PARENTELA e CONSANGUINEITÀ di Dario Ravarro

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "PARENTELA e CONSANGUINEITÀ di Dario Ravarro"

Transcript

1 Introduzone PARENTELA e CONSANGUINEITÀ d Daro Ravarro 1 gennao 2010 Lo studo della genealoga d un ndvduo è necessaro al fne d valutare la consangunetà dell ndvduo stesso e la sua parentela con altr ndvdu attraverso calcol matematc e probablstc. Lo scopo d quest calcol è nnanztutto quello d fornre una mappa genetca degl ndvdu (che sano cavall, poll, can, ecc.) per spegare le dfferenze morfologche e d comportamento, noltre per ndvduare gen convolt nelle malatte eredtare al fne d prevenrle (mgloramento genetco). Il fattore d consangunetà (o n ncroco), che è po l cardne e l obettvo d questa trattazone, è defnto come l lvello d omozgos dovuto alla parentela tra gentor. Msura la probabltà che entramb gen present n un ndvduo sano dentc per dscendenza. Esso è rappresentato da un valore compreso tra 0 e 1 (o tra lo 0 e l 100 %). Maggore è l grado d parentela tra gentor e pù alto è l fattore d consangunetà. È molto mportante, a fn de crter d accoppamento all nterno d una popolazone, determnare l fattore d consangunetà d ogn ndvduo, sempre per evtare gl effett deleter d ndebolmento genetco (malatte, mpovermento della spece). La genealoga d un ndvduo è generalmente rappresentata con un grafco d tpo albero, che permette d ndvduare rapdamente suo ascendent, dscendent e collateral. Gl alber classc (quell n cu ogn ndvduo è legato a due gentor, quattro nonn, otto bsnonn, ecc.) non sono molto utl a fn del calcolo che c apprestamo a compere. Pertanto s adotta l grafco a frecce con ndvdu che non s rpetono: Ogn ndvduo è orgnato da due frecce provenent da gentor. Se a un ndvduo arrva una sola frecca, sgnfca che l altro gentore è gnoto. Parentela e calcolo La parentela è una msura del lvello d somglanza genetca tra due ndvdu. Somglanza dovuta al fatto d avere gen dentc per dscendenza (coè provenent da un avo comune). La parentela può essere anche espressa come msura della probabltà d gen sml per dscendenza tra due ndvdu. Attraverso l uso d alcune formule matematche è possble msurare l grado d parentela. La determnazone d tal formule può avvenre con due metod dfferent: l metodo delle ve e quello tabulare.

2 Il metodo delle ve fu deato da Sewall Wrght nel 1921: l calcolo del coeffcente d parentela tra due ndvdu A e B è: dove R AB = n + n (1 + A 2 ( 1 + ) )(1 + B Z ) rappresenta la sommatora d tutte le possbl ve che collegano l ndvduo A all ndvduo B attraverso l antenato comune presente nella -esma va Z n 1, n 2 rappresentano, rspettvamente, l numero delle frecce che dvdono l ndvduo A dall avo comune Z e quello delle frecce che dvdono Z da B Z è l coeffcente d consangunetà dell avo comune Z presente nella -esma va A è l coeffcente d consangunetà dell ndvduo A B è l coeffcente d consangunetà dell ndvduo B Il coeffcente d consangunetà, sempre dovuto a Wrght, è: n + n X = 1+ 2 ( ) Dove n,n 1 2 rappresentano, rspettvamente, l numero d frecce che dvdono un gentore d X dall avo comune Z e l numero d frecce che dvdono Z dall altro gentore d X. Esstono altre varant della formula a seconda del metodo d calcolo usato nel traccare le ve, coè percors segnat dalle frecce verso gl antenat comun. Una varante molto utlzzata, e che seguremo per nostr esemp, è n n 1 1 X = 1+ 2 ( ) Dove è l numero d generazon (o frecce) che vanno dall ndvduo X all antenato comune Z passando attraverso l prmo gentore e tornando all ndvduo X passando attraverso l altro gentore, senza toccare ma due volte lo stesso ndvduo, eccetto Z e X stess. Z Z

3 Alcun esemp ranco A.B Lusa C.D Govann E. Lusa C.D Stefano Enrca Sandra Prendamo n esame quattro gentor (n cma al grafco), d cu uno (Lusa) comune. Consderamo noltre caratter ndvdual espress dagl allel (varazon d un sngolo gene) A, B, C, D, E ed. Gl ndvdu uman eredtano, per ogn carattere ndvduale, una copa del gene da cascun gentore. Un ndvduo ha un gene consanguneo se entrambe le cope del gene consstono nel medesmo allele. Per semplctà supponamo che ndvdu non n relazone tra d loro abbano allel dfferent. Voglamo calcolare l coeffcente d consangunetà d Sandra: Stefano eredta un allele da Lusa, ma ha solo l 50% d probabltà d passarlo a sua fgla Sandra Enrca eredta un allele da Lusa, ma anche le ha solo l 50% d probabltà d passarlo a sua fgla Sandra Sandra pertanto ha solo l 25% (50% x 50%) d probabltà d rcevere entramb gl allel da sua nonna Lusa Secondo l ultma formula presentata per l calcolo d, abbamo che n = 4 (coè Sandra->Stefano, Stefano- >Lusa, Lusa->Enrca, Enrca->Sandra) e qund: 1 3 = ( 1+ ) 12,5% 2 = Sandra Lusa n caso Lusa abba coeffcente zero Nel caso n cu c sano pù av comun, l contrbuto d ognuno d ess è ndpendente a patto sempre d non contare pù d una volta gl ndvdu ntermed. È sempre mportante defnre l fattore d consangunetà rspetto ad una determnata generazone a cu l ndvduo n esame appartene. Senza tale rfermento, l fattore non ha rlevanza alcuna. S rcorda che l accoppamento tra due ndvdu fortemente consangune ma non parent dà luogo a prole non consangunea. Vedamo ora un esempo pù complesso:

4 X S vuole calcolare. I percors dstnt sono: X-C--I-E-B-X d lunghezza 6, antenato I X-C--I-G-B-X d lunghezza 6, antenato I X-C-E-B-X d lunghezza 4, antenato E X-C-E-G-B-X d lunghezza 5, antenato G X-C-E-I-G-B-X d lunghezza 6, antenato I Gl av comun sono pertanto: I, E, G X = ( 1+ E G I I I ) Supponendo che coeffcent d consangunetà degl ndvdu n cma all albero (H, I e L) sano par a 0, abbamo che: X = ( 1+ E G ) Il metodo delle ve appena llustrato, anche se molto ntutvo, ha de lmt n caso d pedgree complcat: non è sempre facle segnare tutte le possbl ve senza dmentcarne qualcuna. Per questo motvo s utlzza generalmente, soprattutto ne software dedcat, l metodo tabulare. S dsegna una tabella (detta matrce d parentela) costtuta da n rghe ed n colonne ed n essa vengono ndcat coeffcent d parentela addtva tra gl anmal della popolazone n oggetto e coeffcent d consangunetà d tutt gl ndvdu della popolazone. Tale metodo è basato su due prncp fondamental: 1. se un anmale è parente d un altro, allora uno o entramb gentor d un ndvduo devono essere parent dell altro anmale Esempo: la parentela tra Stefano e Enrca è ½ della parentela tra ranco e Enrca + ½ della parentela tra Lusa ed Enrca 5 ranco Lusa Stefano Enrca a 1 = ( a 2 Stefano Enrca ranco Enrca + a Lusa Enrca ) 2. l coeffcente d consangunetà d un anmale è ½ del coeffcente d parentela addtva tra suo gentor 1 = 2 Stefano a ranco Lusa

5 Inzamo a costrure la tabella relatva al medesmo esempo: 1. Dsporre gl anmal sulla seconda rga e sulla prma colonna n ordne d nascta (dal pù veccho al pù govane). S consderano gl anmal pù vecch come non parent. 2. S ndcano gentor (ove non conoscuto s mettono de trattn)

6 3. Mettere 1 nella dagonale prncpale. Questa rappresenta l grado d parentela dell anmale con se stesso, che è uguale a 1 pù l suo coeffcente d consangunetà. Il coeffcente d consangunetà dell ndvduo è rcavato dal secondo prncpo del metodo tabulare, e qund sarà calcolato ne pass successv. S assume che la popolazone d base (quella con gentor sconoscut) abba coeffcente d consangunetà par a 0, n assenza d ulteror nformazon. 4. Per calcolare valor da mettere nella prma rga, s applca l prmo prncpo del metodo tabulare: ogn valore è par alla somma d ½ del valore del prmo gentore (sempre presente nella prma rga) pù ½ del valore del secondo gentore. Se l ndvduo non presenta uno o entramb gentor, l valore relatvo è Una volta calcolata la prma rga, s rportano valor nella prma colonna.

7 6. Per le rghe e colonne successve s rpetono pass 4 e 5 sopraespost, dopo aver nserto nella dagonale prncpale coeffcent d consangunetà pertnent, tramte applcazone del secondo prncpo del metodo tabulare (che rcordamo s ottene dmezzando l valore della parentela addtva de gentor, gù presente n tabella) Per esempo, l grado d parentela d E con I è par a ½ del grado d parentela del gentore I con I stesso (qund 1) pù ½ del grado d parentela del gentore G con I (che s rcava nella cella relatva ed è par a ½), qund l totale e 1 + = Sulla dagonale prncpale valor a destra del + (cerchat e ndcat n colore rosso) sono coeffcent d consangunetà del sngolo ndvduo. Per esempo l coeffcente dell ndvduo C è 3/16. All ncroco tra le rghe e le colonne s legge nvece l coeffcente d parentela addtva tra due ndvdu. Per esempo l coeffcente tra ed E è 3/8. Da notare che questo valore è esattamente l doppo del coeffcente d consangunetà del loro fglo C. Il software Speed consente d calcolare velocemente coeffcent d consangunetà degl ndvdu. Il software accetta come nput un fle d testo realzzato n questo modo: Identfcatvo ndvduo, Identfcatvo padre, Identfcatvo madre Se l padre o la madre sono gnot, non ndcarl. Per esempo l grafo d esempo può essere scrtto n questo modo: X,C,B C,,E B,G,E,H,I E,G,I G,L,I H,, I,, L,, Il software fornrà n uscta una tabella rassuntva con coeffcent calcolat.

8 Rferment. Element d mgloramento genetco negl anmal da compagna Unverstà degl stud d Psa (R. Leotta,. Cecch, M. Baglacca, D. Canc) Software Speed: URL: Name: Speed - ast Inbreedng Computaton Software Descrpton: Wndows program for rapdly computng the nbreedng of all ndvduals n a breedng populaton. ree verson avalable. Proflo M chamo Daro Ravarro, sono un ngegnere elettronco e m occupo d progettazone sstem d scurezza e vdeosorveglanza. Nente a che vedere pertanto con l calcolo del fattore d consangunetà degl ndvdu. Purtroppo con largo rtardo (e d questo me ne scuso con l dott. Elo Cort), vsta la rchesta del dottore medesmo e dopo esserm documentato l pù possble, ho decso d scrvere alcune pagne sull mportanza del fattore d consangunetà a fn degl ncroc tra anmal e come lo s possa calcolare (a mano e tramte software). Spero d essere stato, a parte le ovve funzon matematche, l pù possble charo.

- Riproduzione riservata - 1

- Riproduzione riservata - 1 Razze: Setter Inglese Bracco Francese tpo Prene D Franco Barsottn Va Bugallo 1b 56040 Crespna (PI) www.allevamentodelbugallo.t nfo@allevamentodelbugallo.t Parentela e consangunetà; Parentela; genetcamente

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Calcolo della caduta di tensione con il metodo vettoriale

Calcolo della caduta di tensione con il metodo vettoriale Calcolo della caduta d tensone con l metodo vettorale Esempo d rete squlbrata ed effett del neutro nel calcolo. In Ampère le cadute d tensone sono calcolate vettoralmente. Per ogn utenza s calcola la caduta

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi ESEMPIO N. Anals d mercuro n matrc solde medante spettrometra d assorbmento atomco a vapor fredd 0 Introduzone La determnazone del mercuro n matrc solde è effettuata medante trattamento termco del campone

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1 APAT Agenza per la Protezone dell Ambente e per Servz Tecnc Dpartmento Dfesa del Suolo / Servzo Geologco D Itala Servzo Tecnologe del sto e St Contamnat * * * Nota nerente l calcolo della concentrazone

Dettagli

STATISTICA DESCRITTIVA CON EXCEL

STATISTICA DESCRITTIVA CON EXCEL STATISTICA DESCRITTIVA CON EXCEL Corso d CPS - II parte: Statstca Laurea n Informatca Sstem e Ret 2004-2005 1 Obettv della lezone Introduzone all uso d EXCEL Statstca descrttva Utlzzo dello strumento:

Dettagli

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM)

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM) Identfcazone: SIT/Tec-012/05 Revsone: 0 Data 2005-06-06 Pagna 1 d 7 Annotazon: Il presente documento fornsce comment e lnee guda sull applcazone della ISO 7500-1 COPIA CONTROLLATA N CONSEGNATA A: COPIA

Dettagli

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca Eserctazon del corso d Relazon tra varabl Gancarlo Manz Facoltà d Socologa Unverstà degl Stud d Mlano-Bcocca e-mal: gancarlo.manz@statstca.unmb.t Terza eserctazone Mlano, 8 febbrao 7 SOMMARIO TERZA ESERCITAZIONE

Dettagli

Condensatori e resistenze

Condensatori e resistenze Condensator e resstenze Lucano attaa Versone del 22 febbrao 2007 Indce In questa nota presento uno schema replogatvo relatvo a condensator e alle resstenze, con partcolare rguardo a collegament n sere

Dettagli

Dai circuiti ai grafi

Dai circuiti ai grafi Da crcut a graf Il grafo è una schematzzazone grafca semplfcata che rappresenta le propretà d nterconnessone del crcuto ad esso assocato Il grafo è costtuto da un nseme d nod e d lat Se lat sono orentat

Dettagli

La retroazione negli amplificatori

La retroazione negli amplificatori La retroazone negl amplfcator P etroazonare un amplfcatore () sgnfca sottrarre (o sommare) al segnale d ngresso (S ) l segnale d retroazone (S r ) ottenuto dal segnale d uscta (S u ) medante un quadrpolo

Dettagli

Il diagramma PSICROMETRICO

Il diagramma PSICROMETRICO Il dagramma PSICROMETRICO I dagramm pscrometrc vengono molto utlzzat nel dmensonamento degl mpant d condzonamento dell ara, n quanto consentono d determnare n modo facle e rapdo le grandezze d stato dell

Dettagli

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard Corso d Statstca (canale P-Z) A.A. 2009/0 Prof.ssa P. Vcard VALORI MEDI Introduzone Con le dstrbuzon e le rappresentazon grafche abbamo effettuato le prme sntes de dat. E propro osservando degl stogramm

Dettagli

Dati di tipo video. Indicizzazione e ricerca video

Dati di tipo video. Indicizzazione e ricerca video Corso d Laurea n Informatca Applcata Unverstà d Urbno Dat d tpo vdeo I dat vdeo sono generalmente rcch dal punto d vsta nformatvo. Sottottol (testo) Colonna sonora (audo parlato e/o musca) Frame (mmagn

Dettagli

Grafico di una serie di dati sperimentali in EXCEL

Grafico di una serie di dati sperimentali in EXCEL Grafco d una sere d dat spermental n EXCEL 1. Inseramo sulla prma rga l ttolo che defnsce l contenuto del foglo. Po nseramo su un altra rga valor spermental della x e su quella successva valor della y.

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE

LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 1 LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE GRUPPO MAT06 Dp. Matematca, Unverstà

Dettagli

Tutti gli strumenti vanno tarati

Tutti gli strumenti vanno tarati L'INCERTEZZA DI MISURA Anta Calcatell I.N.RI.M S eseguono e producono msure per prendere delle decson sulla base del rsultato ottenuto, come per esempo se bloccare l traffco n funzone d msure d lvello

Dettagli

Introduzione al Machine Learning

Introduzione al Machine Learning Introduzone al Machne Learnng Note dal corso d Machne Learnng Corso d Laurea Magstrale n Informatca aa 2010-2011 Prof Gorgo Gambos Unverstà degl Stud d Roma Tor Vergata 2 Queste note dervano da una selezone

Dettagli

10-7-2009. GAZZETTA UFFICIALE DELLA REPUBBLICA ITALIANA Serie generale - n. 158. ALLEGATO 1 (Allegato A, paragrafo 2)

10-7-2009. GAZZETTA UFFICIALE DELLA REPUBBLICA ITALIANA Serie generale - n. 158. ALLEGATO 1 (Allegato A, paragrafo 2) ALLEGATO 1 (Allegato A, paragrafo 2) Indcazon per l calcolo della prestazone energetca d edfc non dotat d mpanto d clmatzzazone nvernale e/o d produzone d acqua calda santara 1. In assenza d mpant termc,

Dettagli

9.6 Struttura quaternaria

9.6 Struttura quaternaria 9.6 Struttura quaternara L'ultmo lvello strutturale é la struttura quaternara. Non per tutte le protene è defnble una struttura quaternara. Infatt l esstenza d una struttura quaternara é condzonata alla

Dettagli

Circuiti di ingresso differenziali

Circuiti di ingresso differenziali rcut d ngresso dfferenzal - rcut d ngresso dfferenzal - Il rfermento per potenzal Gl stad sngle-ended e dfferenzal I segnal elettrc prodott da trasduttor, oppure preleat da un crcuto o da un apparato elettrco,

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

Hansard OnLine. Unit Fund Centre Guida

Hansard OnLine. Unit Fund Centre Guida Hansard OnLne Unt Fund Centre Guda Sommaro Pagna Introduzone al Unt Fund Centre (UFC) 3 Uso de fltr per la selezone de fond 4-5 Lavorare con rsultat del fltro 6 Lavorare con rsultat del fltro - Prezz 7

Dettagli

Calibrazione. Lo strumento idealizzato

Calibrazione. Lo strumento idealizzato Calbrazone Come possamo fdarc d uno strumento? Abbamo bsogno d dentfcare l suo funzonamento n condzon controllate. L dentfcazone deve essere razonalmente organzzata e condvsa n termn procedural: s tratta

Dettagli

La taratura degli strumenti di misura

La taratura degli strumenti di misura La taratura degl strument d msura L mportanza dell operazone d taratura nasce dall esgenza d rendere l rsultato d una msura rferble a campon nazonal od nternazonal del msurando n questone affnché pù msure

Dettagli

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS Captolo 7 1. Il modello IS-LM La «sntes neoclassca» e l modello IS-LM Defnzone: ndvdua tutte le combnazon d reddto e saggo d nteresse per le qual l mercato de ben (curva IS) e l mercato della moneta (curva

Dettagli

Analisi e confronto tra metodi di regolarizzazione diretti per la risoluzione di problemi discreti mal-posti

Analisi e confronto tra metodi di regolarizzazione diretti per la risoluzione di problemi discreti mal-posti UNIVERSIA DEGLI SUDI DI CAGLIARI Facoltà d Ingegnera Elettronca Corso d Calcolo Numerco 1 A.A. 00/003 Anals e confronto tra metod d regolarzzazone drett per la rsoluzone d prolem dscret mal-post Docente:

Dettagli

MACROECONOMIA A.A. 2014/2015

MACROECONOMIA A.A. 2014/2015 MACROECONOMIA A.A. 2014/2015 ESERCITAZIONE 2 MERCATO MONETARIO E MODELLO /LM ESERCIZIO 1 A) Un economa sta attraversando un perodo d profonda crs economca. Le banche decdono d aumentare la quota d depost

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Esercitazioni del corso: STATISTICA

Esercitazioni del corso: STATISTICA A. A. 0-0 Eserctazon del corso: STATISTICA Sommaro Eserctazone : Moda Medana Meda Artmetca Varabltà: Varanza, Devazone Standard, Coefcente d Varazone ESERCIZIO : UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA

Dettagli

RETI TELEMATICHE Lucidi delle Lezioni Capitolo VII

RETI TELEMATICHE Lucidi delle Lezioni Capitolo VII Prof. Guseppe F. Ross E-mal: guseppe.ross@unpv.t Homepage: http://www.unpv.t/retcal/home.html UNIVERSITA' DEGLI STUDI DI PAVIA Facoltà d Ingegnera A.A. 2011/12 - I Semestre - Sede PV RETI TELEMATICHE Lucd

Dettagli

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura orma UI CEI EV 3005: Guda all'espressone dell'ncertezza d msura L obettvo d una msurazone è quello d determnare l valore del msurando, n altre parole della grandezza da msurare. In generale, però, l rsultato

Dettagli

Aritmetica e architetture

Aritmetica e architetture Unverstà degl stud d Parma Dpartmento d Ingegnera dell Informazone Poltecnco d Mlano Artmetca e archtetture Sommator Rpple Carry e CLA Bozza da completare del 7 nov 03 La rappresentazone de numer Rappresentazone

Dettagli

POR FESR Sardegna 2007-2013 Asse VI Competitività BANDO PUBBLICO. Voucher Startup Incentivi per la competitività delle Startup innovative

POR FESR Sardegna 2007-2013 Asse VI Competitività BANDO PUBBLICO. Voucher Startup Incentivi per la competitività delle Startup innovative POR FESR Sardegna 2007-2013 Asse VI Compettvtà BANDO PUBBLICO Voucher Startup Incentv per la compettvtà delle Startup nnovatve ALLEGATO 3 PIANO DI UTILIZZO DEL VOUCHER STARTUP INNOVATIVE 2014 3. Pano d

Dettagli

CAPITOLO 3 Incertezza di misura Pagina 26

CAPITOLO 3 Incertezza di misura Pagina 26 CAPITOLO 3 Incertezza d msura Pagna 6 CAPITOLO 3 INCERTEZZA DI MISURA Le operazon d msurazone sono tutte nevtablmente affette da ncertezza e coè da un grado d ndetermnazone con l quale l processo d msurazone

Dettagli

6.1. Moody s KMV Credit Portfolio Manager

6.1. Moody s KMV Credit Portfolio Manager 6.. Moody s MV Credt Portfolo Manager 6... La struttura del modello L mpanto d Moody s MV (MMV) è costtuto dal modello d Merton e da un approcco d tpo fattorale per la stma delle correlazon. Attualmente,

Dettagli

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007 Fondament d Vsone Artfcale (Seconda Parte PhD. Ing. Mchele Folgherater Corso d Robotca Prof.ssa Guseppna Gn Anno Acc.. 006/007 Caso Bdmensonale el caso bdmensonale, per ndvduare punt d contorno degl oggett

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

Analisi dei flussi 182

Analisi dei flussi 182 Programmazone e Controllo Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Anals de fluss 82 Programmazone e Controllo Teora delle

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2012-2013 Eserctazone: 4 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/41? Aula "Ranzan B" 255 post 1 2 3 4 5 6 7 8 9

Dettagli

Verifica termoigrometrica delle pareti

Verifica termoigrometrica delle pareti Unverstà Medterranea d Reggo Calabra Facoltà d Archtettura Corso d Tecnca del Controllo Ambentale A.A. 2009-200 Verfca termogrometrca delle paret Prof. Marna Mstretta ANALISI IGROTERMICA DEGLI ELEMENTI

Dettagli

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni:

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni: Anals ammortzzata Anals ammortzzata S consdera l tempo rchesto per esegure, nel caso pessmo, una ntera sequenza d operazon. Se le operazon costose sono relatvamente meno frequent allora l costo rchesto

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

EH SmartView. Una SmartView sui rischi e sulle opportunità. Servizio di monitoraggio dell assicurazione del credito. www.eulerhermes.

EH SmartView. Una SmartView sui rischi e sulle opportunità. Servizio di monitoraggio dell assicurazione del credito. www.eulerhermes. EH SmartVew Servz Onlne d Euler Hermes Una SmartVew su rsch e sulle opportuntà Servzo d montoraggo dell asscurazone del credto www.eulerhermes.t Cos è EH SmartVew? EH SmartVew è l servzo d Euler Hermes

Dettagli

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri Artmetca de calcolator Rappresentazone de numer natural e relatv Addzone e sommator: : a propagazone d rporto, veloce, con segno Moltplcazone e moltplcator: senza segno, con segno e algortmo d Booth Rappresentazone

Dettagli

ROBOTS A CINEMATICA RIDONDANTE: NUOVI SVILUPPI CONSENTITI DAGLI AZIONAMENTI DIRETTI E DAGLI ALGORITMI DI CONTROLLO GENETICI

ROBOTS A CINEMATICA RIDONDANTE: NUOVI SVILUPPI CONSENTITI DAGLI AZIONAMENTI DIRETTI E DAGLI ALGORITMI DI CONTROLLO GENETICI ROBOTS A CINEMATICA RIDONDANTE: NUOVI SVILUPPI CONSENTITI DAGLI AZIONAMENTI DIRETTI E DAGLI ALGORITMI DI CONTROLLO GENETICI R. Fagla (*), M. Flppn (**), A. Zappon (***) (*)Dp. Ing. Meccanca Unv. degl Stud

Dettagli

Leggere i dati da file

Leggere i dati da file Esempo %soluzon d una equazone d secondo grado dsp('soluzon d a^+b+c') anput('damm l coeffcente a '); bnput('damm l coeffcente b '); cnput('damm l coeffcente c '); deltab^-4*a*c; f delta0 dsp('soluzon

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

Il pendolo di torsione

Il pendolo di torsione Unverstà degl Stud d Catana Facoltà d Scenze MM.FF.NN. Corso d aurea n FISICA esna d ABORAORIO DI FISICA I Il pendolo d torsone (sezone costante) Moreno Bonaventura Anno Accademco 005/06 Introduzone. I

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA IL PROBLEMA Supponamo d voler studare l effetto d 4 dverse dete su un campone casuale d 4

Dettagli

Prova di verifica n.0 Elettronica I (26/2/2015)

Prova di verifica n.0 Elettronica I (26/2/2015) Proa d erfca n.0 lettronca I (26/2/2015) OUT he hfe + L OUT - Fgura 1 Con rfermento alla rete elettrca d Fg.1, determnare: OUT / OUT / la resstenza sta dal generatore ( V ) la resstenza sta dall uscta

Dettagli

Controllo e scheduling delle operazioni. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Controllo e scheduling delle operazioni. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Controllo e schedulng delle operazon Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Organzzazone della produzone PRODOTTO che cosa ch ORGANIZZAZIONE PROCESSO come FLUSSO DI PRODUZIONE

Dettagli

PROGRAMMAZIONE DIDATTICA

PROGRAMMAZIONE DIDATTICA ISTITUTO ISTRUZIONE SUPERIORE STATALE CARLO GEMMELLARO CATANIA PROGRAMMAZIONE DIDATTICA ECONOMIA AZIENDALE A.S.: 2015/2016 Prof Pnzzotto Dana classe 5 b afm Obtv educatv OBTV ddattc trasversal Acqusre

Dettagli

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013 Modul su un domno a deal prncpal Maurzo Cornalba versone 15/5/2013 Sa A un anello commutatvo con 1. Indchamo con A k l modulo somma dretta d k cope d A. Un A-modulo fntamente generato M s dce lbero se

Dettagli

CIRCOLARE N. 9. CIRCOLARI DELL ENTE MODIFICATE/SOSTITUITE: nessuna. Firmato: ing. Carlo Cannafoglia

CIRCOLARE N. 9. CIRCOLARI DELL ENTE MODIFICATE/SOSTITUITE: nessuna. Firmato: ing. Carlo Cannafoglia PROT. N 53897 ENTE EMITTENTE: OGGETTO: DESTINATARI: DATA DECORRENZA: CIRCOLARE N. 9 DC Cartografa, Catasto e Pubblctà Immoblare, d ntesa con l Uffco del Consglere Scentfco e la DC Osservatoro del Mercato

Dettagli

InfoCenter Product A PLM Application

InfoCenter Product A PLM Application genes d un fra o Gestone de crcolazone dell'nformazone sa crcoscrtta entro Pdetermnat ambt settoral. L'ntegrazone de sstem e de odpartment azendal rchede nuove modaltà operatve, nuove t competenze e nuov

Dettagli

Scelta dell Ubicazione. di un Impianto Industriale. Corso di Progettazione Impianti Industriali Prof. Sergio Cavalieri

Scelta dell Ubicazione. di un Impianto Industriale. Corso di Progettazione Impianti Industriali Prof. Sergio Cavalieri Scelta dell Ubcazone d un Impanto Industrale Corso d Progettazone Impant Industral Prof. Sergo Cavaler I fattor ubcazonal Cost d Caratterstche del Mercato Costruzone Energe Manodopera Trasport Matere Prme

Dettagli

Economie di scala, concorrenza imperfetta e commercio internazionale

Economie di scala, concorrenza imperfetta e commercio internazionale Sanna-Randacco Lezone n. 14 Econome d scala, concorrenza mperfetta e commerco nternazonale Non v è vantaggo comparato (e qund non v è commerco nter-ndustrale). S vuole dmostrare che la struttura d mercato

Dettagli

Fotogrammetria. O centro di presa. fig.1 Geometria della presa fotogrammetrica

Fotogrammetria. O centro di presa. fig.1 Geometria della presa fotogrammetrica Fotogrammetra Scopo della fotogrammetra è la determnazone delle poszon d punt nello spazo fsco a partre dalla msura delle poszon de punt corrspondent su un mmagne fotografca. Ovvamente, affnché questo

Dettagli

Ministero dell Ambiente e della Tutela del Territorio e del Mare MANUALE OPERATIVO PER IL SISTEMA DI MISURAZIONE E VALUTAZIONE DEL PERSONALE

Ministero dell Ambiente e della Tutela del Territorio e del Mare MANUALE OPERATIVO PER IL SISTEMA DI MISURAZIONE E VALUTAZIONE DEL PERSONALE Mnstero dell Ambente e della Tutela del Terrtoro e del Mare MANUALE OPERATIVO PER IL SISTEMA DI MISURAZIONE E VALUTAZIONE DEL PERSONALE INDICE 1. INTRODUZIONE 1.1. I RIFERIMENTI NORMATIVI 1.2. GLI OBIETTIVI

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

VA TIR - TA - TAEG Introduzione

VA TIR - TA - TAEG Introduzione VA TIR - TA - TAEG Introduzone La presente trattazone s pone come obettvo d analzzare due prncpal crter d scelta degl nvestment e fnanzament per valutare la convenenza tra due o pù operazon fnanzare. S

Dettagli

Soluzione esercizio Mountbatten

Soluzione esercizio Mountbatten Soluzone eserczo Mountbatten I dat fornt nel testo fanno desumere che la Mountbatten utlzz un sstema d Actvty Based Costng. 1. Calcolo del costo peno ndustrale de tre prodott Per calcolare l costo peno

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

Questo è il secondo di una serie di articoli, di

Questo è il secondo di una serie di articoli, di DENTRO LA SCATOLA Rubrca a cura d Fabo A. Schreber Il Consglo Scentfco della rvsta ha pensato d attuare un nzatva culturalmente utle presentando n ogn numero d Mondo Dgtale un argomento fondante per l

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

Concetti principale della lezione precedente

Concetti principale della lezione precedente Corso d Statstca medca e applcata 6 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone precedente I concett prncpal che sono stat presentat sono: I fenomen probablstc RR OR ROC-curve Varabl

Dettagli

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz LEZIONE e 3 La teora della selezone d portafoglo d Markowtz Unverstà degl Stud d Bergamo Premessa Unverstà degl Stud d Bergamo Premessa () È puttosto frequente osservare come gl nvesttor tendano a non

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model Rcerca Operatva e Logstca Dott. F.Carrabs e Dott.ssa M.Gentl Modell per la Logstca: Sngle Flow One Level Model Mult Flow Two Level Model Modell d localzzazone nel dscreto Modell a Prodotto Sngolo e a Un

Dettagli

Capitolo 2 Dati e Tabelle

Capitolo 2 Dati e Tabelle Captolo 2 Dat e Tabelle La Descrzone della Popolazone La descrzone d una popolazone passa attraverso due fas: 1. la formazone de dat statstc 2. la sntes de dat La formazone del dato statstco prevede: ()

Dettagli

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi Regressone Multpla e Regressone Logstca: concett ntroduttv ed esemp I Edzone ottobre 014 Vncenzo Paolo Senese vncenzopaolo.senese@unna.t Indce Note prelmnar alla I edzone 1 Regressone semplce e multpla

Dettagli

Programmazione e Controllo della Produzione. Analisi dei flussi

Programmazione e Controllo della Produzione. Analisi dei flussi Programmazone e Controllo della Produzone Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Lo rsolvo con la smulazone? Sarebbe

Dettagli

Allegato A. Modello per la stima della produzione di una discarica gestita a bioreattore

Allegato A. Modello per la stima della produzione di una discarica gestita a bioreattore Modello per la stma della produzone d una dscarca gestta a boreattore 1 Produzone d Bogas Nella letteratura tecnca sono stat propost dvers modell per stmare la produzone d bogas sulla base della qualtà

Dettagli

Il patrimonio informativo aziendale come supporto alle attività di marketing

Il patrimonio informativo aziendale come supporto alle attività di marketing Unverstà degl Stud d RomaTre - Facoltà d Economa Corso d Rcerche d Marketng Il patrmono nformatvo azendale come supporto alle attvtà d marketng ng. Stefano Cazzella stefano.cazzella@datamat.t Agenda La

Dettagli

DECRETA. ART. 3 Il compenso per l attività di collaborazione è fissato in 1.095,00 esente dall imposta sul reddito delle persone fisiche.

DECRETA. ART. 3 Il compenso per l attività di collaborazione è fissato in 1.095,00 esente dall imposta sul reddito delle persone fisiche. BANDO PER n. 64 BORSE DI COLLABORAZIONE PER IL SUPPORTO PRESSO IL C.I.A.O. DELL UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA NEL PERIODO DA SETTEMBRE 2010 A FINE GENNAIO 2011 000280 IL RETTORE VISTO VISTO

Dettagli

Dove RF è la rendita catastale del fabbricato e f (RF ) la funzione che associa l indice economico del fabbricato alla rendita catastale.

Dove RF è la rendita catastale del fabbricato e f (RF ) la funzione che associa l indice economico del fabbricato alla rendita catastale. 4.4.2. Indc economc L ndce d natura economca, n base a quanto prevsto dalla lettera b), del comma 2 dell artcolo 36 della legge regonale deve essere rferto a reddt catastal rvalutat. S ha pertanto che:

Dettagli

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno Unverstà degl Stud d Cassno, Anno accademco 004-005 Corso d Statstca, Pro. M. Furno Eserctazone del 5//005 dott. Claudo Conversano Eserczo Ad un certo tavolo d un casnò s goca lancando un dado. Il goco

Dettagli

I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE

I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE Facoltà d Economa Valutazone de prodott e dell mpresa d asscurazone I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE Clauda Colucc Letza Monno Gordano Caporal Martna Ragg I Modell Multstato sono un

Dettagli

Adattamento di una relazione funzionale ai dati sperimentali

Adattamento di una relazione funzionale ai dati sperimentali Adattamento d una relazone 1 funzonale a dat spermental Sno ad ora abbamo vsto come può essere stmato, con un certo lvello d confdenza, l valore vero d una grandezza fsca (dretta o dervata) con l suo ntervallo

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE UNA RASSEGNA SUI METODI DI STIMA DEL VALUE at RISK (VaR) Chara Pederzol - Costanza Torrcell Dpartmento d Economa Poltca - Unverstà degl Stud d Modena e Reggo Emla Marzo 999 INDICE Introduzone. Il concetto

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

Economia del Settore Pubblico 97. Economia del Settore Pubblico 99. Quale indice di diseguaglianza usare? il rapporto interdecilico PROBLEMA:

Economia del Settore Pubblico 97. Economia del Settore Pubblico 99. Quale indice di diseguaglianza usare? il rapporto interdecilico PROBLEMA: Economa del Settore Pubblco Laura Vc laura.vc@unbo.t www.dse.unbo.t/lvc/edsp_.htm LEZIONE 4 Rmn, 9 aprle 008 Economa del Settore Pubblco 96 I prncpal ndc d dseguaglanza: ndc d entropa generalzzata Isprata

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità alcolo delle Probabltà Quanto è possble un esto? La verosmglanza d un esto è quantfcata da un numero compreso tra 0 e. n partcolare, 0 ndca che l esto non s verfca e ndca che l esto s verfca senza dubbo.

Dettagli

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO GLI ERRORI SPERIMETALI ELLE MISURE DI LABORATORIO MISURA DI UA GRADEZZA FISICA S defnsce grandezza fsca una propretà de corp sulla quale possa essere eseguta un operazone d msura. Msurare una grandezza

Dettagli

Misura della distanza focale. di una lente convergente. Metodo di Bessel

Misura della distanza focale. di una lente convergente. Metodo di Bessel Zuccarello Francesco Laboratoro d Fsca II Msura della dstanza focale d una lente convergente Metodo d Bessel A.A. 003-004 Indce Introduzone..pag. 3 Presuppost Teorc.pag. 4 Anals de dat.pag. 8. Modo d operare...pag.

Dettagli

MODELLISTICA DI SISTEMI DINAMICI

MODELLISTICA DI SISTEMI DINAMICI CONTROLLI AUTOMATICI Ingegnera Gestonale http://www.automazone.ngre.unmore.t/pages/cors/controllautomatcgestonale.htm MODELLISTICA DI SISTEMI DINAMICI Ing. Federca Gross Tel. 059 2056333 e-mal: federca.gross@unmore.t

Dettagli