y 0 y 3tgx 3(x ) per x 0 Il ostro ite assumerà queste sembiaze: x 3 x x 0 x3 3x 3x - x 3x x 3 - x * 1 3x 1 6 Esercizio 3 (+1) -(tlog) +! si 1 Di questo ite di successioe possiamo subito dire che il al umeratore è ua quatità iifluete all ifiito, perciò co il raccogeto a fattor comue e gli o-piccoli possiamo fare a meo. (+1)!+3 +1 si 1 (tlog)!+3 +1 si 1 Come ormai be sappiamo, si(x) è approssimato a x per x 0, o meglio quado l argometo tede a 0 (ifatti i questo caso ma possiamo cotiuare co l approssimazioe). Quidi, facedo attezioe al fatto che abbiamo (+1)!+3 - (tlog)!+3 (+1) 3 (1+! 3 ) - (tlog) 3 (1+! 3 ) è di ordie di ifiito maggiore di! Dopo aver otato che +1 all ifiito è approssimabile ad, il ite è pressochè termiato: 3 - (tlog) Esercizio 4 x 0 e 1-cosx 1-1-x ( log 1+six ) Nella risoluzioe di questo ite ci serviremo delle approssimazioi di Taylor:

10 x 0 e 1-cosx x e1-cosx - ( log 1+six ) 1-x e1-cosx - ( log 1+x ) 1 1-x x e1-(1- x ) - x 1 1-x e1-(1- x ) x x x 1 e - 1-x 1+ x x x x 1+ x - 1-x +x 1-x 1+ x x x 1-x x x x - x 1-x x x

11 Professor Tauraso (dispese) Esercizio 1 log +5! - log(!+5) log( 6 + cos π ) log +5!!+5 log( 6 + cos π ) log(a-b) log(a/b) Richiamiado le defiizioi del fattoriale, vediamo che! (-1)! (-1)(-)! (-1)(-)... * 1 Nel ostro caso +5, quidi (+5)! (+5)(+4)(+3)(+)(+1) * ((-1)(-)...*1) (+5)(+4)(+3)(+)(+1)*! Notiamo i secoda battuta che il primo blocco di prodotti va come 5 i quato svolgedo i prodotti o ci soo termii di ordie di ifiito maggiore. Raccogliedo queste iformazioi abbiamo: log 5!!+5 log 5 + log! log( 6 + cos π )!+5 log( 6 + cos π ) Per le proprietà del logaritmo e approssimazioe di (!+5) a! il ite da calcolare diveta: 5log. log( 6 + cos π ) Ora, il cos(π) è pari a -1, il cos(π) sarà volte -1, quidi (-1). Quidi 5log log( 6 + cos π ) 5log log( 6 +( 1) ) 5log 5log 5log 6log(1+ log 6log ) 6log 5 6 log( 6 ( ) 5log log( 6 ) 5log log+6log

12 Limiti tratti da testi di esame (01) Esercizio 1 + arctg(!+) (+3) +arctg(!+) arctg(!) +arctg(!) arctg(!) + π arctg(!) π II metodo: Abudo docet Noostate questo procedimeto sia ragioevole, u ulteriore procedura utile per risolvere questo ite è servirsi acora ua volta dell approssimazioe di Taylor, i questo modo: 3 (1+ 3 ) +3 arctg(!+) 1+ (+3) +arctg(!+) arctg(!+3) e log(1+ ) π + arctg(!) e log(1+3 ) - π Nel primo passaggio è stato messo i evideza che, elevato a sua volta alla diveta. Ioltre arcta(!+3) per ifiito tede a π/, che è ua quatità costate, eiabile. Al deomiatore questo fatto ci tora utile: e log(1+ 3 ) π e log(1+3 ) - π 3 e log(1+ ) π e log(1+ 3 ) π e log(1+3 ) e log(1+3 ) Ora sfruttiamo ell ordie le proprietà dell espoeziale e l approssimazioe di Taylor del logaritmo: 3 e log(1+ 3 )-log(1+3 ) π e 3 3 π e 3 6 π π e 6

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

1 + 1 ) n ] n. < e nα 1 n

1 + 1 ) n ] n. < e nα 1 n Esercizi preparati e i parte svolti martedì 0.. Calcolare al variare di α > 0 Soluzioe: + ) α Per α il ite è e; se α osserviamo che da + /) < e segue che α + ) α [ + ) ] α < e α Per α > le successioi e

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge.

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge. Le successioi A parole ua successioe é u isieme ifiito di umeri disposti i u particolare ordie. Piú rigorosamete, ua successioe é ua legge che associa ad ogi umero aturale u altro umero (ache o aturale):

Dettagli

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5.

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5. 60 Roberto Tauraso - Aalisi Calcolare la somma della serie Soluzioi + 3 R La serie può essere riscritta el modo seguete: + 4 3 9 Il umero può essere raccolto fuori dal sego di sommatoria: + 4 3 9 Si tratta

Dettagli

Cosa vogliamo imparare?

Cosa vogliamo imparare? Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come

Dettagli

Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim.

Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim. Esercizi svolti. Calcolare i segueti iti: a log + + c ± ta 5 + 5 si π e b + si si e d + f + 4 5 g + 6 4 6 h 4 + i + + + l ± + log + log 7 log 5 + 4 log m + + + o cos + si p + e q si s e ta cos e u siπ

Dettagli

Esercizi su serie numeriche - svolgimenti

Esercizi su serie numeriche - svolgimenti Esercizi su serie umeriche - svolgimeti Osserviamo che vale la doppia diseguagliaza + si, e quidi la serie è a termii positivi Duque la somma della serie esiste fiita o uguale a + Ioltre valgoo le diseguagliaze

Dettagli

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c)

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c) SERIE NUMERICHE Esercizi risolti. Calcolare la somma delle segueti serie telescopiche: a) b). Verificare utilizzado la codizioe ecessaria per la covergeza) che le segueti serie o covergoo: a) c) ) log

Dettagli

ESERCIZI SUI LIMITI DI SUCCESSIONE E DI FUNZIONE TRATTI DA TEMI D ESAME

ESERCIZI SUI LIMITI DI SUCCESSIONE E DI FUNZIONE TRATTI DA TEMI D ESAME ESERCIZI SUI LIMITI DI SUCCESSIONE E DI FUNZIONE TRATTI DA TEMI D ESAME a cura di Michele Scaglia LIMITI NOTEVOLI Ricordiamo i pricipali iti otevoli che utilizzeremo ello svolgimeto degli esercizi: si

Dettagli

LIMITI DI SUCCESSIONI

LIMITI DI SUCCESSIONI LIMITI DI SUCCESSIONI Formalmete, ua successioe di elemeti di u dato isieme A è u'applicazioe dall'isieme N dei umeri aturali i A: L'elemeto a della successioe è quidi l'immagie a = f) del umero secodo

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

2.5 Convergenza assoluta e non

2.5 Convergenza assoluta e non .5 Covergeza assoluta e o Per le serie a termii complessi, o a termii reali di sego o costate, i criteri di covergeza si qui visti o soo applicabili. L uico criterio geerale, rozzo ma efficace, è quello

Dettagli

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma 1 Serie di poteze È stato dimostrato che la serie geometrica x (1.1) coverge se e solo se la ragioe x soddisfa la disuguagliaza 1 < x < 1. I realtà c è covergeza assoluta i ] 1, 1[. Per x 1 la serie diverge

Dettagli

Matematica I, Limiti di successioni (II).

Matematica I, Limiti di successioni (II). Matematica I, 05102012 Limiti di successioi II) 1 Le successioi elemetari, cioe α, = 0, 1, 2, α R), b, = 0, 1, 2, b R), log b, = 1, 2, b > 0, b 1), si, = 0, 1, 2,, cos, = 0, 1, 2,, per + hao il seguete

Dettagli

Precorso di Matematica, aa , (IV)

Precorso di Matematica, aa , (IV) Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe

Dettagli

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto Calcolo I - Corso di Laurea i Fisica - Geaio 08 Soluzioi Scritto Data la fuzioe f = 8 + / a Calcolare il domiio, puti di o derivabilità ed asitoti; b Calcolare, se esistoo, estremi relativi ed assoluti.

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

PROPRIETÀ DELLE POTENZE IN BASE 10

PROPRIETÀ DELLE POTENZE IN BASE 10 PROPRIETÀ DELLE POTENZE IN BASE Poteze i base co espoete itero positivo Prediamo u umero qualsiasi che deotiamo co la lettera a e u umero itero positivo che deotiamo co la lettera Per defiizioe (cioè per

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

Sviluppi di Taylor. Andrea Corli 1 settembre Notazione o 1. 3 Formula di Taylor 3. 4 Esempi ed applicazioni 5

Sviluppi di Taylor. Andrea Corli 1 settembre Notazione o 1. 3 Formula di Taylor 3. 4 Esempi ed applicazioni 5 Sviluppi di Taylor Adrea Corli settembre 009 Idice Notazioe o Liearizzazioe di ua fuzioe 3 Formula di Taylor 3 4 Esempi ed applicazioi 5 I questo capitolo aalizziamo l approssimazioe di ua fuzioe regolare

Dettagli

n 1 = n b) {( 1) n } = c) {n!} In questo caso la successione è definita per ricorrenza: a 0 = 1, a n = n a n 1 per ogni n 1.

n 1 = n b) {( 1) n } = c) {n!} In questo caso la successione è definita per ricorrenza: a 0 = 1, a n = n a n 1 per ogni n 1. Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi 0: Riferimeti: R.Adams, Calcolo Differeziale - Si cosiglia vivamete di fare gli esercizi del testo. Successioi umeriche:

Dettagli

Esercizi sui limiti di successioni

Esercizi sui limiti di successioni AM0 - AA 03/4 ALFONSO SORRENTINO Esercizi sui iti di successioi Esercizio svolto a) Usado la defiizioe di ite, dimostare che: + 3 si π cos e ) e b) 0 Soluzioe Comiciamo da a) Vogliamo dimostrare che: ε

Dettagli

Svolgimento degli esercizi del Capitolo 4

Svolgimento degli esercizi del Capitolo 4 4. Michiel Bertsch, Roberta Dal Passo, Lorezo Giacomelli Aalisi Matematica 2 a edizioe Svolgimeto degli esercizi del Capitolo 4 Il limite segue dal teorema del cofroto: e / 0 per. 4.2 0

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57 Tracce di soluzioi di alcui esercizi di matematica - gruppo 42-57 4. Limiti di successioi Soluzioe dell Esercizio 42.. Osserviamo che a = a +6 e duque la successioe prede valori i {a,..., a 6 } e ciascu

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii)

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii) Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi : Riferimeti: R.Adams, Calcolo Differeziale. -Si cosiglia vivamate di fare gli esercizi del testo. Cap. 9.5 - Serie di poteze,

Dettagli

Esercizi sulle successioni

Esercizi sulle successioni Esercizi sulle successioi 1 Verificare, attraverso la defiizioe, che la successioe coverge a 2 3. a := 2 + 3 3 7 2 Verificare, attraverso la defiizioe, che la successioe coverge a 0. a := 4 + 3 3 5 + 7

Dettagli

II-9 Successioni e serie

II-9 Successioni e serie SUCCESSIONI II-9 Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La

Dettagli

SERIE NUMERICHE. Test di autovalutazione. 1+a 2

SERIE NUMERICHE. Test di autovalutazione. 1+a 2 SERIE NUMERICHE Test di autovalutazioe. E data la serie: dove a R. Allora: ( ) 3a +a (a) se a = la serie coverge a (b) se a = 3 la somma della serie vale 5 (c) se a = 5 la serie diverge a (d) se a 0 la

Dettagli

Università degli Studi della Calabria Facoltà di Ingegneria. 26 giugno 2012

Università degli Studi della Calabria Facoltà di Ingegneria. 26 giugno 2012 Uiversità degli Studi della Calabria Facoltà di Igegeria Correzioe della Secoda Prova Scritta di alisi Matematica 2 giugo 202 cura dei Prof. B. Sciuzi e L. Motoro. Secoda Prova Scritta di alisi Matematica

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ;

1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ; . Serie umeriche Esercizio. Studiare il carattere delle segueti serie: ;! ;! ;!. Soluzioe.. Serie a termii positivi; cofrotiamola co la serie +, che è covergete: + + + 0. Pertato, per il criterio del cofroto

Dettagli

1 Esponenziale e logaritmo.

1 Esponenziale e logaritmo. Espoeziale e logaritmo.. Risultati prelimiari. Lemma a b = a b Lemma Disuguagliaza di Beroulli per ogi α e per ogi ln a k b k. k=0 + α + α Teorema Disuguagliaza delle medie Per ogi ln, per ogi upla {a

Dettagli

15 - Successioni Numeriche e di Funzioni

15 - Successioni Numeriche e di Funzioni Uiversità degli Studi di Palermo Facoltà di Ecoomia CdS Statistica per l Aalisi dei Dati Apputi del corso di Matematica 15 - Successioi Numeriche e di Fuzioi Ao Accademico 2013/2014 M Tummiello, V Lacagia,

Dettagli

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioi di Matematica 1 - I modulo Luciao Battaia 4 dicembre 2008 L. Battaia - http://www.batmath.it Mat. 1 - I mod. Lez. del 04/12/2008 1 / 28 -2 Sottosuccessioi Grafici Ricorreza Proprietà defiitive Limiti

Dettagli

Radici, potenze, logaritmi in campo complesso.

Radici, potenze, logaritmi in campo complesso. SOMMARIO NUMERI COMPLESSI... Formula di Eulero... Coiugato di u umero complesso... 3 Poteza -esima di u umero complesso z (formula di De Moivre... 3 Radice -esima di z... 3 Osservazioi... Logaritmo di

Dettagli

Corso di Istituzioni di Matematiche I, Facoltà di Architettura (Roma Tre) Roma, 3 Novembre Le successioni. Versione preliminare

Corso di Istituzioni di Matematiche I, Facoltà di Architettura (Roma Tre) Roma, 3 Novembre Le successioni. Versione preliminare Corso di Istituzioi di Matematiche I, Facoltà di Architettura (Roma Tre) Roma, 3 Novembre 2005 Le successioi Versioe prelimiare Uo dei cocetti fodametali dell aalisi modera é il cocetto di limite. Per

Dettagli

Serie numeriche. Paola Rubbioni. 1 Denizione, serie notevoli e primi risultati. i=0 a i, e si indica con il simbolo +1X.

Serie numeriche. Paola Rubbioni. 1 Denizione, serie notevoli e primi risultati. i=0 a i, e si indica con il simbolo +1X. Serie umeriche Paola Rubbioi Deizioe, serie otevoli e primi risultati Deizioe.. Data ua successioe di umeri reali (a ) 2N, si dice serie umerica la successioe delle somme parziali (S ) 2N, ove S = a +

Dettagli

Analisi Matematica I

Analisi Matematica I Uiversità di Pisa - orso di Laurea i Igegeria Edile-rchitettura alisi Matematica I Pisa, febbraio Domada La derivata della fuzioe f) log ) si è ) log )si B) log )cos ) log ) si cos loglog ) + si ) log

Dettagli

La base naturale dell esponenziale

La base naturale dell esponenziale La base aturale dell espoeziale Beiamio Bortelli 7 aprile 007 Il problema I matematica, ci è stato detto, la base aturale della fuzioe espoeziale è il umero irrazioale: e =, 7888... Restao, però, da chiarire

Dettagli

Risoluzione del compito n. 2 (Gennaio 2017/2)

Risoluzione del compito n. 2 (Gennaio 2017/2) Risoluzioe del compito. (Geaio 017/ PROBLEMA 1 Trovate tutte le soluzioi (z, w, co z, w C,del sistema { i z + w =0 z + z + w +1=0;. Dalla prima equazioe, w = i z e quidi w = iz, che sostituito ella secoda

Dettagli

16 - Serie Numeriche

16 - Serie Numeriche Uiversità degli Studi di Palermo Facoltà di Ecoomia CdS Statistica per l Aalisi dei Dati Apputi del corso di Matematica 6 - Serie Numeriche Ao Accademico 03/04 M. Tummiello, V. Lacagia, A. Cosiglio, S.

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

Esercizi di Analisi Matematica A utili per la preparazione all esame scritto. File con soluzioni.

Esercizi di Analisi Matematica A utili per la preparazione all esame scritto. File con soluzioni. Esercizi di Aalisi Matematica A: soluzioi Es. Esercizi di Aalisi Matematica A utili per la preparazioe all esame scritto. File co soluzioi. PSfrag replacemets a.5.5.5.5 PSfrag replacemets 5 5 a b 4 3.5

Dettagli

Esercizi di Analisi Matematica 1 utili per la preparazione all esame scritto. File con soluzioni.

Esercizi di Analisi Matematica 1 utili per la preparazione all esame scritto. File con soluzioni. Esercizi di Aalisi Matematica. Paola Gervasio Es. Esercizi di Aalisi Matematica utili per la preparazioe all esame scritto. File co soluzioi. a.5.5.5.5 b 4 3.5 3.5.5.5 5 5 Figura 5 5.5 a 3 b 4 5.5 6 5

Dettagli

Per approssimare la funzione, occorre determinare la derivata prima e seconda:

Per approssimare la funzione, occorre determinare la derivata prima e seconda: Esercizi sul Poliomio di Taylor Approssimare lafuzioe f() = l(+si) coilpoliomio di Taylor di ordie = e puto iiziale 0 = 0. Soluzioe Per approssimare la fuzioe, occorre determiare la derivata prima e secoda:

Dettagli

Serie numeriche e di funzioni - Esercizi svolti

Serie numeriche e di funzioni - Esercizi svolti Serie umeriche e di fuzioi - Esercizi svolti Serie umeriche Esercizio. Discutere la covergeza delle serie segueti a) 3, b) 5, c) 4! (4), d) ( ) e. Esercizio. Calcolare la somma delle serie segueti a) (

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE Studiare la atura delle segueti serie. ) cos 4 + ; ) + si ; ) + ()! 4) ( ) 5) ( ) + + 6) ( ) + + + 7) ( log ) 8) ( ) + 9) log! 0)! Studiare al variare di x i R la atura delle segueti

Dettagli

Paolo Perfetti, Dipartimento di matematica, II Università degli Studi di Roma, facoltà di Ingegneria

Paolo Perfetti, Dipartimento di matematica, II Università degli Studi di Roma, facoltà di Ingegneria Esercizi svolti a lezioe e o proveieti dal Marcellii Sbordoe La preseza della lettera C idica u esercizio da fare a casa. La capacità di svolgere tali esercizi è parte del bagaglio ecessario i sede di

Dettagli

Teorema delle progressioni di numeri primi consecutivi con distanza sei costante

Teorema delle progressioni di numeri primi consecutivi con distanza sei costante Teorema delle progressioi di umeri primi cosecutivi co distaza sei costate A cura del Gruppo Eratostee - http://www.gruppoeratostee.com/) Co la collaborazioe di Eugeio Amitrao ( http://www.atuttoportale.it/)

Dettagli

GLI INSIEMI NUMERICI

GLI INSIEMI NUMERICI GLI INSIEMI NUMERICI R 2 π 2, _ -,8 2,89 Q Z N -2 2 28-87 -87 _, 7,76267 7 - e 2,7-7 -,6 _ -,627 7 6 R Numeri Reali Q Numeri Razioali Z Numeri Iteri Relativi N Numeri Naturali Dal diagramma di Eulero-Ve

Dettagli

2T(n/2) + n se n > 1 T(n) = 1 se n = 1

2T(n/2) + n se n > 1 T(n) = 1 se n = 1 3 Ricorreze Nel caso di algoritmi ricorsivi (ad esempio, merge sort, ricerca biaria, ricerca del massimo e/o del miimo), il tempo di esecuzioe può essere descritto da ua fuzioe ricorsiva, ovvero da u equazioe

Dettagli

Esercizi svolti su successioni e serie di funzioni

Esercizi svolti su successioni e serie di funzioni Esercizi svolti su successioi e serie di fuzioi Esercizio. Calcolare il limite putuale di f ) = 2 +, [0, + ). Dimostrare che o si ha covergeza uiforme su 0, + ), metre si ha covergeza uiforme su [a, +

Dettagli

Esercizi sul principio di induzione

Esercizi sul principio di induzione Esercitazioi di Aalisi I, Uiversità di Trieste, lezioe del 0/0/008 Esercizi sul pricipio di iduzioe Esercizio Dimostrare per iduzioe che + + + ( + ), Risoluzioe Le dimostrazioi di ua proprietà P() per

Dettagli

Limiti di successioni

Limiti di successioni Argometo 3s Limiti di successioi Ua successioe {a : N} è ua fuzioe defiita sull isieme N deiumeriaturaliavalori reali: essa verrà el seguito idicata più brevemeteco{a } a èdettotermie geerale della successioe

Dettagli

Richiami sulle potenze

Richiami sulle potenze Richiami sulle poteze Dopo le rette, le fuzioi più semplici soo le poteze: Distiguiamo tra: - poteze co espoete itero - poteze co espoete frazioario (razioale) - poteze co espoete reale = Domiio delle

Dettagli

Esercizi di approfondimento di Analisi IA

Esercizi di approfondimento di Analisi IA Esercizi di approfodimeto di Aalisi IA 4 geaio 017 1 Estremo superiore/iferiore, classi cotigue, archimedeità 1.1. Mostrare che A = {x R : x > 0, x < } ha u estremo superiore ξ, ed è ξ =. 1.. Siao A, B

Dettagli

ANALISI MATEMATICA 1. Funzioni elementari

ANALISI MATEMATICA 1. Funzioni elementari ANALISI MATEMATICA Fuzioi elemetari Trovare le soluzioi delle segueti disequazioi ) x + 4 5 > 8 + 5x 0 ) 5x + 0 > 0, x 4 < 0 3) x x 3 4) x + x + > 3 x + 4 5) 5x 4x x + )x ) 6) x x + > 0, x + 5x + 6 0,

Dettagli

Esercizi proposti. f(x), f(x), f(x), f(x + 1), f(x) + 1. x 2 x 1 se x 1, 4 x se x > 1 2, 2).

Esercizi proposti. f(x), f(x), f(x), f(x + 1), f(x) + 1. x 2 x 1 se x 1, 4 x se x > 1 2, 2). Esercizi proposti 1. Risolvere la disequazioe + 1.. Disegare i grafici di a) y = 1 + + 3 ; b) y = 1 ; c) y = log 10 + 1). 3. Si cosideri la fuzioe f) = ; disegare i grafici di f), f), f), f + 1), f) +

Dettagli

Definizione 1. Data una successione (a n ) alla scrittura formale. 1) a 1 + a a n +, si dà il nome di serie.

Definizione 1. Data una successione (a n ) alla scrittura formale. 1) a 1 + a a n +, si dà il nome di serie. SERIE NUMERICHE Defiizioe. Data ua successioe (a ) alla scrittura formale ) a + a 2 + + a +, si dà il ome di serie. I umeri a, a 2,, a, rappresetao i termii della serie, i particolare a è il termie geerale

Dettagli

Il Teorema di Markov. 1.1 Analisi spettrale della matrice di transizione. Il teorema di Markov afferma che

Il Teorema di Markov. 1.1 Analisi spettrale della matrice di transizione. Il teorema di Markov afferma che 1 Il Teorema di Marov 1.1 Aalisi spettrale della matrice di trasizioe Il teorema di Marov afferma che Teorema 1.1 Ua matrice di trasizioe regolare P su u isieme di stati fiito E ha ua uica distribuzioe

Dettagli

1 Congruenze. Definizione 1.1. Siano a, b, n Z con n 2, definiamo a b (mod n) se n a b.

1 Congruenze. Definizione 1.1. Siano a, b, n Z con n 2, definiamo a b (mod n) se n a b. 1 Cogrueze Defiizioe 1.1. Siao a, b, Z co 2, defiiamo a b (mod ) se a b. Proposizioe 1.2. 2 la cogrueza mod è ua relazioe di equivaleza su Z. a a () perché a a a b () b a () a b () b c () a b b c a c =

Dettagli

LEGGE DEI GRANDI NUMERI

LEGGE DEI GRANDI NUMERI LEGGE DEI GRANDI NUMERI E. DI NARDO 1. Legge empirica del caso e il teorema di Beroulli I diverse occasioi, abbiamo mezioato che la ozioe ituitiva di probabilità si basa sulla seguete assuzioe: se i sperimetazioi

Dettagli

Studio di funzione. Rappresentazione grafica di una funzione: applicazioni

Studio di funzione. Rappresentazione grafica di una funzione: applicazioni Studio di fuzioe Tipi di fuzioi Le fuzioi si possoo raggruppare i alcue tipologie di base: Razioali: se le operazioi che vi si effettuao soo addizioe, sottrazioe, prodotto, divisioe ed elevameto a poteza

Dettagli

1. (Punti 8) Deteminare modulo e argomento delle soluzioni della seguente equazione nel campo complesso. 1 x = 0. x 2 e 8.

1. (Punti 8) Deteminare modulo e argomento delle soluzioni della seguente equazione nel campo complesso. 1 x = 0. x 2 e 8. Corso di Laurea i Igegeria Biomedia ANALISI MATEMATICA Prova sritta del giugo 7 Fila. Esporre il proedimeto di risoluzioe degli eserizi i maiera ompleta e leggibile.. Puti 8) Detemiare modulo e argometo

Dettagli

Parte sesta: matematica con Java

Parte sesta: matematica con Java Parte sesta: matematica co Java I questa parte prederemo i esame la classe Math del package java.lag. Vedremo come utilizzare i vari metodi ed attributi. I questa parte cotiueremo a sviluppare il progetto

Dettagli

Tutorato di Probabilità 1, foglio I a.a. 2007/2008

Tutorato di Probabilità 1, foglio I a.a. 2007/2008 Tutorato di Probabilità, foglio I a.a. 2007/2008 Esercizio. Siao A, B, C, D eveti.. Dimostrare che P(A B c ) = P(A) P(A B). 2. Calcolare P ( A (B c C) ), sapedo che P(A) = /2, P(A B) = /4 e P(A B C) =

Dettagli

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri.

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri. Laboratorio di Matematica, A.A. 009-010; I modulo; Lezioi II e III - schema. Limiti e isiemi aperti; SB, Cap. 1 Successioi di vettori; SB, Par. 1.1, pp. 3-6 Itori sferici aperti. Nell aalisi i ua variabile

Dettagli

Materiale didattico relativo al corso di Matematica generale Prof. G. Rotundo a.a.2009/10

Materiale didattico relativo al corso di Matematica generale Prof. G. Rotundo a.a.2009/10 Materiale didattico relativo al corso di Matematica geerale Prof. G. Rotudo a.a.2009/10 ATTENZIONE: questo materiale cotiee i lucidi utilizzati per le lezioi. NON sostituisce il libro, che deve essere

Dettagli

1 Congruenze. Definizione 1.1. a, b, n Z n 2, allora definiamo a b (mod n) se n a b.

1 Congruenze. Definizione 1.1. a, b, n Z n 2, allora definiamo a b (mod n) se n a b. 1 Cogrueze Defiizioe 1.1. a, b, Z 2, allora defiiamo a b (mod ) se a b. Proposizioe 1.2. 2 la cogrueza mod è ua relazioe di equivaleza su Z. a a () perché a a a b () b a () a b () b c () a b b c a c =

Dettagli

Cenni di topologia di R

Cenni di topologia di R Cei di topologia di R. Sottoisiemi dei umeri reali Studieremo le proprietà dei sottoisiemi dei umeri reali, R, che hao ad esempio la forma: = (, ) (,) 6 8 = [,] { ;6;8} { } = (, ) (,) [, + ) Defiizioe:

Dettagli

3. Calcolo letterale

3. Calcolo letterale Parte Prima. Algera 1) Moomi Espressioe algerica letterale 42 Isieme di umeri relativi, talui rappresetati da lettere, legati fra loro da segi di operazioi. Moomio Espressioe algerica che o cotiee le operazioi

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1 Corso itegrato di Matematica per le scieze aturali ed applicate Materiale itegrativo Paolo Baiti Lorezo Freddi Dipartimeto di Matematica e Iformatica, Uiversità di Udie, via delle Scieze 206, 3300 Udie,

Dettagli

Limiti di successioni

Limiti di successioni Limiti di successioi Ricordiamo che si chiama successioe (umerica) ua qualsiasi fuzioe a : N a () R. Per evideziare il fatto che i valori assuti dalla fuzioe a si possoo umerare (cioè cotare), si preferisce

Dettagli

Giulio Cesare Barozzi: Primo Corso di Analisi Matematica Zanichelli (Bologna), 1998, ISBN

Giulio Cesare Barozzi: Primo Corso di Analisi Matematica Zanichelli (Bologna), 1998, ISBN Giulio Cesare Barozzi: Primo Corso di Aalisi Matematica Zaichelli (Bologa), 998, ISBN 88-8-69- Capitolo 3 LIMITI E CONTINUITÀ Soluzioe dei problemi posti al termie di alcui paragrafi 3. Fuzioi umeriche

Dettagli

2 Criteri di convergenza per serie a termini positivi

2 Criteri di convergenza per serie a termini positivi Uiversità Roma Tre L. Chierchia 65 (29//7) 2 Criteri di covergeza per serie a termii positivi I questo paragrafo cosideriamo serie a termii positivi ossia serie a co a > 0. Si ricordi che ua serie a termii

Dettagli

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride?

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride? Calcolo combiatorio sempi Qual è il umero delle badiere tricolori a righe verticali che si possoo formare co i 7 colori dell iride? Dobbiamo calcolare il umero delle disposizioi semplici di 7 oggetti di

Dettagli

Programma dettagliato del Corso di Analisi 1

Programma dettagliato del Corso di Analisi 1 Programma dettagliato del Corso di Aalisi Ig. per l Ambiete e il Territorio, Ig. Civile, Ig. dei Trasporti a.a. 2006-2007 http://www.dmmm.uiroma.it/persoe/capitaelli I NUMERI E LE FUNZIONI REALI Itroduzioe

Dettagli

Calcolo differenziale e integrale

Calcolo differenziale e integrale Calcolo differeziale e itegrale fuzioi di ua variabile reale Gabriele H. Greco Dipartimeto di Matematica Uiversità di Treto 385 POVO Treto Italia www.sciece.uit.it/ greco a.a. 5-6: Apputi del corso di

Dettagli

Programma (orientativo) secondo semestre 32 ore - 16 lezioni

Programma (orientativo) secondo semestre 32 ore - 16 lezioni Programma (orietativo) secodo semestre 32 ore - 6 lezioi 3 lezioi: successioi e serie 4 lezioi: itegrali 2-3 lezioi: equazioi differeziali 4 lezioi: sistemi di equazioi e calcolo vettoriale e matriciale

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

Esame di Probabilità e Statistica del 9 luglio 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Probabilità e Statistica del 9 luglio 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Probabilità e Statistica del 9 luglio 27 Corso di Laurea Trieale i Matematica, Uiversità degli Studi di Padova). Cogome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto fiale Attezioe: si cosegao

Dettagli

Ingegneria Elettronica, Informatica e delle Telecomunicazioni Prova scritta di ANALISI B - 23/06/2006

Ingegneria Elettronica, Informatica e delle Telecomunicazioni Prova scritta di ANALISI B - 23/06/2006 Igegeria Elettroica, Iformatica e delle Telecomuicazioi Prova scritta di ANALISI B - 23/06/2006 CORSO DI STUDI IN INGEGNERIA... NOME E COGNOME:... NUMERO DI MATRICOLA:... (scrivere ome e cogome ache su

Dettagli

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 AA Dott.ssa Sandra Lucente Successioni numeriche

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 AA Dott.ssa Sandra Lucente Successioni numeriche Corso di laurea i Matematica Corso di Aalisi Matematica -2 AA. 0809.. Cooscere. Dott.ssa Sadra Lucete. Successioi umeriche Defiizioe di successioe, isieme degli elemeti della successioe, successioe defiita

Dettagli

Precorso di Matematica. Parte IV : Funzioni e luoghi geometrici

Precorso di Matematica. Parte IV : Funzioni e luoghi geometrici Facoltà di Igegeria Precorso di Matematica 1. Equazioi e disequazioi Parte IV : Fuzioi e luoghi geometrici Richiamiamo brevemete la ozioe di fuzioe, che sarà utilizzato i quest ultima parte del precorso.

Dettagli

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.matefilia.it ORDINAMENTO 1 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Due osservatori si trovao ai lati opposti di u grattacielo, a livello del suolo. La cima dell edificio dista 16 metri dal primo

Dettagli

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4 Quarto Compito di Aalisi Matematica Corso di laurea i Iformatica, corso B 5 Luglio 016 Soluzioi Esercizio 1 Determiare tutti i umeri complessi z tali che z = 3 4 i. Soluzioe. Scrivedo z = a + bi, si ottiee

Dettagli

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI RISOLUZIONE MODERNA DI PROBLEMI ANTICHI L itelletto, duque, che o è la verità, o comprede mai la verità i modo così preciso da o poterla compredere (poi acora) più precisamete, all ifiito, perché sta alla

Dettagli

PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA. A. Induzione matematica: Introduzione

PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA. A. Induzione matematica: Introduzione PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA CHU WENCHANG A Iduzioe matematica: Itroduzioe La gra parte delle proposizioi della teoria dei umeri dà euciati che coivolgoo i umeri aturali; per esempio

Dettagli

Michela Eleuteri ANALISI MATEMATICA. Serie numeriche (teoria ed esercizi)

Michela Eleuteri ANALISI MATEMATICA. Serie numeriche (teoria ed esercizi) Michela Eleuteri ANALISI MATEMATICA Serie umeriche (teoria ed esercizi) A Giulia co la speraza che almeo ella matematica o assomigli al papà Idice Serie 5. Deizioe di serie e prime proprietà........................

Dettagli

STUDIO DEL LANCIO DI 3 DADI

STUDIO DEL LANCIO DI 3 DADI Leoardo Latella STUDIO DEL LANCIO DI 3 DADI Il calcolo delle probabilità studia gli eveti casuali probabili, cioè quegli eveti che possoo o o possoo verificarsi e che dipedoo uicamete dal caso. Tale studio

Dettagli

Elementi di calcolo combinatorio

Elementi di calcolo combinatorio Appedice A Elemeti di calcolo combiatorio A.1 Disposizioi, combiazioi, permutazioi Il calcolo combiatorio si occupa di alcue questioi iereti allo studio delle modalità secodo cui si possoo raggruppare

Dettagli

Foglio di esercizi N. 1. (Il logaritmo si intende in base naturale e dove non specificato. Il risultato comunque non dipende dalla scelta della base)

Foglio di esercizi N. 1. (Il logaritmo si intende in base naturale e dove non specificato. Il risultato comunque non dipende dalla scelta della base) Foglio di esercizi N. 1 (Il logaritmo si itede i base aturale e dove o specificato. Il risultato comuque o dipede dalla scelta della base) 1. Determiare il domiio della fuzioe 2. Determiare il domiio della

Dettagli

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA Politecico di Torio 7 Fuzioi Radice FUNZIONI RADICE RICHIAMI DI TEORIA f ( x) = x dom f Im f grafici. = = =7 =9. dispari R R -. - -. - - -. Grafici di fuzioi radici co pari pari [,+ ) [,+ ).. = = =6 =8

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO 0. Itroduzioe Oggetto del calcolo combiatorio è quello di determiare il umero dei modi mediate i quali possoo essere associati, secodo prefissate regole, gli elemeti di uo stesso

Dettagli

Diottro sferico. Capitolo 2

Diottro sferico. Capitolo 2 Capitolo 2 Diottro sferico Si idica co il termie diottro sferico ua calotta sferica che separa due mezzi co idice di rifrazioe diverso. La cogiugete il cetro di curvatura C della calotta co il vertice

Dettagli

Serie di Fourier / Esercizi svolti

Serie di Fourier / Esercizi svolti Serie di Fourier / Esercizi svolti ESERCIZIO. da Si cosideri la fuzioe f : R R, periodica di periodo e data ell itervallo (, ] se

Dettagli