low-rank smoothing splines su domini con forma inusuale: approssimazioni nonparametriche per estuari e reti di fiumi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "low-rank smoothing splines su domini con forma inusuale: approssimazioni nonparametriche per estuari e reti di fiumi"

Transcript

1 eruga 13 gennao 2006 low-rank smoothng splnes su domn con forma nusuale: approssmazon nonparametrche per estuar e ret d fum M. Govanna Ranall Dpartmento d Economa, Fnanza e Statstca, Unverstà degl Stud d eruga In collaborazone con Jay Bredt e Haonan Wang, Colorado State Unversty Un rngrazamento partcolare ad Hal Walker, EA ed Ern eterson, CSU 1/28?

2 Un po d geografa! new hampshre colorado maryland 2/28?

3 roblema # 1 Estuaro del New Hampshre 97 st n cu la concentrazone d mercuro ne sedment è stata rlevata negl ann 2000/1 (dat NHNCA) e nel 2003 (dat NHDES) New Hampshre Estuary and Sample Locatons New Hampshre Klometers Sample Stes Mercury (Hg) Concentraton ug/g Estuary boundary 3/28?

4 roblema # 1 (segue) Relazone tra concentrazone d mercuro e dmensone del sedmento observed log(hg/siltclay) (2.445) - (1.520) (1.519) - (1.336) (1.335) - (1.218) (1.217) - (1.063) (1.062) - (0.851) (0.850) - (0.759) (0.758) - (0.512) (0.511) - (0.234) (0.233) Estuary Boundary Klometers /28?

5 roblema # 2 Rete d fum del Maryland 955 st dove varabl d natura chmca, fsca e bologca sono state rlevate negl ann /28?

6 Esgenze e roblem ESIGENZE Mappare quanttà d nteresse (nqunant, chmca delle acque) facendo predzon anche per st non osservat ossbltà d nserre covarate dverse dalle coordnate spazal 6/28?

7 Esgenze e roblem ESIGENZE Mappare quanttà d nteresse (nqunant, chmca delle acque) facendo predzon anche per st non osservat ossbltà d nserre covarate dverse dalle coordnate spazal Tecnche nonparametrche bvarate come le thn plate splnes ed l krgng fornscono mappe che usano strutture d covaranza che dpendono dalla dstanza Eucldea fra st 6/28?

8 Esgenze e roblem ESIGENZE Mappare quanttà d nteresse (nqunant, chmca delle acque) facendo predzon anche per st non osservat ossbltà d nserre covarate dverse dalle coordnate spazal Tecnche nonparametrche bvarate come le thn plate splnes ed l krgng fornscono mappe che usano strutture d covaranza che dpendono dalla dstanza Eucldea fra st ROBLEMI I domn hanno forma rregolare La dstanza Eucldea potrebbe non essere l modo mglore per msurare la smlartà fra st Impegare dstanze non-eucldee nel krgng non garantsce matrc d covaranza defnte postve (Rathbun, 1998; Gardner et al., 2003) 6/28?

9 Low-rank thn plate splnes LTS I dat degl esemp consderat hanno forma (x, y ), per = 1,..., N, con x coordnate geografche e y valor della varable d nteresse. Le tecnche nonparametrche bvarate potzzano che y = f(x ) + ε, (1) con f( ) funzone bvarata non specfcata a valor real e gl error sono tal che E(ε) = 0 e V (ε) = σ 2 εi. 7/28?

10 Low-rank thn plate splnes LTS I dat degl esemp consderat hanno forma (x, y ), per = 1,..., N, con x coordnate geografche e y valor della varable d nteresse. Le tecnche nonparametrche bvarate potzzano che y = f(x ) + ε, (1) con f( ) funzone bvarata non specfcata a valor real e gl error sono tal che E(ε) = 0 e V (ε) = σ 2 εi. Ruppert et al. (2003) nvocano l uso della rappresentazone attraverso modell ad effett mst e a basso rango d questo problema per 1. accelerare e facltare l ft de modell attraverso l software svluppato per modell mst 2. nserre altre covarate nella parte fssa (parametrca varabl quanttatve contnue o fattor) o nella parte casuale (nonparametrca modell addtv o altr effett casual) 7/28?

11 LTS: l modello La rappresentazone con modell mst del modello (1) è data da y = Xβ + Zu + ε, (2) 8/28?

12 LTS: l modello La rappresentazone con modell mst del modello (1) è data da dove y = (y 1,..., y N ) T e X = [1 x ] 1N y = Xβ + Zu + ε, (2) Z contene T N funzon base radal (radal bass) per l approssmazone della struttura non lneare d f( ) u t.c. E(u) = 0, V (u) = σ 2 ui sono effett casual ndpendent da ε Questo tpo d modello può essere fttato mpegando ROC MIXED n SAS o la funzone lme() n R ed Splus 8/28?

13 La matrce Z Z = [ ] [ ] 1/2 C( x, κ t E ) C( κ 1N t, κ t E ), (3) 1t,t 1tT T 9/28?

14 La matrce Z Z = [ ] [ ] 1/2 C( x, κ t E ) C( κ 1N t, κ t E ), (3) 1t,t 1tT T dove κ 1,..., κ T è un sottnseme d st dett nod (knots, v. prossmo lucdo) E denota la dstanza Eucldea la funzone C è data da C(r) = r 2 log r 9/28?

15 La matrce Z Z = [ ] [ ] 1/2 C( x, κ t E ) C( κ 1N t, κ t E ), (3) 1t,t 1tT T dove κ 1,..., κ T è un sottnseme d st dett nod (knots, v. prossmo lucdo) E denota la dstanza Eucldea la funzone C è data da C(r) = r 2 log r SE T = N nod osservazon e ottenamo l caso a rango peno (Thn plate splnes) 9/28?

16 La matrce Z Z = [ ] [ ] 1/2 C( x, κ t E ) C( κ 1N t, κ t E ), (3) 1t,t 1tT T dove κ 1,..., κ T è un sottnseme d st dett nod (knots, v. prossmo lucdo) E denota la dstanza Eucldea la funzone C è data da C(r) = r 2 log r SE T = N nod osservazon e ottenamo l caso a rango peno (Thn plate splnes) SE T = N & C(r) è una qualche funzone d correlazone tpo Matérn, esponenzale, gaussana Krgng a rango peno 9/28?

17 Nod 2 problem: quant & dove QUANTI a occho: 1 ogn 3-4 osservazon, ma ma pù d 100. DOVE grgla rettangolare, grgla regolare solo sul domno, space fllng desgn (FUNFITS n Splus e FIELDS n R computano quest algortm) rectangular lattce regular grd on the doman space fllng desgn obs knots /28?

18 redzon Una volta che le stme de coeffcent β e le predzon delle varabl u sono ottenute attraverso massma verosmglanza ML o massma verosmglanza rstretta REML, valor predett per st osservat sono dat da ŷ = X ˆβ + Zû 11/28?

19 redzon Una volta che le stme de coeffcent β e le predzon delle varabl u sono ottenute attraverso massma verosmglanza ML o massma verosmglanza rstretta REML, valor predett per st osservat sono dat da ŷ = X ˆβ + Zû I comand Splus per fare tutto questo sono semplcemente ft<-lme(y -1+X, random=pdident( -1+Z)) beta<-ft$coef$fxed u<-ft$coef$random pred<-x%*%beta+z%*%u 11/28?

20 redzon Una volta che le stme de coeffcent β e le predzon delle varabl u sono ottenute attraverso massma verosmglanza ML o massma verosmglanza rstretta REML, valor predett per st osservat sono dat da ŷ = X ˆβ + Zû I comand Splus per fare tutto questo sono semplcemente ft<-lme(y -1+X, random=pdident( -1+Z)) beta<-ft$coef$fxed u<-ft$coef$random pred<-x%*%beta+z%*%u redzon n st dvers da quell osservat possono essere fatte aggungendo altre rghe alle matrc X and Z. 11/28?

21 Mappa del mercuro ottenuta con LTS LTS log(hg/siltclay) (1.410) - (1.182) (1.181) - (1.149) (1.148) - (1.098) (1.097) - (0.965) (0.964) - (0.805) (0.804) - (0.720) (0.719) - (0.638) (0.637) - (0.516) (0.515) - (0.358) (0.357) Estuary Boundary Klometers I dat osservat 3 12/28?

22 Abbamo davvero bsogno d una metrca dversa?? smulazone Monte Carlo: funzone vera 13/28?

23 Rsultat: errore medo d predzone 14/28?

24 GLTS: LTS Geodetche Cambare la msura d dstanza Eucldea nella matrce Z n (3) con la DISTANZA GEODETICA = IL ERCORSO IÙ BREVE CHE UN ESCE NUOTEREBBE 15/28?

25 GLTS: LTS Geodetche Cambare la msura d dstanza Eucldea nella matrce Z n (3) con la DISTANZA GEODETICA = IL ERCORSO IÙ BREVE CHE UN ESCE NUOTEREBBE Z g = [ ] [ ] 1/2 C( x, κ t G ) C( κ 1N t, κ t G ), 1t,t 1tT T 15/28?

26 GLTS: LTS Geodetche Cambare la msura d dstanza Eucldea nella matrce Z n (3) con la DISTANZA GEODETICA = IL ERCORSO IÙ BREVE CHE UN ESCE NUOTEREBBE Z g = [ ] [ ] 1/2 C( x, κ t G ) C( κ 1N t, κ t G ), 1t,t 1tT T La dstanza geodetca è stmata attraverso l algortmo d Floyd: 1 s determna una grgla ftta d punt nel domno; 2 s costrusce un grafo n cu vertc sono quest punt; 3 cascun vertce è collegato agl nn st pù vcn; 4 s determna l percorso pù breve fra due st e s stma la dstanza geodetca come la lunghezza d questo percorso. 15/28?

27 L algortmo d Floyd per la parte Nord dell estuaro 8.2 x x x x /28?

28 La ma rcetta pass per fttare GLTS 1. Selezone de nod attraverso uno space fllng desgn. 17/28?

29 La ma rcetta pass per fttare GLTS 1. Selezone de nod attraverso uno space fllng desgn. 2. Stma della dstanza geodetca fra una grgla densa d punt del domno con l alg d Floyd: partre con nn = 3 e aumentare nn fnché tutt vertc sano conness. 17/28?

30 La ma rcetta pass per fttare GLTS 1. Selezone de nod attraverso uno space fllng desgn. 2. Stma della dstanza geodetca fra una grgla densa d punt del domno con l alg d Floyd: partre con nn = 3 e aumentare nn fnché tutt vertc sano conness. 3. Calcolo delle matrc X e Z per tutt st per qual s voglono predzon. 17/28?

31 La ma rcetta pass per fttare GLTS 1. Selezone de nod attraverso uno space fllng desgn. 2. Stma della dstanza geodetca fra una grgla densa d punt del domno con l alg d Floyd: partre con nn = 3 e aumentare nn fnché tutt vertc sano conness. 3. Calcolo delle matrc X e Z per tutt st per qual s voglono predzon. 4. Calcolo delle matrc X and the Z g per st osservat come sottonseme d rghe d X e Z. 17/28?

32 La ma rcetta pass per fttare GLTS 1. Selezone de nod attraverso uno space fllng desgn. 2. Stma della dstanza geodetca fra una grgla densa d punt del domno con l alg d Floyd: partre con nn = 3 e aumentare nn fnché tutt vertc sano conness. 3. Calcolo delle matrc X e Z per tutt st per qual s voglono predzon. 4. Calcolo delle matrc X and the Z g per st osservat come sottonseme d rghe d X e Z. 5. Ft d modell mst. roblem: nsermento d altre covarate nfluenza la dmensone d X ; test d sgnfcatvtà delle covarate sono condotte nel modo classco; test d sgnfcatvtà delle component casual (.e. componente spazale), se fatt usando la teora asntotca de modell mst possono essere molto conservatv. 17/28?

33 Mappa del mercuro ottenuta con GLTS GLTS log(hg/siltclay) (1.410) - (1.182) (1.181) - (1.149) (1.148) - (1.098) (1.097) - (0.965) (0.964) - (0.805) (0.804) - (0.720) (0.719) - (0.638) (0.637) - (0.516) (0.515) - (0.358) (0.357) Estuary Boundary Klometers /28?

34 GLTS vs LTS GLTS log(hg/siltclay) LTS log(hg/siltclay) (1.410) - (1.182) (1.181) - (1.149) (1.148) - (1.098) (1.097) - (0.965) (0.964) - (0.805) (0.804) - (0.720) (0.719) - (0.638) (0.637) - (0.516) (0.515) - (0.358) (0.357) Estuary Boundary Klometers Klometers /28?

35 Come volano corv o come nuotano pesc?? 20/28?

36 Come volano corv o come nuotano pesc?? S ftt un modello con ambedue gl effett e po s test la sgnfcatvtà y = Xβ + Zu + Z g u g + ε dove Cov ε u u g = σ 2 εi σ 2 ui σ 2 gi La stma delle component d varanza può ancora essere ottenuta va REML; l test della loro sgnfcatvtà è condotto attraverso un bootstrap nonparametrco (Opsomer et al., 2005). 20/28?

37 Test bootstrap Modello test per logrelk p-value β 0 + Zu + Z g u g (modello completo) β 0 + Zu σg 2 = 0 (non come nuotano pesc) < β 0 + Z g u g σu 2 = 0 (non come volano corv) β 0 σg 2 = σu 2 = 0 (nessuna struttura spazale) < La struttura spazale suggerta da dat è quella come nuotano pesc 21/28?

38 Applcazone alla rete d fum del Maryland ANC e la capacta che l acqua ha d tamponare l acdo pccolo e male! Observed ANC (319.70) Streams / Klometers L2 3M 33 22?

39 roblem nuov rspetto all estuaro 1. Dmensone ntrnseca d una rete d fum è dversa da 2 occorre mpegare una dversa matrce Z n. 23/28?

40 roblem nuov rspetto all estuaro 1. Dmensone ntrnseca d una rete d fum è dversa da 2 occorre mpegare una dversa matrce Z n. 2. Dstanze drologche non possono essere calcolate effcentemente con l algortmo d Floyd strument GIS (Geographc Informaton System). 23/28?

41 roblem nuov rspetto all estuaro 1. Dmensone ntrnseca d una rete d fum è dversa da 2 occorre mpegare una dversa matrce Z n. 2. Dstanze drologche non possono essere calcolate effcentemente con l algortmo d Floyd strument GIS (Geographc Informaton System). 3. GIS è necessaro anche per ottenere altre covarate e dstanze lungo fum per st dvers da quell osservat. 23/28?

42 roblem nuov rspetto all estuaro 1. Dmensone ntrnseca d una rete d fum è dversa da 2 occorre mpegare una dversa matrce Z n. 2. Dstanze drologche non possono essere calcolate effcentemente con l algortmo d Floyd strument GIS (Geographc Informaton System). 3. GIS è necessaro anche per ottenere altre covarate e dstanze lungo fum per st dvers da quell osservat. 4. Fnora abbamo modellato ANC, nserto sa msure d smlartà basate sulla dstanza Eucldea che sulla dstanza Idrologca Asmmetrca (come scorre l acqua) e testato quale delle due è pù suggerta da dat attraverso test bootstrap nonparametrc. 23/28?

43 Msure d dstanza *sgnfcatve* per la chmca dell acqua lungo una rete d fum 24/28?

44 -splnes per una rete d fum - un accenno 1. S defnsce una penalzed splne ad una dmensone (Rupper, Wand & Carroll, 2003) lungo la rete d fum. 25/28?

45 -splnes per una rete d fum - un accenno 1. S defnsce una penalzed splne ad una dmensone (Rupper, Wand & Carroll, 2003) lungo la rete d fum. 2. NOTA: se s usano funzon bas d tpo lnear troncate, allora la matrce Z n concde con la matrce d dstanze drologche asmmetrche fra st ed un nseme d nod. 25/28?

46 -splnes per una rete d fum - un accenno 1. S defnsce una penalzed splne ad una dmensone (Rupper, Wand & Carroll, 2003) lungo la rete d fum. 2. NOTA: se s usano funzon bas d tpo lnear troncate, allora la matrce Z n concde con la matrce d dstanze drologche asmmetrche fra st ed un nseme d nod. 3. I nod sono stat scelt come tutt que st con almeno 4 st a monte (verso la sorgente, upstream). 25/28?

47 Modell per ANC e test bootstrap Covarate sgnfcatve nserte nella parte fssa del modello (nella matrce X): % pascolo, % argn boscos, % bassa denstà urbana nel bacno superore al sto e anno d rlevazone 26/28?

48 Modell per ANC e test bootstrap Covarate sgnfcatve nserte nella parte fssa del modello (nella matrce X): % pascolo, % argn boscos, % bassa denstà urbana nel bacno superore al sto e anno d rlevazone Modello test per p-value Xβ + Zu + Z n u n (modello completo) Xβ + Zu σ 2 n = 0 (no struttura dro. asmm.) Xβ + Z n u n σ 2 u = 0 (no struttura Eucldea) < Xβ σ 2 n = σ 2 u = 0 (no struttura spazale) < La struttura d smlartà suggerta da dat n questo caso è basata sulla dstanza Eucldea 26/28?

49 Rassumendo È possble trattare domn con forme non regolar. 2. Il contesto delle splnes penalzzate (sa b- che un-varate) permette d nserre faclmente covarate nel modello. 3. Questo contesto permette anche l mpego d tecnche bootstrap per test. 4. Altre applcazon: msure d dstanza funzonal, domn con *buch* 27/28?

50 Rassumendo È possble trattare domn con forme non regolar. 2. Il contesto delle splnes penalzzate (sa b- che un-varate) permette d nserre faclmente covarate nel modello. 3. Questo contesto permette anche l mpego d tecnche bootstrap per test. 4. Altre applcazon: msure d dstanza funzonal, domn con *buch* Cosa stamo facendo... Applcazone Lavoro con GIS per ottenere covarate e msure d dstanza Metodologa Formalzzare la p-splne per la rete d fum e defnre un modello per dstanze drologche smmetrche. 27/28?

51 Bblografa essenzale... e Graze! Cranceanu, C. and Ruppert, D. (2004), Lkelhood rato tests n lnear mxed models wth one varance component, J.R.S.S. B, 66, Gardner, B., Sullvan,.J. and Lembo, A.J.Jr (2003), redctng stream temperatures: geostatstcal model comparson usng alternatve dstance metrcs, Can. J. Fsh. Aquat. Sc., 60, Opsomer, J.D., Claeskens, G., Ranall, M.G., Kauermann, G., Bredt, F.J. (2005). Nonparametrc Small Area Estmaton Usng enalzed Splne Regresson. Rathbun, S.L. (1998), Spatal modellng n rregularly shaped regons: krgng estuares, Envronmetrcs, 9, Ruppert, D., Wand, M.. and Carroll, R. (2003), Semparametrc Regresson. Cambrdge Unversty ress, Cambrdge, New York. Wang H., Ranall M.G. (2005) Low-rank smoothng splnes for complex domans, Manuscrpt. The work reported here was developed under the STAR Research Assstance Agreement CR awarded by the U.S. Envronmental rotecton Agency (EA) to Colorado State Unversty. Ths presentaton has not been formally revewed by EA. The vews expressed here are solely those of the presenter and STARMA. EA does not endorse any products or commercal servces mentoned n ths presentaton. 28/28?

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Introduzione al Machine Learning

Introduzione al Machine Learning Introduzone al Machne Learnng Note dal corso d Machne Learnng Corso d Laurea Magstrale n Informatca aa 2010-2011 Prof Gorgo Gambos Unverstà degl Stud d Roma Tor Vergata 2 Queste note dervano da una selezone

Dettagli

STATISTICA DESCRITTIVA CON EXCEL

STATISTICA DESCRITTIVA CON EXCEL STATISTICA DESCRITTIVA CON EXCEL Corso d CPS - II parte: Statstca Laurea n Informatca Sstem e Ret 2004-2005 1 Obettv della lezone Introduzone all uso d EXCEL Statstca descrttva Utlzzo dello strumento:

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

MODELLI PER DATI SU RETICOLO (LATTICE DATA)

MODELLI PER DATI SU RETICOLO (LATTICE DATA) Schema degl argoment trattat MODELLI PER DATI SU RETICOLO (LATTICE DATA) -Indc global d autocorrelazone; -Defnzone d strutture d vcnato -Modell SAR -Modell CAR 2 Dat su retcolo S ntendono dat su aree (regolar

Dettagli

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente Unverstà d Macerata Facoltà d Scenze Poltche - Anno accademco - La Regressone Varable ndpendente (data) Varable dpendente Dpendenza funzonale (o determnstca): f ; Da un punto d vsta analtco, valor della

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA IL PROBLEMA Supponamo d voler studare l effetto d 4 dverse dete su un campone casuale d 4

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura orma UI CEI EV 3005: Guda all'espressone dell'ncertezza d msura L obettvo d una msurazone è quello d determnare l valore del msurando, n altre parole della grandezza da msurare. In generale, però, l rsultato

Dettagli

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz LEZIONE e 3 La teora della selezone d portafoglo d Markowtz Unverstà degl Stud d Bergamo Premessa Unverstà degl Stud d Bergamo Premessa () È puttosto frequente osservare come gl nvesttor tendano a non

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model Rcerca Operatva e Logstca Dott. F.Carrabs e Dott.ssa M.Gentl Modell per la Logstca: Sngle Flow One Level Model Mult Flow Two Level Model Modell d localzzazone nel dscreto Modell a Prodotto Sngolo e a Un

Dettagli

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1 APAT Agenza per la Protezone dell Ambente e per Servz Tecnc Dpartmento Dfesa del Suolo / Servzo Geologco D Itala Servzo Tecnologe del sto e St Contamnat * * * Nota nerente l calcolo della concentrazone

Dettagli

Concetti principale della lezione precedente

Concetti principale della lezione precedente Corso d Statstca medca e applcata 6 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone precedente I concett prncpal che sono stat presentat sono: I fenomen probablstc RR OR ROC-curve Varabl

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

CAPITOLO 3 Incertezza di misura Pagina 26

CAPITOLO 3 Incertezza di misura Pagina 26 CAPITOLO 3 Incertezza d msura Pagna 6 CAPITOLO 3 INCERTEZZA DI MISURA Le operazon d msurazone sono tutte nevtablmente affette da ncertezza e coè da un grado d ndetermnazone con l quale l processo d msurazone

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

Adattamento di una relazione funzionale ai dati sperimentali

Adattamento di una relazione funzionale ai dati sperimentali Adattamento d una relazone 1 funzonale a dat spermental Sno ad ora abbamo vsto come può essere stmato, con un certo lvello d confdenza, l valore vero d una grandezza fsca (dretta o dervata) con l suo ntervallo

Dettagli

Apprendimento Automatico e IR: introduzione al Machine Learning

Apprendimento Automatico e IR: introduzione al Machine Learning Apprendmento Automatco e IR: ntroduzone al Machne Learnng MGRI a.a. 2007/8 A. Moschtt, R. Basl Dpartmento d Informatca Sstem e produzone Unverstà d Roma Tor Vergata mal: {moschtt,basl}@nfo.unroma2.t 1

Dettagli

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione Captolo 6 Rsultat pag. 468 a) Osmannoro b) Case Passern c) Ponte d Maccone Fgura 6.189. Confronto termovalorzzatore-sorgent dffuse per l PM 10. Il contrbuto del termovalorzzatore alle concentrazon d PM

Dettagli

lxmi.mi.infn.it/~camera/silsis/laboratorio-1/2-statistica.ppt http://www2.dm.unito.it/paginepersonali/zucca/index.htm Misura:

lxmi.mi.infn.it/~camera/silsis/laboratorio-1/2-statistica.ppt http://www2.dm.unito.it/paginepersonali/zucca/index.htm Misura: Elaborazone de dat geochmc e cenn d statstca lm.m.nfn.t/~camera/slss/laboratoro-1/-statstca.ppt http://www.dm.unto.t/pagnepersonal/zucca/nde.htm Msura: Espressone quanttatva del rapporto fra una grandezza

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

DBMS multimediali A L B E R T O B E L U S S I B A S I D I D A T I A N N O A C C A D E M I C O 2 0 1 1 / 2 0 1 2

DBMS multimediali A L B E R T O B E L U S S I B A S I D I D A T I A N N O A C C A D E M I C O 2 0 1 1 / 2 0 1 2 DBMS multmedal A L B E R T O B E L U S S I B A S I D I D A T I A N N O A C C A D E M I C O 2 0 1 1 / 2 0 1 2 DBMS multmedal Def: Sono DBMS che consentono d memorzzare e recuperare dat d natura multmedale:

Dettagli

Fotogrammetria. O centro di presa. fig.1 Geometria della presa fotogrammetrica

Fotogrammetria. O centro di presa. fig.1 Geometria della presa fotogrammetrica Fotogrammetra Scopo della fotogrammetra è la determnazone delle poszon d punt nello spazo fsco a partre dalla msura delle poszon de punt corrspondent su un mmagne fotografca. Ovvamente, affnché questo

Dettagli

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca Eserctazon del corso d Relazon tra varabl Gancarlo Manz Facoltà d Socologa Unverstà degl Stud d Mlano-Bcocca e-mal: gancarlo.manz@statstca.unmb.t Terza eserctazone Mlano, 8 febbrao 7 SOMMARIO TERZA ESERCITAZIONE

Dettagli

Tutti gli strumenti vanno tarati

Tutti gli strumenti vanno tarati L'INCERTEZZA DI MISURA Anta Calcatell I.N.RI.M S eseguono e producono msure per prendere delle decson sulla base del rsultato ottenuto, come per esempo se bloccare l traffco n funzone d msure d lvello

Dettagli

Simulazione seconda prova Tema assegnato all esame di stato per l'abilitazione alla professione di geometra, 2006

Simulazione seconda prova Tema assegnato all esame di stato per l'abilitazione alla professione di geometra, 2006 Smulazone seconda prova Tema assegnato all esame d stato per l'abltazone alla professone d geometra, 006 roposte per lo svolgmento pubblcate sul ollettno SIFET (Socetà Italana d Fotogrammetra e Topografa)

Dettagli

PARTE II LA CIRCOLAZIONE IDRICA

PARTE II LA CIRCOLAZIONE IDRICA PARTE II LA CIRCOLAZIONE IDRICA La acque d precptazone atmosferca che gungono al suolo scorrono n superfce o penetrano n profondtà dando orgne alla crcolazone, la quale subsce l nfluenza d molt fattor

Dettagli

La taratura degli strumenti di misura

La taratura degli strumenti di misura La taratura degl strument d msura L mportanza dell operazone d taratura nasce dall esgenza d rendere l rsultato d una msura rferble a campon nazonal od nternazonal del msurando n questone affnché pù msure

Dettagli

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM)

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM) Identfcazone: SIT/Tec-012/05 Revsone: 0 Data 2005-06-06 Pagna 1 d 7 Annotazon: Il presente documento fornsce comment e lnee guda sull applcazone della ISO 7500-1 COPIA CONTROLLATA N CONSEGNATA A: COPIA

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

MODELLI STOCASTICI DELLA CLASSE GLM

MODELLI STOCASTICI DELLA CLASSE GLM MODELLI STOCASTICI DELLA CLASSE GLM S possono consderare GLM con dstrbuzone specfcata o modell con quas-verosmglanza, quest ultm sono modell d tpo semparametrco. Illustramo l loro uso come: strumento d

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

Misure di dispersione. Introduzione. Statistica descrittiva. Distribuzioni di probabilità e funzioni di ripartizione. Indici di posizione

Misure di dispersione. Introduzione. Statistica descrittiva. Distribuzioni di probabilità e funzioni di ripartizione. Indici di posizione UNIVERSITA DEL SALENTO CORSO DI LAUREA IN FISICA (a.a. 007/008) Corso d Laboratoro II (Prof. Antono D INNOCENZO) ESERCITAZIONE DI STATISTICA * Lo scopo d questa eserctazone è quello d comncare ad utlzzare

Dettagli

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi Regressone Multpla e Regressone Logstca: concett ntroduttv ed esemp I Edzone ottobre 014 Vncenzo Paolo Senese vncenzopaolo.senese@unna.t Indce Note prelmnar alla I edzone 1 Regressone semplce e multpla

Dettagli

Test delle ipotesi Parte 2

Test delle ipotesi Parte 2 Test delle potes arte Test delle potes sulla dstrbuzone: Introduzone Test χ sulla dstrbuzone b Test χ sulla dstrbuzone: Eserczo Test delle potes sulla dstrbuzone Molte concluson tratte nell nferenza parametrca

Dettagli

DATA MINING E CLUSTERING

DATA MINING E CLUSTERING Captolo 4 DATA MINING E CLUSTERING 4. Che cos'è l Data Mnng Per Data Mnng s'ntende quel processo d estrazone d conoscenza da banche dat, tramte l'applcazone d algortm che ndvduano le assocazon non mmedatamente

Dettagli

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO GLI ERRORI SPERIMETALI ELLE MISURE DI LABORATORIO MISURA DI UA GRADEZZA FISICA S defnsce grandezza fsca una propretà de corp sulla quale possa essere eseguta un operazone d msura. Msurare una grandezza

Dettagli

Elementi di linear discriminant analysis per la classificazione e il posizionamento nelle ricerche di marketing

Elementi di linear discriminant analysis per la classificazione e il posizionamento nelle ricerche di marketing http://www.mauroennas.eu Element d lnear dscrmnant analyss per la classfcazone e l poszonamento nelle rcerche d maretng Mauro Ennas Lnear Dscrmnant Analyss http://www.mauroennas.eu ADL_fnale_confronto_Ecel.sav

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE UNA RASSEGNA SUI METODI DI STIMA DEL VALUE at RISK (VaR) Chara Pederzol - Costanza Torrcell Dpartmento d Economa Poltca - Unverstà degl Stud d Modena e Reggo Emla Marzo 999 INDICE Introduzone. Il concetto

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Anals statstca d dat bomedc Analyss of bologcalsgnals I Parte Inferenza statstca Agostno Accardo (accardo@unts.t) Master n Ingegnera Clnca LM Neuroscenze 2013-2014 e segg. Altman Practcal statstcs for

Dettagli

Induzione elettromagnetica

Induzione elettromagnetica Induzone elettromagnetca L esperenza d Faraday L'effetto d produzone d corrente elettrca n un crcuto prvo d generatore d tensone fu scoperto dal fsco nglese Mchael Faraday nel 83. Egl studò la relazone

Dettagli

31/03/2012. Collusione (Cabral cap.8 PRN capp. 13-14) Il modello standard. Collusione nel modello di Bertrand. Collusione nel modello di Bertrand

31/03/2012. Collusione (Cabral cap.8 PRN capp. 13-14) Il modello standard. Collusione nel modello di Bertrand. Collusione nel modello di Bertrand Collusone (Cabral cap.8 PRN capp. 13-14) Accord tact o esplct per aumentare l potere d mercato e pratcare prezz pù elevat rspetto all equlbro non cooperatvo corrspondente Esste un vantaggo dalla collusone

Dettagli

RETI TELEMATICHE Lucidi delle Lezioni Capitolo VII

RETI TELEMATICHE Lucidi delle Lezioni Capitolo VII Prof. Guseppe F. Ross E-mal: guseppe.ross@unpv.t Homepage: http://www.unpv.t/retcal/home.html UNIVERSITA' DEGLI STUDI DI PAVIA Facoltà d Ingegnera A.A. 2011/12 - I Semestre - Sede PV RETI TELEMATICHE Lucd

Dettagli

Dai circuiti ai grafi

Dai circuiti ai grafi Da crcut a graf Il grafo è una schematzzazone grafca semplfcata che rappresenta le propretà d nterconnessone del crcuto ad esso assocato Il grafo è costtuto da un nseme d nod e d lat Se lat sono orentat

Dettagli

Hansard OnLine. Unit Fund Centre Guida

Hansard OnLine. Unit Fund Centre Guida Hansard OnLne Unt Fund Centre Guda Sommaro Pagna Introduzone al Unt Fund Centre (UFC) 3 Uso de fltr per la selezone de fond 4-5 Lavorare con rsultat del fltro 6 Lavorare con rsultat del fltro - Prezz 7

Dettagli

LA RETE DINAMICA NAZIONALE (RDN) ED IL NUOVO SISTEMA DI RIFERIMENTO ETRF2000

LA RETE DINAMICA NAZIONALE (RDN) ED IL NUOVO SISTEMA DI RIFERIMENTO ETRF2000 LA RETE DINAMICA NAZIONALE (RDN) ED IL NUOVO SISTEMA DI RIFERIMENTO ETRF2000 L. Baron, F. Caul, D. Donatell, G. Farolf, R. Maserol, Servzo Geodetco - Isttuto geografco Mltare - Frenze 1. Premessa La Rete

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

Strutture deformabili torsionalmente: analisi in FaTA-E

Strutture deformabili torsionalmente: analisi in FaTA-E Strutture deformabl torsonalmente: anals n FaTA-E Il comportamento dsspatvo deale è negatvamente nfluenzato nel caso d strutture deformabl torsonalmente. Nelle Norme Tecnche cò vene consderato rducendo

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità alcolo delle Probabltà Quanto è possble un esto? La verosmglanza d un esto è quantfcata da un numero compreso tra 0 e. n partcolare, 0 ndca che l esto non s verfca e ndca che l esto s verfca senza dubbo.

Dettagli

SOFTWARE NBSI (NEIGHBOURHOOD BASED STRUCTURAL INDICES)

SOFTWARE NBSI (NEIGHBOURHOOD BASED STRUCTURAL INDICES) SOFTWARE NBSI (NEIGHBOURHOOD BASED STRUCTURAL INDICES) DIPARTIMENTO DI SCIENZE DELL AMBIENTE FORESTALE E DELLE SUE RISORSE (DISAFRI) UNIVERSITÀ DEGLI STUDI DELLA TUSCIA - Va San Camllo de Lells, 000 Vterbo

Dettagli

Soluzioni per lo scarico dati da tachigrafo innovativi e facili da usare. http://dtco.it

Soluzioni per lo scarico dati da tachigrafo innovativi e facili da usare. http://dtco.it Soluzon per lo scarco dat da tachgrafo nnovatv e facl da usare http://dtco.t Downloadkey II Moble Card Reader Card Reader Downloadtermnal DLD Short Range and DLD Wde Range Qual soluzon ho a dsposzone per

Dettagli

PREVEDERE IL CHURN: UN APPROCCIO LONGITUDINALE

PREVEDERE IL CHURN: UN APPROCCIO LONGITUDINALE UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI SCIENZE STATISTICHE CORSO DI LAUREA SPECIALISTICA IN SCIENZE STATISTICHE, ECONOMICHE, FINANZIARIE E AZIENDALI PREVEDERE IL CHURN: UN APPROCCIO LONGITUDINALE

Dettagli

Calibrazione. Lo strumento idealizzato

Calibrazione. Lo strumento idealizzato Calbrazone Come possamo fdarc d uno strumento? Abbamo bsogno d dentfcare l suo funzonamento n condzon controllate. L dentfcazone deve essere razonalmente organzzata e condvsa n termn procedural: s tratta

Dettagli

Grafico di una serie di dati sperimentali in EXCEL

Grafico di una serie di dati sperimentali in EXCEL Grafco d una sere d dat spermental n EXCEL 1. Inseramo sulla prma rga l ttolo che defnsce l contenuto del foglo. Po nseramo su un altra rga valor spermental della x e su quella successva valor della y.

Dettagli

Dati di tipo video. Indicizzazione e ricerca video

Dati di tipo video. Indicizzazione e ricerca video Corso d Laurea n Informatca Applcata Unverstà d Urbno Dat d tpo vdeo I dat vdeo sono generalmente rcch dal punto d vsta nformatvo. Sottottol (testo) Colonna sonora (audo parlato e/o musca) Frame (mmagn

Dettagli

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE GIOVANNI CRUPI, ANDREA DONATO SUMMARY. We characterze a set of

Dettagli

IMMAGINE RICONOSCIMENTO. 6.1 La densità di vegetazione: l indice NDVI DELLA VEGETAZIONE SULL I

IMMAGINE RICONOSCIMENTO. 6.1 La densità di vegetazione: l indice NDVI DELLA VEGETAZIONE SULL I CAPITOLO SESTO RICONOSCIMENTO DELLA VEGETAZIONE SULL I IMMAGINE QUICKBIRDIRD 6.1 La denstà d vegetazone: l ndce NDVI Allo scopo d caratterzzare la dstrbuzone della vegetazone sulle superfc d barena s è

Dettagli

6.1. Moody s KMV Credit Portfolio Manager

6.1. Moody s KMV Credit Portfolio Manager 6.. Moody s MV Credt Portfolo Manager 6... La struttura del modello L mpanto d Moody s MV (MMV) è costtuto dal modello d Merton e da un approcco d tpo fattorale per la stma delle correlazon. Attualmente,

Dettagli

Economia del Lavoro. Argomenti del corso

Economia del Lavoro. Argomenti del corso Economa del Lavoro Argoment del corso Studo del funzonamento del mercato del lavoro. In partcolare, l anals economca nerente l comportamento d: a) lavorator, b) mprese, c) sttuzon nel processo d determnazone

Dettagli

La beta diversità: tra statistica ed ecologia

La beta diversità: tra statistica ed ecologia La beta dverstà: tra statstca ed ecologa Carlo RICOTTA Unverstà d Roma La apenza Dpartmento d Bologa Vegetale E-mal: carlo.rcotta@unroma1.t Tre lvell d dverstà Dverstà alfa: è la dverstà d spece all nterno

Dettagli

Scelta dell Ubicazione. di un Impianto Industriale. Corso di Progettazione Impianti Industriali Prof. Sergio Cavalieri

Scelta dell Ubicazione. di un Impianto Industriale. Corso di Progettazione Impianti Industriali Prof. Sergio Cavalieri Scelta dell Ubcazone d un Impanto Industrale Corso d Progettazone Impant Industral Prof. Sergo Cavaler I fattor ubcazonal Cost d Caratterstche del Mercato Costruzone Energe Manodopera Trasport Matere Prme

Dettagli

9.6 Struttura quaternaria

9.6 Struttura quaternaria 9.6 Struttura quaternara L'ultmo lvello strutturale é la struttura quaternara. Non per tutte le protene è defnble una struttura quaternara. Infatt l esstenza d una struttura quaternara é condzonata alla

Dettagli

Il patrimonio informativo aziendale come supporto alle attività di marketing

Il patrimonio informativo aziendale come supporto alle attività di marketing Unverstà degl Stud d RomaTre - Facoltà d Economa Corso d Rcerche d Marketng Il patrmono nformatvo azendale come supporto alle attvtà d marketng ng. Stefano Cazzella stefano.cazzella@datamat.t Agenda La

Dettagli

Appunti delle lezioni di Laboratorio di Strumentazione e Misura

Appunti delle lezioni di Laboratorio di Strumentazione e Misura Sergo Frasca Appunt delle lezon d Laboratoro d Strumentazone e Msura Dpartmento d Fsca Unverstà d Roma La Sapenza Museo del Dpartmento d Fsca dell'unverstà La Sapenza Versone 5 ottobre 004 Versone aggornata

Dettagli

DALLA TEORIA DEGLI ERRORI AL TRATTAMENTO DEI DATI

DALLA TEORIA DEGLI ERRORI AL TRATTAMENTO DEI DATI Captolo - Dalla teora degl error al trattamento de dat DALLA TEORIA DEGLI ERRORI AL TRATTAMENTO DEI DATI LA MISURA DELLE GRANDEZZE Nel descrere fenomen, occorre da un lato elaborare de modell (coè delle

Dettagli

Costruzioni in c.a. Metodi di analisi

Costruzioni in c.a. Metodi di analisi Corso d formazone n INGEGNERIA SISICA Verres, 11 Novembre 16 Dcembre, 2011 Costruzon n c.a. etod d anals Alessandro P. Fantll alessandro.fantll@polto.t Verres, 18 Novembre, 2011 Gl argoment trattat 1.

Dettagli

I SINDACATI E LA CONTRATTAZIONE COLLETTIVA. Il ruolo economico del sindacato in concorrenza imperfetta, in cui:

I SINDACATI E LA CONTRATTAZIONE COLLETTIVA. Il ruolo economico del sindacato in concorrenza imperfetta, in cui: I IDACATI E LA COTRATTAZIOE COLLETTIVA Il ruolo economco del sndacato n concorrenza mperfetta, n cu: a) le mprese fssano prezz de ben n contest d concorrenza monopolstca (con extra-proftt); b) lavorator

Dettagli

Leggere i dati da file

Leggere i dati da file Esempo %soluzon d una equazone d secondo grado dsp('soluzon d a^+b+c') anput('damm l coeffcente a '); bnput('damm l coeffcente b '); cnput('damm l coeffcente c '); deltab^-4*a*c; f delta0 dsp('soluzon

Dettagli

Programmazione e Controllo della Produzione. Analisi dei flussi

Programmazione e Controllo della Produzione. Analisi dei flussi Programmazone e Controllo della Produzone Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Lo rsolvo con la smulazone? Sarebbe

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

Analisi e confronto tra metodi di regolarizzazione diretti per la risoluzione di problemi discreti mal-posti

Analisi e confronto tra metodi di regolarizzazione diretti per la risoluzione di problemi discreti mal-posti UNIVERSIA DEGLI SUDI DI CAGLIARI Facoltà d Ingegnera Elettronca Corso d Calcolo Numerco 1 A.A. 00/003 Anals e confronto tra metod d regolarzzazone drett per la rsoluzone d prolem dscret mal-post Docente:

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 lezione 22: 30 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 lezione 22: 30 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 22: 30 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/27? Eserczo Dmostrare che l equazone della frontera

Dettagli

Corrente elettrica e circuiti

Corrente elettrica e circuiti Corrente elettrca e crcut Generator d forza elettromotrce Intenstà d corrente Legg d Ohm esstenza e resstvtà esstenze n sere e n parallelo Effetto termco della corrente Legg d Krchhoff Corrente elettrca

Dettagli

Pianificazione dei Trasporti

Pianificazione dei Trasporti Unverstà degl Stud d Treste Facoltà d Ingegnera Corso d Panfcazone de Trasport Prof. Govann Longo Anno Accademco 2003-2004 APPUNTI d Panfcazone de Trasport Paolo Martns LA PIANIFICAZIONE DEI TRASPORTI

Dettagli

Corso di TRASPORTI E AMBIENTE. ing. Antonio Comi Ottobre 2012. Modelli di domanda

Corso di TRASPORTI E AMBIENTE. ing. Antonio Comi Ottobre 2012. Modelli di domanda Corso d TRASPORTI E AMBIENTE ng. Antono Com Ottobre 2012 Modell d domanda 1 Struttura del sstema d modell per la smulazone de sstem d trasporto OFFERTA DI INFRASTRUTTURE E SERVIZI DI TRASPORTO MODELLO

Dettagli

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm.

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm. Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE Prof. Daro Amodo d.amodo@unvpm.t Ing. Ganluca Chappn g.chappn@unvpm.t http://www.dpmec.unvpm.t/costruzone/home.htm (Ddattca/Dspense) Testo d rfermento: Stefano

Dettagli

Divagazioni in margine all Introduzione alla Probabilità di P. Baldi A. Visintin Facoltà di Ingegneria di Trento a.a. 2010-11

Divagazioni in margine all Introduzione alla Probabilità di P. Baldi A. Visintin Facoltà di Ingegneria di Trento a.a. 2010-11 Dvagazon n margne all Introduzone alla Probabltà d P. Bald A. Vsntn Facoltà d Ingegnera d Trento a.a. 2010-11 Indce 1. Statstca descrttva. 2. Spaz d probabltà e calcolo combnatoro. 3. Varabl aleatore dscrete.

Dettagli

LA CALIBRAZIONE NELL ANALISI STRUMENTALE

LA CALIBRAZIONE NELL ANALISI STRUMENTALE LA CALIBRAZIONE NELL ANALISI STRUMENTALE La maggor parte delle anals chmche sono ogg condotte medante metod strumental (spettrometra d assorbmento ed emssone a dverse λ, metod elettrochmc, spettrometra

Dettagli

Errori nel Posizionamento Satellitare

Errori nel Posizionamento Satellitare Error nel Poszonamento Satelltare Tpologe Casual Sstematc o d Modello D Osservazone L accuratezza è stmata come l 1% della lunghezza d onda (Regola Emprca). Codce C/A: ±3 m; Codce P: ±0,3 m; Portant L1,

Dettagli

L analisi di studi con variabili di risposta multiple

L analisi di studi con variabili di risposta multiple X1 X X 3 Quando un confronto venga effettuato per tre lvell d un fattore, sembrerebbe ntutvo effettuare l confronto con l test t d Student a pù lvell: X X X 1 1 vs vs vs X X X 3 3 Metodologa per l anals

Dettagli

Analisi dei Segnali. Sergio Frasca. Dipartimento di Fisica Università di Roma La Sapienza

Analisi dei Segnali. Sergio Frasca. Dipartimento di Fisica Università di Roma La Sapienza Sergo Frasca Anals de Segnal Dpartmento d Fsca Unverstà d Roma La Sapenza Versone 13 dcembre 011 Versone aggornata n http://grwavsf.roma1.nfn.t/sp/sp.pdf Sommaro 1 Introduzone: segnal e sstem... 7 1.1

Dettagli

Parametri e protocolli di riferimento

Parametri e protocolli di riferimento Parametr e protocoll d rfermento P. Isoard - O. Rampado - R. Ropolo S.C. Fsca Santara A.S.O. San Govann Battsta d Torno Document d rfermento general Gudelnes for Acceptance Testng and Qualty Control, Techcal

Dettagli

Corso di Automazione Industriale 1. Capitolo 7

Corso di Automazione Industriale 1. Capitolo 7 1 Corso d Automazone Industrale 1 Captolo 7 Teora delle code e delle ret d code Introduzone alla Teora delle Code La Teora delle Code s propone d svluppare modell per lo studo de fenomen d attesa che s

Dettagli

Analisi dei flussi 182

Analisi dei flussi 182 Programmazone e Controllo Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Anals de fluss 82 Programmazone e Controllo Teora delle

Dettagli

Performance Attribution mono-periodale e multi-periodale: quali implicazioni per la scomposizione dell extra-rendimento?

Performance Attribution mono-periodale e multi-periodale: quali implicazioni per la scomposizione dell extra-rendimento? .mefop.t Performance Attrbuton mono-perodale e mult-perodale: qual mplcazon per la scomposzone dell extra-rendmento? Andrea Maran e Luca D Galleonardo Mefop Mlano..005 .mefop.t Premessa Ch usa la Performance

Dettagli

Corso di laurea in Economia marittima e dei trasporti

Corso di laurea in Economia marittima e dei trasporti Unverstà degl stud d Genova Corso d laurea n Economa marttma e de trasport Il problema del cammno mnmo n ret multobettvo Relatrce: Anna Scomachen Canddato: Slvo Vlla Dedcato a: Coloro che n me Hanno sempre

Dettagli

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007 Fondament d Vsone Artfcale (Seconda Parte PhD. Ing. Mchele Folgherater Corso d Robotca Prof.ssa Guseppna Gn Anno Acc.. 006/007 Caso Bdmensonale el caso bdmensonale, per ndvduare punt d contorno degl oggett

Dettagli

Markov Random Field. Teoria e applicabilità nell elaborazione delle immagini. Giovanni Bianco. Febbraio 1998. 20 i

Markov Random Field. Teoria e applicabilità nell elaborazione delle immagini. Giovanni Bianco. Febbraio 1998. 20 i Markov Random Feld Teora e applcabltà nell elaborazone delle mmagn U ( f) = v [ 1 δ( )] 20 S N f f f * = arg mn f F { U( d f) + U( f) } Govann Banco Febbrao 1998 2 Manoscrtto depostato presso l Dp. d Ingegnera

Dettagli

L USO DI UN MODELLO DI SIMULAZIONE NELLA GESTIONE DEI CAMPIONAMENTI E DELLE STRATEGIE DI DIFESA DALLA MOSCA DELLE OLIVE

L USO DI UN MODELLO DI SIMULAZIONE NELLA GESTIONE DEI CAMPIONAMENTI E DELLE STRATEGIE DI DIFESA DALLA MOSCA DELLE OLIVE L USO DI UN MODELLO DI SIMULAZIONE NELLA GESTIONE DEI CAMPIONAMENTI E DELLE STRATEGIE DI DIFESA DALLA MOSCA DELLE OLIVE ECONOMIC AND ENVIRONMENTAL IMPLICATIONS IN THE USE OF A SIMULATION MODEL FOR THE

Dettagli

La contabilità analitica nelle aziende agrarie

La contabilità analitica nelle aziende agrarie 2 La contabltà analtca nelle azende agrare Estmo rurale ed element d contabltà (analtca) S. Menghn Corso d Laurea n Scenze e tecnologe agrare Percorso Economa ed Estmo Contabltà generale e cont. ndustrale

Dettagli

Laboratorio di Strumentazione e Misura. Cesare Bini

Laboratorio di Strumentazione e Misura. Cesare Bini Laboratoro d Strumentazone e Msura Cesare Bn Corso d laurea n Fsca Anno Accademco 006-007 Quest appunt sono basat sulle lezon del modulo d Laboratoro d Strumentazone e Msura del prmo anno delle lauree

Dettagli

Il pendolo di torsione

Il pendolo di torsione Unverstà degl Stud d Catana Facoltà d Scenze MM.FF.NN. Corso d aurea n FISICA esna d ABORAORIO DI FISICA I Il pendolo d torsone (sezone costante) Moreno Bonaventura Anno Accademco 005/06 Introduzone. I

Dettagli

Controllo e scheduling delle operazioni. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Controllo e scheduling delle operazioni. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Controllo e schedulng delle operazon Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Organzzazone della produzone PRODOTTO che cosa ch ORGANIZZAZIONE PROCESSO come FLUSSO DI PRODUZIONE

Dettagli