Vettori complessi. A = A A * = A 2 x + A 2 y + A 2 z = A A A 2 3

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Vettori complessi. A = A A * = A 2 x + A 2 y + A 2 z = A A A 2 3"

Transcript

1 Vettor compless Nel caso d vettor compless (ossa vettor che hanno come component numer compless) prodott scalare e vettorale sono esegut con le regole consuete. In partcolare s rcord che dalla: A = B C segue sempre, anche per vettor compless: A B = 0 e A C = 0 Occorre nvece mutare n questo caso la defnzone d modulo. S pone: A = A A * = A x + A y + A z = A 1 + A + A 3 essendo A * l vettore conugato, che ha come component le conugate delle component d A. Con questa defnzone l modulo rsulta, come deve essere, reale e postvo. Inoltre, se c è una costante complessa, dalla A =c B segue A = c B, ossa l modulo del prodotto è l prodotto de modul. Dal momento che un vettore complesso non è pù dsegnable n uno spazo trdmensonale, la nozone d modulo nel caso complesso perde l sgnfcato geometrco d lunghezza del vettore, che aveva nel caso reale. In senso algebrco, tuttava, con l'ntroduzone del concetto d modulo dventa possble defnre la dstanza fra due vettor compless, come l modulo della loro dfferenza. S rcord po che se l prodotto scalare fra due vettor compless è nullo, non è affatto vero n generale che vettor parte reale e parte mmagnara sano separatamente ortogonal fra loro. S not che, da un punto d vsta d algebra astratta, se s mantene per l prodotto scalare la defnzone abtuale (come somma d prodott d component omonme), lo spazo vettorale de vettor compless sul campo 1

2 de numer compless non gode della propretà d essere untaro (o d Hlbert), poché tale propretà rchedeva la: v v 0 e v v = 0 v = 0 Tale condzone è nvece verfcata dal prodotto < v 1, v > = v 1 v *. Può essere comunque utle, anche nel caso d vettor compless, consderare la quanttà: A = A x +A y +A z (nel caso d vettor real essa è reale e concde con l modulo). Tale quanttà, tuttava, rsulterà ora n generale complessa, e potrà chamars ampezza complessa. S potrà allora scrvere, per un generco vettore complesso A, come per vettor real (tranne l caso n cu tale ampezza rsult nulla, caso che non mplca n generale, come s vedrà n seguto per vettor polarzzat crcolarmente, la nulltà del vettore, coè delle tre component): A =A a o, essendo a o = A /A un vettore d ampezza untara, ma non n generale d modulo untaro, che rsulta essere una sorta d "pseudo-versore". S tratta però n generale d un vettore complesso, e qund non ndca pù una drezone vsualzzable. Un tale vettore rsulta reale se e solo se A è polarzzato lnearmente. Infatt n questo caso A = A R +j A j, con A R // A j, per cu A R e A j avranno lo stesso versore reale a o, ossa A =(A R +ja j ) a o. E' noltre vero anche l vceversa, come s vedrà. Nel caso del prodotto A =c B, con c complesso, s ha per le ampezze: A=cB.

3 Tornando al prodotto vettorale fra due vettor compless A e B, s supponga che sa A B=0. In questo caso s può dmostrare che n generale A B A B, mentre per l caso de vettor real valeva l'uguaglanza. Se s mpone nvece A B * = 0, s ha effettvamente che A B = A B. S not che la condzone A B * = 0 è equvalente alla B A * = 0. Se s consderano n luogo de modul le ampezze complesse, è d nuovo la condzone A B= 0 che mplca l'uguaglanza. Le due condzon A B * = 0 e A B= 0 non sono n generale equvalent per vettor compless. Lo sono se uno de due vettor è reale, ma n realtà è suffcente che uno de due sa polarzzato lnearmente. Infatt n tal caso l versore è reale, ed è esso ad entrare nel prodotto scalare. Anche per vettor compless s parla per estensone d ortogonaltà e parallelsmo, n base a prodott scalare e vettorale. Anche a queste nozon non corrsponde tuttava qualcosa d dsegnable, d vsble. S notno le relazon fra vettor compless nel domno de fasor e corrspondent vettor nel domno del tempo (ndcat con la tlde): 1 Re A B* = A B t 1 Re A B* = A B t Come s vede, qund, la trasformazone che fa passare da vettor nel domno del tempo a fasor non è un somorfsmo (perché non conserva prodott scalar). Cò è legato al fatto che gl spaz vettoral non sono untar. S rcord che le relazon precedent valgono ovvamente per fasor, ma non per vettor trasformat secondo Fourer. Infatt ad esempo s è vsto che l teorema d Poyntng complesso, come formulazone matematca, vale sa per fasor, sa per vettor trasformat secondo 3

4 Fourer, poché è una conseguenza delle equazon d Maxwell, che hanno la stessa forma sa per fasor, sa per vettor trasformat. Invece l'nterpretazone del teorema n termn d valor med delle corrspondent grandezze nel domno del tempo vale solo nel caso de fasor (regme snusodale). S not nfne che mentre fasor hanno le stesse dmenson fsche de corrspondent vettor nel domno del tempo, vettor trasformat hanno le dmenson de vettor nel tempo dvse per una frequenza (coè moltplcate per un tempo). Ad esempo l vettore trasformato d un campo elettrco s msura n V/(mHz). 4

5 Polarzzazone de vettor Come s è detto, un vettore complesso non s può dsegnare come vettor real, neanche se è polarzzato lnearmente (se coè ha versore reale), perché ha component complesse, che non sono assocabl a punt d una retta. S è vsto che la condzone d polarzzazone lneare per un generco vettore complesso A = A R +j A j era: A R A j = 0, ovvero A R // A j. Tale condzone come s è dmostrato mplca porre l vettore A come prodotto d un vettore reale per uno scalare complesso. D'altra parte se vceversa A =(a+jb) B, con B reale, s ha: A R =a B, A j =b B A j=(b/a) A R, ossa A R // A j. Nel caso partcolare delle onde pane, s ha per l vettore complesso del campo elettrco: E = E o e -jk r ove la quanttà e -jk r è uno scalare (complesso). S potrà allora scrvere: E = E 0 (a+jb)=( E 0R +j E 0j )(a+jb). Ora, l fatto d moltplcare (o dvdere) un vettore complesso per uno scalare complesso non ne modfca l tpo d polarzzazone, che è legata alla parte vettorale. Ovvamente varerà l'ampezza d oscllazone nel domno del tempo. Ad esempo, se E 0 è polarzzato lnearmente s ha E 0R E 0j =0, per cu: E R E j = ( E 0R a- E 0j b) ( E 0R b+ E 0j a) = E 0R E 0j a - E 0j E 0R b = = E 0R E 0j (a +b ) = 0 Ovvamente è vero l vceversa (essendo a + b 0), potendos del resto scrvere E 0 = E /(a+jb)= E (c+jd). 5

6 In modo analogo, se E 0R E 0j = 0 e E 0R = E 0j, ossa polarzzazone crcolare per E 0, s ha: E R E j = (E 0R a - E 0j b) (E 0R b + E 0j a) = E 0R E 0R ab - E 0j E 0j ba = = (E 0R - E0j )ab = 0 e, d'altra parte: E R = E R E R = (E 0R a - E 0j b) (E 0R a - E 0j b) = E 0R a + E 0j b = = E 0R a +b Mentre: E j = E j E j = (E 0R b + E 0j a) (E 0R b + E 0j a) = E 0R b + E 0j a = = E 0R a +b = E R Ovvamente è vero anche l vceversa. Consderando ora un sstema d rfermento con l pano xy concdente con l pano d polarzzazone, coè con l pano ndvduato da A R e A j, s vedrà come le condzon per var tp d polarzzazone s traducono n termn delle component A x e A y. Nel caso d polarzzazone lneare, s è vsto che s può scrvere: A =(1+jb) A R, per cu: A x =(1+jb)A Rx A y =(1+jb)A Ry =(A Ry /A Rx )A x =ra x con r reale S ha allora che A x e Ay come numer compless sono n fase (se A Rx e A Ry hanno lo stesso segno), oppure n opposzone d fase (se hanno segno opposto). Vceversa, se A x e A y come numer compless sono n fase oppure n opposzone d fase, s può passare dall'uno all'altro moltplcando per un numero reale, coè A y =ra x, con r reale. Per cu A =A x x 0 +rax y 0 =A x ( x 0 +r y 0 ), e qund A è l prodotto del numero complesso A x per un vettore reale, ossa è polarzzato lnearmente. Per cu rsulta: 6

7 A polarzzato lnearmente A y =ra x, con r reale. Per quanto rguarda la polarzzazone crcolare, ossa: A R = A j A R A j = 0 Dalla prma segue: (A Rx ) + (A Ry ) = (A jx ) + (A jy ) Dalla seconda nvece: A Rx A jx +A Ry A jy =0 A RxAjx = ARyAjy A Rx = A Ry Ajy A jx Sosttuendo nella prma s trova: A RyAjy A jx + A Ry = A jx + Ajy A A Ry( jy + 1) = A jx + Ajy. Da cu: A jx A Ry = A jx + A jy A jy + A jx A jx A Ry = A jx A Ry = ±A jx Dalla seconda: A Ry A jy = -A Rx A jx segue A jy = -(±)A Rx. Ma allora: A y = A Ry +ja jy = ±Ajx-j(±A Rx ) = - ± j (ARx+jA jx ) = - ± j A x Vceversa se: A y = ±ja x segue: A Ry +ja jy =±j(a Rx +ja jx )=±ja Rx - ± A jx Uguaglando parte reale e parte mmagnara: A jy = ± A Rx ARy= - ± A jx 7

8 Per cu: A R A j = A Rx A jx + A Ry A jy = ± A jy A jx - ± A jx A jy = 0 A R = A Rx Per cu rsulta: + A Ry = A jy + A jx = A j A R = A j A polarzzato crcolarmente A y = ±ja x. In questo caso qund A x e A y, come numer compless, sono n quadratura (dfferenza d fase d π/, essendo e ± jπ/ = ±j). S not che le dmostrazon precedent non hanno convolto l domno del tempo, per cu sono valde per vettor compless generc nel pano xy. Nel caso pù generale nvece d polarzzazone ellttca s avrà A y =ca x, con c complesso, e qund c= M e jϕ, con M>0. Se 0<ϕ<π l verso d rotazone nel domno del tempo, sul pano xy, è oraro (guardando dalla punta dell'asse z). Altrment, se -π<ϕ<0, s ha l verso antoraro. In partcolare se M=1 e ϕ = ± π/ s ha polarzzazone crcolare: A y =ja x per l verso oraro; A y =-ja x per l verso antoraro. I vers s possono ndvduare passando nel domno del tempo. Ad esempo nel prmo caso s ha: A x (t)= A x cos(ωt+ϕ x ) A y (t)= A y cos(ωt+ϕ y )= A x cos(ωt+ϕ x +π/)= A x cos[ω(t+ϕ x /ω)+π/] La fase ϕ x è legata semplcemente alla scelta dell'orgne de temp, per cu s può elmnare senza perdta d generaltà. Sono sgnfcatve solo le dfferenze d fase. Per cu: A y (t)= A x cos(ωt+π/)=- A x sn(ωt) ove A x (t)= A x cos(ωt). 8

9 Qund A x (t) va come l cos(ωt), A y (t) come l -sn(ωt), da cu l verso oraro. I vers ovvamente s nvertono se s guarda nvece nella drezone dell'asse z. Il caso n cu ϕ = ± π/, ma M 1 corrsponde ad una polarzzazone ellttca, n cu gl ass prncpal dell'ellsse concdono con gl ass cartesan. Se nvece ϕ ± π/ (e ovvamente dversa da 0 e da π, altrment s torna alla polarzzazone lneare) s tratta d un'ellsse con gl ass prncpal ruotat d un certo angolo rspetto agl ass cartesan. 9

10 Scomposzone d una polarzzazone generca Il generco vettore complesso A, d polarzzazone n generale ellttca, può ovvamente decompors nella somma d due vettor, n generale compless, polarzzat lnearmente, ad esempo due vettor component secondo x ed y nel pano d polarzzazone: A =A x x 0 +A y y 0. Cò equvale ad assumere come base d rappresentazone, per uno stato d polarzzazone arbtraro, vettor real ortonormal x 0 ed y 0. Non s perde dunque n generaltà a consderare vettor polarzzat lnearmente, poché po è possble applcare la sovrapposzone degl effett. D'altra parte una generca polarzzazone ellttca s può esprmere anche come la sovrapposzone d due polarzzazon crcolar, d opposto verso d rotazone. Per dmostrarlo, dato un generco vettore complesso A, s ponga: A =A 1 c 1 +A c ove: c 1 = x 0 - jy 0 A 1 = A x + ja y c = x 0 + jy 0 A = A x - ja y Infatt: A 1 c 1 + A c = A x + ja y = A xx 0 + A xx 0 - j A xy 0 + j A xy 0 + j A yx 0 -j A yx 0 x 0 - jy 0 + A yy 0 + A yy A x - ja y = A x x 0 + A y y 0 Dalle defnzon d A 1 e A s ha, sommando: x 0 + jy 0 = 10

11 A 1 + A = A x = A x A x = A 1 + A Sottraendo s ha nvece: A 1 - A = j A y =j A y A y = A 1 - A j x 0 = c 1 + c Procedendo n modo analogo con versor, s ha: y 0 = c - c 1 j S not ntanto che vettor compless c 1 e c sono d modulo untaro. S ha nfatt: c 1 = c 1 c 1 * = x 0 -j y 0 x 0 +j y 0 = = 1 = c * c = c essendo c 1 = c *. Le ampezze complesse sono nvece nulle, essendo c 1 c 1 = c c = 0 (pur essendo c 1 e c 0). Inoltre c 1 e c sono anche ortogonal (n senso algebrco), secondo la defnzone: c 1 c * = x 0 -j y 0 x 0 -j y 0 = 1-1 = 0 = c c 1 * Mentre s ha nvece, come gà vsto, c 1 c =1 0. Dunque vettor compless c 1 e c costtuscono una base ortonormale. S not per ncso che mentre n una qualsas base ortonormale reale (ad esempo x 0 e y 0 ) s può scrvere per un vettore generco: A =A x x 0 +A y y 0 = A x 0 x 0 + A y 0 y 0 questa espressone va nvece modfcata se la base è complessa, e s ha: A =A 1 c 1 +A c = A c * 1 c 1 + A c * c (nuove defnzon algebrche per le component d un vettore). Infatt ad esempo: A c 1 * = A 1 c 1 + A c c 1 * =A 1 c 1 c 1 * + A c c 1 * = A 1 11

12 S not adesso che c 1 e c sono vettor polarzzat crcolarmente. S ha: c 1x = 1 c 1y = - j per cu c 1y =-jc 1x (verso d percorrenza antoraro guardando dal sempano z>0). Inoltre: c x = 1 c y = j = jc x (verso oraro) Ovvamente anche una generca polarzzazone lneare, come caso partcolare d una polarzzazone ellttca (con uno de semass nullo), può scompors n due polarzzazon crcolar. Del resto n questo caso s può sceglere l'asse x concdente con la drezone d polarzzazone, per cu A =A x x 0, e po porre: A 1 =(A x /) x 0 -j(a x /) y 0 A =(A x /) x 0 +j(a x /) y 0 ove A 1 + A = A, e A 1 è polarzzato crcolarmente n verso antoraro, mentre A lo è n verso oraro. S not che, dato un generco vettore complesso A funzone d punto (ad esempo un campo elettrco), non è sempre possble scomporre tale vettore nel prodotto d uno scalare funzone d punto e d un vettore che non dpenda dal punto. Per cu n generale l tpo d polarzzazone sarà dverso da punto a punto nello spazo, A R ed A j saranno delle funzon d punto, e s potranno consderare luogh de punt n cu s ha ad esempo polarzzazone lneare, o crcolare. Questo può avvenre ad esempo n una guda d'onda. Nel caso dell'onda pana, tuttava, vsta la sua dpendenza dalle coordnate ( E = E 0 e - j k r, con E 0 costante), s ha effettvamente che l tpo d polarzzazone è lo stesso n tutto lo spazo. 1

13 L'ellsse d polarzzazone L'angolo θ che l vettore nel domno del tempo A (t) forma n un certo stante con l'asse x del pano d polarzzazone è dato dalla: θ t = arctan A y t A x t = arctan A y cos ωt + ϕ A x cos ωt avendo posto ϕ = ϕ y - ϕ x, poché come s è vsto solo le dfferenze d fase sono sgnfcatve. stantanea: L'ellsse d polarzzazone sarà allora percorsa con veloctà angolare Ω t = dθ dt = 1 = 1 A t = ωa xa y A t 1+ A y t A x t A y ' t Ax t - A y t A x ' t A x t = A y ' t A x t - A y t A x ' t A x t +Ay t = -A y ω sn ωt + ϕ A x cos ωt + A y cos ωt + ϕ ω A x sn ωt = sn ωt cos ωt + ϕ - sn ωt + ϕ cos ωt = - ω A xa y snϕ A t Come s vede per 0< ϕ <π s ha Ω < 0 (ossa verso oraro d rotazone), come gà vsto, mentre per -π< ϕ < 0 l verso è antoraro (Ω > 0). S not comunque che la veloctà angolare non rsulta n generale costante nel tempo. Il vettore nel tempo compe però comunque una rotazone completa nel perodo T=π/ω. Se A x = A y e ϕ = ±π/ (polarzzazone crcolare) s ha A t = A x t + Ay t = Axcos ωt + A xcos ωt ± π =, = A x cos ωt + sn ωt = A x 13

14 per cu: Ω t = - ω A x A x ±1 = - ± ω = cost Scomponendo una generca polarzzazone ellttca n due polarzzazon crcolar è anche semplce ndvduare l'ellsse d polarzzazone. Ponendo nfatt A =A 1 c 1 +A c e scrvendo: A A 1 = M e jα s può dmostrare che α è l'angolo che gl ass prncpal dell'ellsse formano con gl ass cartesan. S ha: α = 1 arctan Im A A 1 ottene: Re A A 1 Tornando alle component cartesane sul pano d polarzzazone s A A 1 = A x - ja y 1 A x + ja y 1 = A x - ja y = A x - ja y A * * x - ja y A x + ja y A x + ja y = = A x - A y - j A x A y * + A y A x * A x + ja y = A x - A y - jre A x A y e -jϕ A x + ja y = A x - A y - jre A x A y * A x + ja y = A x - A y - ja x A y cosϕ A x + ja y = Per cu: α = 1 arctan -A x A y A x - Ay cosϕ 14

15 S verfca che se ϕ =± π/ gl ass prncpal concdono con gl ass cartesan. S dmostra noltre che l rapporto fra l semasse maggore a e l semasse mnore b è dato dalla: a b = 1 + M 1 - M = 1 + A A A A 1 Nel caso M=1 s rcade nella polarzzazone lneare (A e A 1 hanno lo stesso modulo) b=0, mentre la polarzzazone crcolare s ha per M=0 (A =0), con a/b=1 (semass ugual). 15

16 Costant secondare de mezz. Costant d fase e d attenuazone per onde pane unform. Perdte de mezz. Relazon d Kramers-Krong Per costant secondare d un mezzo s ntendono le quanttà k ed ζ, rspettvamente costante d propagazone e mpedenza caratterstca (o ntrnseca) del mezzo. Le costant prmare sono nvece ε, µ e g. Le costant secondare dpendono dalle costant prmare e dalla frequenza, secondo le note relazon: k = ω µε c = ω µ ε - j g ω = ω µε - jωµg = -jωµg + jωε = = k R - jk j ζ = = µ ε c = ω µε g + ω ε + µ ε - j g ω = jωµg g + ω ε jωµ g + jωε = = ζ R + jζ j jωµg - jωε g + ω ε = Del resto anche le costant prmare ε e µ ne mezz dspersv ( e tutt mezz a rgore lo sono) saranno n generale funzon complesse della varable ω (s pens ad esempo al modello d Lorentz per ε (ω) ). Per quanto rguarda g s può vedere che fno a frequenze al d sotto delle mcroonde (ω sec -1 ) le conducbltà de metall sono essenzalmente real (corrente d conduzone n fase con l campo elettrco) e ndpendent dalla frequenza. A frequenze pù elevate (nfrarosso e oltre) la conducbltà è complessa e vara con la frequenza (modello d Drude). S è vsto che n ambedue le defnzon delle costant secondare compare l fattore (g+jωε). Rcordando che la corrente d conduzone è data da J c =g E, e la corrente d spostamento da jωε E, s drà che un mezzo è buon conduttore se prevale l'effetto della corrente d conduzone, coè se g>> ωε, mentre è un buon delettrco se ωε >>g (è stato nserto l modulo 16

17 per ncludere l caso dspersvo per ε, con la parte mmagnara legata a dsspazon nel delettrco). Ovvamente tale dstnzone dpende dal campo d frequenze che nteressa. Alle alte frequenze, ad esempo frequenze ottche, anche metall, con g dell'ordne d 10 7 S/m, non sono pù degl ottm conduttor. Se un mezzo possede elettron lber, è un conduttore a basse frequenze, un solante negl altr cas. S not che le costant secondare sono qu defnte come caratterstche d un certo mezzo, ndpendentemente dal tpo d campo elettromagnetco che s propaga n quel mezzo (a parte la dpendenza dalla frequenza). E' stato posto k=k R -jk j poché, nell'potes d mezz non dspersv (oppure dspersv, ma non dsspatv, ε e µ real), la quanttà k gace nel quarto quadrante del pano complesso, e s scegle la determnazone della radce quadrata con parte reale postva (che gace coè anch'essa nel quarto quadrante, ed ha qund parte mmagnara negatva). In tal modo k R e k j rsultano entramb postv. Per quanto rguarda ζ s ha nvece che (nelle stesse potes su mezz) ζ gace nel prmo quadrante, e s scegle ζ anch'essa nel prmo quadrante, per cu ζ R ed ζ j sono >0. Separando ora la parte reale da quella mmagnara s ha: k = k R - jk j = k R - k j - jk R k j = ω µε - jωµg Per cu: k R - k j = ω µε k R k j = ωµg Nel caso dell'mpedenza s ha nvece: ζ = ζ R + jζ j = ζ R - ζ j + jζ R ζ j = ω µε + jωµg g + ω ε, per cu: 17

18 ζ R - ζ j = ω µε g + ω ε ζ R ζ j = ωµg g + ω ε Confrontando con l sstema precedente per k, s vede subto che s può porre: ζ R = k R g + ω ε ζ j = k j g + ω ε E' suffcente allora consderare e rsolvere solo l problema per k. Cò sarà fatto nzalmente nelle due stuazon d buon delettrco e d buon conduttore. Nel caso del buon delettrco (ωε>>g) s ha: ω µε >> ωµg, per cu: ω µε + k j >> ωµg Ma: ω µε + k j = k R e ωµg = k R k j, da cu: k R >> k R k j k R >> k R k j k R >> k j E' possble allora trascurare k j rspetto a k R nella prma equazone del sstema per k, e scrvere: k R ω µε k R ω µε Dalla seconda s ha: k j = ωµg k R µg µε = g µ ε g ωε k R Per quanto rguarda ζ, essendo n questo caso: g + ω ε ωε s avrà: 18

19 ζ R k R ωε ζ j k j ωε da cu: ζ R µ ε ζ j g ωε µ ε g ωε ζ R S not che k R e k j rsultano (come gà detto) determnat una volta note ε, µ, g e la frequenza. S consder ora un'onda pana, n cu s ntroducono come è noto l vettore d fase β e quello d attenuazone α. S hanno le note relazon: β - α = ω µε = k R - kj β α = ωµg = k R k j Da tal relazon segue per ncso che dev'essere β 0, noltre β>α, e l'angolo fra β ed α non ottuso. I valor d β e α dpendono dalle caratterstche dell'onda che s propaga n quel mezzo. Per esempo nel caso partcolare dell'onda pana unforme, essendo β e α parallel (e concord), s ha: k = β -j α =(β-jα) β 0 =k β 0, con k=β-jα, per cu k R =β e k j =α Rsulta dal sstema precedente β α = βα Un'altra soluzone del sstema sarebbe β=-k R, α=-k j, non accettable essendo β ed α suppost postv. Le altre due soluzon (l sstema è d quarto grado, qund ha quattro soluzon) sono mmagnare, qund non accettabl. Rcaptolando, per un buon delettrco, s ha per l'onda pana unforme β>>α. Passando ora al caso d buon conduttore (g >> ωε) s ha: 19

20 k = -jωµg +jωε -jωµg k -j ωµg = ωµg 1 - j = ωµg 1 - j Ne segue allora che: k R k j ωµg Ne derva subto: ζ R ζ j ωµ g Nel caso partcolare d un'onda pana unforme n un buon conduttore, ne segue che β e α hanno modulo quas uguale. S consder ora l caso d un mezzo generco. S ha: k j = ωµg k R - ωµg = ω µε k R k R 4k R 4-4k R ω µε - ω µ g = 0 S tratta d un'equazone bquadratca, per cu: k R = 1 8 4ω µε ± 16ω 4 µ ε + 16ω µ g = = 1 ω µε ± ω 4 µ ε 1 + g = ω µε ω ε 1 ± 1 + g ωε Scartando la determnazone con l meno, poché dà luogo a un valore negatvo per k R, s ha: k R = ω µε g ωε + 1 S rtrovano cas partcolar vst n precedenza (buon delettrco e buon conduttore). Per quanto rguarda k j s ha n modo analogo: 0

21 k R = ωµg k j ωµg k j - kj = ω µε 4k j 4 + 4k j ω µε - ω µ g = 0 Per cu: k j = ω µε g ωε avendo anche ora scartato la determnazone negatva; e nfne: k j = ω µε g ωε - 1 S rtrovano anche ora cas partcolar gà vst. Come gà detto, nel caso delle onde pane unform le espresson rcavate sono anche quelle per β e α rspettvamente. S not come β e α abbano entrambe le dmenson fsche d m-1. Tuttava, per rcordare che β s rfersce alla fase (esponenzale mmagnaro) s parla spesso d rad/m, mentre per sottolneare che α è legato al modulo (esponenzale reale) s parla d Neper/m, o Np/m. Per l'attenuazone s usa anche la notazone n decbel a metro (db/m), secondo la defnzone (supponendo z la drezone d propagazone dell'onda): db z = 0 log 10 e -αz = 0 -αz log 10 e 0 -αz = αz Per cu (per lunghezza untara): α db/m ( 8.68 α Np/m Infne dalle espresson per β ne var cas s rcavano la lunghezza d'onda λ=π/β e la veloctà d fase v p = ω/β. S defnsce noltre profondtà d pelle ("skn depth") δ la quanttà: δ=1/α, ossa la dstanza percorsa da un'onda pana unforme per rdurs n modulo d e -1 ( 0.368, ossa a crca l 36.8%. 1

22 Un modo per caratterzzare le perdte d un certo mezzo è l'ntroduzone della cosddetta tangente d perdta ("loss tangent") tanδ (non s confonda δ con la profondtà d pelle). S tratta d un parametro admensonale defnto dalla (rapporto fra parte mmagnara e parte reale): ε c = ε(1-jtanδ) = ε - jε tanδ per cu ε tanδ=g/ω tanδ g =g/ωε, ove l pedce g s rfersce alle perdte ohmche. Usualmente per un certo materale l costruttore assegna o la conducbltà (S/m) oppure la loss tangent. In modo analogo, tangent d perdta possono defnrs per le perdte delettrche e magnetche. In questo caso s porrà: ε(ω)=ε'(ω)-jε''(ω) µ(ω)=µ'(ω)-jµ''(ω) ove al solto una parte mmagnara negatva corrsponde effettvamente a potenza dsspata (come s vede a proposto del teorema d Poyntng). S avrà: tanδ ε = ε"/ε', oppure tanδ µ = µ"/µ' L'effetto d ε" può essere paragonato a quello d una conducbltà (del resto ωε" ha le stesse dmenson d g), e s può defnre una conducbltà equvalente g+ωε". Ad esempo nel rscaldamento a mcroonde de cb l'effetto prevalente è quello d ε". Inoltre l muscolo ha una pù elevata ε" della pelle e de grass, per cu cb vengono scaldat dal forno a mcroonde pù all'nterno che all'esterno. Per questo motvo anche non c s accorge subto d essere "scaldat" a mcroonde, perché sensor d temperatura s trovano all'esterno, sulla pelle. Inoltre ad esempo l vetro e la plastca posseggono bass valor d g (buon solant), ma possono presentare notevol perdte delettrche.

23 Nel caso d mezzo dspersvo (e dsspatvo) sstem d equazon per k ed η non sono pù vald, restano soltanto le defnzon. S not che nel caso d un'onda pana unforme che s propagh n un certo mezzo d costant secondare k ed ζ, è possble assocare ad essa una lnea d trasmssone equvalente, lungo la drezone d propagazone dell'onda. I parametr della lnea (costante d propagazone ed mpedenza caratterstca) vengono a concdere con quell del mezzo. Questa è una caratterstca delle onde TEM (come l'onda pana unforme). S not ancora che le funzon ε'(ω) e ε"(ω) non sono ndpendent fra loro, ossa nota una delle due è possble calcolare l'altra. Questo derva dal fatto che la funzone complessa ε(ω) è olomorfa nel sempano destro della varable complessa s=p+jω. Non c devono coè essere pol nel sempano destro (compreso l'asse mmagnaro). S potrebbe vedere che tale propretà è n generale conseguenza, n un sstema lneare (ε(ω) s può vedere come la funzone d trasfermento d un sstema lneare), delle potes d stabltà (uscta lmtata per ngress lmtat) e causaltà (l vettore D n un certo stante è determnato solo da valor del campo E per stant precedent). Valgono allora n tal potes le cosddette relazon d Kramers- Krong: ε' ω = ε 0 + π ω'ε''ω ' ω' - ω dω' ε''ω = - π 0 ω ε' ω ' - ε 0 ω' - ω dω' Relazon analoghe valgono anche per µ(ω). Esse sono noltre perfettamente analoghe alle relazon fra parte reale e mmagnara delle funzon mpedenza. 3

24 S not nfne che esste un legame fra le relazon d Kramers-Krong e la trasformata d Hlbert (rspetto alla pulsazone). S ha n partcolare che ε'(ω)- ε 0 = -H(ε"(ω)) e che ε"(ω) = H(ε'(ω)-ε 0 ). Rcordando po che ε'(ω) è una funzone par ed ε"(ω) una funzone dspar (essendo ε(ω) la trasformata d una funzone reale), dalle trasformate d Hlbert seguono le relazon d Kramers-Krong con semplc passagg. Concludendo, è possble, da esperment d assorbmento, rcavare emprcamente ε"(ω) e qund calcolare ε'(ω). S not nfne che non può esstere un mezzo (a parte l vuoto) che sa dspersvo e non dsspatvo per ogn ω, ossa avente la parte mmagnara dentcamente nulla. Questo porterebbe nfatt, dalla prma relazone d Kramers-Krong, ad avere la parte reale concdente con ε 0. 4

25 Onde pane unform Come è noto, s hanno onde pane unform n due cas: quando l vettore d attenuazone α è nullo, e quando esso è parallelo al vettore d fase β. Nel prmo caso l vettore d propagazone k è reale, nel secondo caso è complesso, ma polarzzato lnearmente (versore reale). S è vsto che n entramb cas s ha un'onda TEM (trasversa elettromagnetca) rspetto alla drezone d propagazone, ossa l pano d polarzzazone per vettor E ed H (n generale polarzzat ellttcamente) è ortogonale alla drezone d propagazone. Consderando le poszon: E o = E R +j E j H o = H R +j H j con E = E o e -jk r H = H o e -jk r non è detto n generale che, pres separatamente, vettor real E R e H R (ed vettor real E j e H j ) rappresentno un'onda pana, una volta moltplcat per l'esponenzale. Occorre come è noto verfcare che sa: 1) k k = k x + k y + k z = ωµε c, affnché s tratt d una soluzone dell'equazone d Helmholtz (condzone d separabltà). Ovvamente tale condzone n questo caso è verfcata, essendo per potes la coppa E, H un'onda pana. ) k E o = 0, affnché s tratt d una soluzone delle equazon d Maxwell (condzone agguntva E =0). Nel caso dell'onda pana unforme s ha: ( E R +j E j ) k = ( E R +j E j ) k β o = 0 ove k=β-jα. Da cu: E R β o =0 E j β o =0 e qund k E R =0 e k E j =0 5

26 3) resta a questo punto determnato H o = (1/ωµ) k E o, per cu occorre controllare che anche questa sa verfcata. Nel caso n cu α =0 s ha: H R +j H j =(1/ωµ) β ( E R +j E j ) Separando parte reale e parte mmagnara: H R =(1/ωµ) β E R =(1/ωµ) k E R H j =(1/ωµ) β E j =(1/ωµ) k E j per cu ho effettvamente scomposto n due onde pane, è possble applcare la sovrapposzone degl effett. Nel caso nvece n cu α // β le prme due condzon sono ancora verfcate, mentre dalla terza s ha: ( β -j α ) ( E R +j E j )=ωµ( H R +j H j ), e separando parte reale e parte mmagnara: β E R + α E j =ωµ H R - α E R + β E j =ωµ H j In questo caso le equazon non s separano, e non s può concludere che k E R =ωµ H R e k E j =ωµ H j. Non è possble scomporre n questo modo n due onde pane. Per ottenere la scomposzone d E o e H o n due vettor polarzzat lnearmente (anche se non pù real), s può prendere la drezone d propagazone come asse z, l pano d polarzzazone come pano xy, e porre: E o =E ox x o +E oy y o = E ox + E oy H o =H ox x o +H oy y o = H ox + H oy con E ox, E oy, H ox e H oy n generale compless, ma ovvamente polarzzat lnearmente. S consderno ora le coppe E ox, H oy e E oy, H ox e s controll che s tratt separatamente d onde pane. Essendo k dretto lungo z s ha (condzone ): k E ox =0 e k E oy =0 Per quanto rguarda la condzone 3) s ha, dalla: k E o =ωµ H o che: 6

27 k ( E ox + E oy )=ωµ( H ox + H oy ) k E ox + k E oy =ωµ H ox +ωµ H oy Il vettore k E ox è polarzzato lnearmente nella drezone y, mentre k E oy nella drezone x. Per cu uguaglando separatamente s ha: k E ox =ωµ H oy k E oy =ωµ H ox S è dunque vsto come sa sempre possble, nel caso dell'onda pana unforme, scomporre una generca polarzzazone ellttca n due (onde pane) polarzzate lnearmente. Per cu non s perde n generaltà a consderare onde pane unform polarzzate lnearmente. Sempre per un'onda pana unforme, dalla: H =(1/ωµ) k E segue: H =(k/ωµ) β o E = (ε c /µ) 1/ β o E = (1/ζ) β o E = (1/ζ) k o E essendo ζ l'mpedenza caratterstca del mezzo, n generale complessa (nel vuoto s ha ζ o 10π Ω 377 Ω). Le dmenson fsche sono quelle d un'mpedenza, n quanto H ha dmenson (nel caso de fasor) A/m, E ha dmenson V/m e l versore è admensonale. In termn d campo elettrco s ha nvece: E =(1/ωε c ) H k = (k/ωε c ) H β o = (µ/ε c ) 1/ H β o = ζ H β o = ζ H k o S not tuttava che queste relazon con l'mpedenza possono scrvers anche per un'onda pana generca (non unforme), n cu coè l vettore complesso k non sa polarzzato lnearmente. S può sempre porre, nfatt: k =k k o =ω µε c k o, ove però k o, defnto dalla k o = k /(ω µε c), sarà n generale complesso. Il vettore k scuramente non è polarzzato crcolarmente, perché k = β - j α, con β ed α d modulo dverso. Il vettore k o sarà d modulo n generale non untaro, ma d ampezza (complessa) untara. Sarà noltre sempre vero che: 7

28 k o E =0 e k o H =0 Anche per vettor E ed H, che non saranno n generale polarzzat lnearmente, s potrà però sempre scrvere (a parte l caso d polarzzazone crcolare): E =E e o H =H h o, con: k o e o =0 e k o h o =0 con E ed H ampezze complesse. Scrvendo allora la relazone per l campo elettrco: E e o =ζh h o k o s rcava, uguaglando la parte scalare e quella vettorale: E=ζH e o = h o k o Qund fra le ampezze complesse la relazone d mpedenza è valda n generale. Dalla relazone vettorale segue, moltplcando vettoralmente a snstra per k o : k o ( h o k o )=( k o k o ) h o -( k o h o ) k o = h o = k o e o S ha po: e o h o = e o ( k o e o )=( e o e o ) k o -( e o k o ) e o = k o Sostanzalmente 3 pseudoversor e o, h o, k o s comportano come x o, y o, z o rspettvamente ne prodott vettoral. Mentre la relazone d mpedenza fra le ampezze complesse è vera sempre, la relazone analoga fra modul vale se k o è reale ( k polarzzato lnearmente, ossa onda pana unforme). Infatt n questo caso, dalla: E =ζ H β o con H β o *= H β o =0 s può concludere che l modulo del prodotto vettorale è l prodotto de modul, e scrvere: E = ζ H β o = ζ H β o = ζ H ove ζ è complessa nel caso α 0, reale nel caso α =0. 8

29 Consderando ora corrspondent vettor nel domno del tempo, s possono fare alcune osservazon. S è vsto che per vettor compless s ha, per un'onda pana del tutto generale: E H =0 E o H o =0. Nel domno del tempo s ha nvece: E (t)=re[ E e jωt ]=Re[ E o e -jβ r e -α r e jωt ]=e-α rre[( E R +j E j )e -jβ r e jωt ]= =e - α r[ E R cos(ωt- β r )- E j sn(ωt- β r )] e analogamente: H =e -α r [ H R cos(ωt- β r )- H j sn(ωt- β r )] S ha allora: E (t) H (t)=e -α r [ E R H R cos (ωt- β r )- E R H j cos(ωt- β r )sn(ωt- β r )+ - E j H R sn(ωt- β r )cos(ωt- β r )+ E j H j sn (ωt- β r )] D'altra parte, dalla E o H o =0 segue: ( E R +j E j ) ( H R +j H j )=0 ossa: E R H R +j E R H j +j E j H R - E j H j =0 Separando parte reale e parte mmagnara s ha: E R H R = E j H j, E R H j =- E j H R Per cu rsulta: E (t) H (t)=e -α r E R H R =e -α r E j H j per un'onda pana del tutto generale. S not che tale prodotto scalare non dpende dal tempo. Nel caso generale non sarà vero che E R H R = E j H j =0, per cu vettor nel tempo non sono ortogonal. Neppure nel caso n cu l'onda pana sa unforme con α 0. Se nvece s ha α =0, dalle relazon vste n precedenza segue: β x E R =ωµ H R β x E j =ωµ H j E R H R =0= E j H j 9

30 per cu n questo caso vettor nel tempo sono ad ogn stante ortogonal fra loro. S consder ora la relazone d mpedenza per vettor nel domno del tempo. S è vsto che s può decomporre la generca onda pana unforme che s propagh nella drezone z n due onde pane polarzzate lnearmente, date da E ox, H oy e E oy, H ox. Valgono le relazon fra le ampezze complesse: E ox =ζh oy E oy =-ζh ox Nella seconda equazone s è usato l segno meno, l che corrsponde a prendere l versore (- x o ) per mantenere l carattere destro della terna e o, h o, k o. Consderando ora vettor nel domno del tempo, s ha per l caso prvo d perdte ( α =0): E (t)=e x (t) x o +E y (t) y o, con: E x (t)=re[e ox e -jβz e jωt ]=E oxr cos(ωt-βz)-e oxj sn(ωt-βz) E y (t)=re[e oy e -jβz e jωt ]=E oyr cos(ωt-βz)-e oyj sn(ωt-βz) ove, essendo ζ reale, s ha: E oxr =ζh oyr E oxj =ζh oyj E oyr =-ζh oxr E oyj =-ζh oxj Per l campo magnetco s ha: H (t)=h x (t) x o +H y (t) y o, con: H x (t)=re[h ox e -jβz e jωt ]=H oxr cos(ωt-βz)-h oxj sn(ωt-βz) H y (t)=re[h oy e -jβz e jωt ]=H oyr cos(ωt-βz)-h oyj sn(ωt-βz) Calcolando modul nel domno del tempo s ha: H (t) =H x +Hy =[HoxR cos(ωt-βz)-h oxj sn(ωt-βz)] + +[H oyr cos(ωt-βz)-h oyj sn(ωt-βz)] Per l campo elettrco nvece: E (t) =E x +Ey =[ζhoyr cos(ωt-βz)-ζh oyj sn(ωt-βz)] + 30

31 +[-ζh oxr cos(ωt-βz)+ζh oxj sn(ωt-βz)] =ζ H (t) E (t) =ζ H (t) Rassumendo, due vettor E (t) e H (t) sono ad ogn stante ortogonal, e modul dfferscono per un fattore costante ζ. La dmostrazone non è pù valda nel caso d α 0. Onde pane TE, TM e TEM E' noto che un'onda pana unforme è sempre un'onda TEM rspetto alla drezone d propagazone. D'altra parte rsulta vero anche l vceversa, nell'ambto delle onde pane. Ossa un'onda pana TEM rspetto alla drezone d propagazone (che è n generale la drezone del vettore β, per cu s potzza β E =0 e β H =0) rsulta unforme, ossa β // α. Infatt, dalle relazon general, sempre valde per onde pane: k E =0e k H =0, segue: ( β -j α ) E = β E -j α E =0 => α E =0 ( β -j α ) H = β H -j α H =0 => α H =0 Se per assurdo non fosse β // α, allora quest due vettor real ndvduerebbero un pano, e dovendo essere β E =0 e α E =0, l vettore E dovrebbe essere polarzzato lnearmente nella drezone ortogonale a tale pano. La stessa cosa varrebbe per H, che rsulterebbe polarzzato lnearmente nella stessa drezone d E. Ma allora non potrebbe essere verfcata l'altra relazone generale E H =0. E' noto anche che se s consdera un'onda pana n cu l campo elettrco sa polarzzato lnearmente, tale onda rsulta un'onda TE rspetto alla drezone d propagazone. S not che cò è vero sa se g=0 (e allora α β, altrment se fosse α =0 s rcadrebbe nel caso TEM), sa se g 0 (e α non parallelo a β ). Infatt, n ogn caso, se E è polarzzato lnearmente s può scrvere per E o : 31

32 E o = E R (1+jb) per cu dalla relazone generale k E o =0 segue: ( β -j α ) E R (1+jb)=0, da cu β E R =0 β E =0 (e anche α E =0) Per l campo magnetco è noto che esso rsulta polarzzato (n generale ellttcamente) nel pano ndvduato da β e α. S può vedere che vale anche l vceversa, ossa se un'onda pana è TE rspetto alla drezone d propagazone (ossa E β =0) allora l campo elettrco rsulta polarzzato lnearmente lungo la drezone ortogonale al pano ndvduato da β e α. Infatt ovvamente, dalla k E =0 segue: β E -j α E =0 => E α =0 Analogamente s può vedere che per l campo magnetco l'potes d essere polarzzato lnearmente è equvalente all'avere un'onda TM rspetto alla drezone d propagazone. S not noltre che le onde pane TE e TM hanno soltanto tre component d campo (delle se) dverse da zero, e coè la componente d E (o d H rspettvamente) ortogonale al pano ndvduato da β e α, e le due component d H (o d E ) sul pano ndvduato da β e α. Questo fatto non è vero, ad esempo, per mod TE e TM n una guda d'onda (tranne partcolar valor per gl ndc d modo). S not nfne che s possono defnre anche camp TE e TM (rspetto ad una arbtrara drezone) n modo ancor pù generale (che non sano necessaramente onde pane), e s può dmostrare che n generale un arbtraro campo elettromagnetco s può esprmere come somma d un campo TE e d uno TM. Cascuno d tal camp può noltre venr rcavato a partre da una funzone scalare che soddsfa l'equazone d Helmholtz omogenea. 3

33 Vettore d Poyntng per onde pane S consder ora l'espressone del vettore d Poyntng per una generca onda pana. S ha: P = (1/) E H *=(1/) E [1/(ωµ) k E ]*=(1/ωµ*) E ( k * E *) = =(1/ωµ*) E o e -jk r ( k * E o *e jk* r )=(1/ωµ*) e -jk r e jk* r E o ( k * E o *) = =(1/ωµ*) e -jβ r e -α r e jβ r e -α r E o ( k * E o *) = = (1/ωµ*) e -α r E o ( k * E o *) Dalla regola del doppo prodotto vettorale segue: P = (1/ωµ*) e -α r [( E o E o *) k *-( E o k *) E o *]=(1/ωµ*) e -α r [ E o ( β +j α )-( E o k *) E o *] In modo analogo s poteva calcolare P n funzone del solo campo magnetco, ottenendos: P = (1/ωε c ) e -α r [ H o ( β -j α ) -( H o * k ) H o ] Consderando d nuovo la prma espressone, s vede che P ha una parte reale (per mezz non dspersv, o comunque non dsspatv) dretta come β (drezone d propagazone), una parte mmagnara dretta come α, oltre a un termne complesso, dato da: (-1/ωµ*) e -α r ( E o k *) E o * A questo proposto s not ancora una volta che la condzone (sempre vera) k E o =0 non mplca n generale che sa E o k *=0. Questo però s verfca, come s è detto, se almeno uno de due vettor E o e k è polarzzato lnearmente (oppure n partcolare è reale). Il caso d E o polarzzato lnearmente s è vsto che concde con l caso dell'onda pana TE (rspetto alla drezone d β ), mentre k polarzzato lnearmente corrsponde all'onda TEM. In tal stuazon rmane: P = (1/ωµ*) E o ( β +j α ) e -α r 33

34 Analogamente dall'espressone d P n funzone d H s vede che nel caso TEM o nel caso TM ( H o polarzzato lnearmente) s ha: P = (1/ωε c ) H o ( β -j α )e -α r Nel caso partcolare d conducbltà g nulla, β e α rsultano ortogonal. Esamnando ancora l'espressone n funzone d E, s può dmostrare (per µ reale) che l termne complesso è tale che la sua parte reale è ortogonale ad α, mentre la sua parte mmagnara è ortogonale a β. Qund s può scrvere n generale: P = (1/ωµ) E o β e -α r +j (1/ωµ) E o α e -α r + ( Re +j Im ) con Re α =0, Im β =0 Dunque nel caso d mezz prv d perdte ( β α ), l'ntera parte reale d P non ha component lungo la drezone d α, e l'ntera parte mmagnara d P non ha component lungo la drezone d β. Questo però non sgnfca che n generale la parte reale d P sa dretta come β e che la parte mmagnara sa dretta come α : nfatt l termne Re non sarà n generale parallelo a β, e l termne Im non sarà parallelo ad α. Cò s verfca tuttava ne cas TE, TM e TEM, cas n cu l termne ( Re +j Im ) s annulla. E' comunque mpropro per ncso assocare senza precauzon la parte reale del vettore d Poyntng ad un flusso d potenza attva, la parte mmagnara alla potenza reattva. Tornando nfne all'espressone nzale d P, s not che per un'onda pana generca l vettore d Poyntng dpende dalle coordnate solo tramte l fattore esponenzale e -α r. Esso è qund costante sul generco pano equampezza ortogonale ad α. Allora se P ha una componente reale nella drezone d α, s ha per così dre un flusso nfnto d potenza attva attraverso l pano stesso. 34

35 Cò avvene n mezz con perdte, oppure quando α =0 (caso n cu tutto lo spazo è equampezza). Questo rsultato assurdo è una conseguenza de lmt d valdtà fsca della soluzone onda pana. La sngola onda pana nfatt (come l'onda monocromatca nel caso della dpendenza dal tempo) contraddce l prncpo d ndetermnazone d Hesenberg. Questo non togle che una opportuna sovrapposzone d onde pane (spettro d onde pane) possa dar luogo a soluzon fscamente realzzabl (così come una sovrapposzone d onde monocromatche può dar luogo ad una dpendenza dal tempo realstca). 35

36 Vettore d Poyntng per ncdenza normale d onde pane unform S consderno ora le espresson per l vettore d Poyntng nel caso d ncdenza normale d un'onda pana unforme (polarzzata lnearmente) sulla superfce pana d separazone fra due mezz dvers. S supponga l mezzo 1 (da cu provene l'onda) prvo d perdte (g 1 =0, k 1 = β 1 reale, ed ζ 1 reale). L'asse z è entrante nel mezzo. Nel caso d trasmssone totale, che però per ncdenza normale può avvenre solo se l mezzo è dentco al mezzo 1, s avrebbe come è noto (ndcando con gl apc camp ncdente e rflesso e supponendo l campo elettrco polarzzato lungo x): E 1 = E =E o x o e -jβz =E 1 (z) x o H 1 = H =H o y o e -jβz =(E o /ζ 1 ) y o e -jβz =H 1 (z) y o con β=β 1 =ω µ 1 ε 1 Il vettore d Poyntng avrebbe l'espressone: P 1 =(1/) E 1 H 1 *=(1/) z o (E o e -jβz )(E o */ζ 1 e jβz )=(1/) E o /ζ 1 z o = =(1/) E 1 H * 1 z o Esso rsulterebbe puramente reale (flusso d potenza attva nella drezone z) e ndpendente da z, potendos qund pensare (con le debte cautele) come la potenza meda (n regme snusodale) trasportata dall'onda per untà d superfce normale a β. Il fatto che P 1 sa reale è legato al fatto che E 1 e H 1 sono n fase (essendo E 1 =ζ 1 H 1, con ζ 1 reale, s ha E 1 H 1 *=ζ 1 H 1 H 1 *=ζ 1 H 1, reale). S tratta d un'onda puramente progressva. Nel caso nvece d rflessone totale (che per ncdenza normale può avvenre solo se l mezzo è un conduttore perfetto) s ha come è noto, nel mezzo 1: E 1 = E + E r = x o (E o e -jβ1z +Eo r e jβ1z )= x o E o (e -jβ1z - e jβ1z )= 36

37 =- x o E o jsn(β1 z)=e 1 (z) x o H 1 = H + H r = y o (H o e -jβ1z -Ho r e jβ1z )= y o H o (e -jβ1z + e jβ1z ) = y o H o cos(β1 z)= = y o E o /(ζ1 ) cos(β 1 z)=h 1 (z) y o essendo E r o =-Eo, Ho r =-Ho. S not che H1 E 1 /ζ 1, perché la relazone d mpedenza vale sngolarmente per camp ncdente e rflesso, ma non per l campo somma. S ha per l vettore d Poyntng: P 1 =-(1/) z o E o j sn(β1 z) (E o */ζ1 ) cos(β 1 z)= =- z o E o /(ζ1 ) jsn(β 1 z)cos(β 1 z)=-j E o /ζ1 sn(β 1 z) z o = (1/) E 1 H * 1 z o Esso rsulta dpendente da z e puramente mmagnaro (potenza reattva). Cò è legato al fatto che E 1 e H 1 sono n quadratura. Infatt se E 1 =±j rh 1, con r reale, s ha: E 1 H 1 *=±j rh 1 H 1 *=±j r H 1, quanttà puramente mmagnara. S tratta d un'onda puramente stazonara. Negl altr cas E 1 H 1 * rsulta dotato sa d parte reale che d parte mmagnara. S ha E 1 =ch 1 =Me jφ H 1, per cu: E 1 H 1 *=Me jφ H 1 Nel caso generale, n cu non c'è rflessone totale, ma c'è ovvamente rflessone, s ha per camp nel mezzo 1: E 1 =E o x o e -jβ 1z +Eo r x o e jβ 1z =E1 (z) x o H 1 =H o y o e -jβ 1z -Ho r y o e jβ 1z =Eo /(ζ1 ) y o e -jβ 1z -Eo r /(ζ1 ) y o e jβ 1z = H1 (z) y o Per cu s ha l vettore d Poyntng: P 1 = z o (1/)(E o e -jβ 1 z +Eo r e jβ 1 z )(Eo */(ζ1 )e jβ 1z -Eo r */(ζ1 ) e -jβ 1z ) = = z o (1/ζ 1 ) ( E o - Eo r )- (j/ζ1 ) z o Im[E o Eo r *e -jβ 1 z ] Qund la potenza reale (parte reale del vettore d Poyntng) è la somma algebrca delle potenze (real) assocate all'onda ncdente e all'onda rflessa. Inoltre v è una parte mmagnara, che costtusce l termne cosddetto d nterferenza, dovuto al fatto che l calcolo del vettore d 37

38 Poyntng non è ovvamente un'operazone lneare, qund non s possono semplcemente sommare vettor d Poyntng delle due onde progressve component (ncdente e rflessa). S tratta n questo caso d un'onda n parte progressva e n parte stazonara. La parte mmagnara è la sola a comparre se E o = Eo r, ovvero qe =1, rflessone totale. Dunque nel caso generale, n cu c'è rflessone, ma non totale, per cu E o > Eo r, c sarà un flusso d potenza reale nella drezone entrante nel mezzo (come è ovvo, vsto che bsogna almentare n qualche modo l'onda trasmessa). Per quanto rguarda nvece la potenza reattva, legata al termne: Im[E o Eo r *e -jβ 1 z ] s può vedere che tale quanttà è nulla per ogn z se e solo se E o r =0, ossa assenza d onda rflessa. Infatt s ha: Im[E o Eo r *e -jβ 1 z ]=Im{[Re(Eo Eo r *)+jim(eo Eo r *)][cos(β1 z)-jsn(β 1 z)]} =-Re(E o Eo r *)sn(β1 z)+im(e o Eo r *)cos(β1 z) Essendo l seno e l coseno lnearmente ndpendent, l'annullars dell'espressone precedente per ogn z mplca che sa: Re(E o Eo r *)=Im(Eo Eo r *)=0 E o Eo r *=0 Eo r =0, essendo per potes Eo 0. Rmane da osservare che la parte reale del vettore d Poyntng nel mezzo 1, ossa: z o (1/)( E o /ζ1 - E r o /ζ1 ) è uguale al vettore d Poyntng nel mezzo (che rsulta reale nell'potes d assenza d perdte e supponendo l mezzo ndefnto). S ha nfatt: P =(1/) E H *=(1/) E t H t *=(1/) E t o /(ζ ) z o D'altra parte, dalle condzon d contnutà all'nterfacca per le component tangenzal del campo elettromagnetco, s aveva: E o t =Eo +Eo r 38

39 H t o =Ho -Ho r Eo t /ζ =(E o -Eo r )/ζ1 S ha allora: E t o /ζ =E t o Eo t */ζ = (1/ζ 1 ) (E o -Eo r )(Eo *+Eo r *)= = (1/ζ 1 )( E o +Eo Eo r *-Eo r Eo *- Eo r ) S rcord ora che E r o =qe E o, ove qe è reale nelle nostre potes d assenza d perdte, essendo (mezzo ndefnto) q E =(ζ -ζ 1 )/(ζ +ζ 1 ), dunque E r o ed E o sono n fase. Per cu: E r o Eo *=qe E o, quanttà reale, e qund uguale al suo conugato E o Eo r *. S ha allora: E t o /ζ =(1/ζ 1 ) ( E o - Eo r ), e nfne: P =(1/) (1/ζ 1 ) ( E o - Eo r ) z o come volevas dmostrare, e n accordo con l prncpo d conservazone dell'energa. S consderano ora le grandezze elettromagnetche nel domno del tempo, nzando dal caso d polarzzazone lneare. Nel caso d onda puramente progressva (trasmssone totale), s ha n mezz prv d perdte (ζ reale) e supponendo per semplctà (ma senza perdta d generaltà) E o reale postvo e β=β 1 : E (z,t)=re[ E (z)e jωt ]=Re[E o x o e -jβz e jωt ]=E o x o cos(ωt-βz) Il caso d E o genercamente complesso (coè dotato d una fase dversa da zero e da π) può rcondurs semplcemente ad un cambamento d orgne nell'asse de temp. Per l campo magnetco s ha: H (z,t)=re[(e o /ζ) y o e -jβz e jωt ]=(E o /ζ) y o cos(ωt-βz) Da cu, per l vettore d Poyntng: P (z,t)= E (t) H (t)= z o E o cos(ωt-βz)(e o /ζ) cos(ωt-βz)= =(E o /ζ) z o cos (ωt-βz) (S rcord che nel domno della frequenza P =(1/) (E o /ζ) z o e che cos x=[1+cos(x)]/) 39

40 Ovvamente l vettore d Poyntng complesso non è l fasore del vettore d Poyntng nel domno del tempo, poché comporta un'operazone d prodotto vettorale, non lneare rspetto al campo elettromagnetco. Calcolando ora le denstà d energa elettrca e magnetca s ha: w E (z,t)=(1/) ε E (t) E (t)=(1/) ε E o cos (ωt-βz) w H (z,t)=(1/) µ H (t) H (t)=(1/) µ (E o /ζ ) cos (ωt-βz)= =(1/) ε E o cos (ωt-βz) =we Come s vede, le due denstà d energa sono ugual, per cu l'energa totale è rpartta equamente nelle due forme. S può anche defnre una veloctà dell'energa. Infatt, pensando la veloctà come lo spazo percorso dall'energa nell'untà d tempo, e consderando l flusso d energa attraverso una superfce d area untara, ortogonale alla drezone d propagazone, tale spazo percorso concde numercamente con l volume occupato dall'energa che attraversa tale area nell'untà d tempo, coè dalla potenza. Tale potenza non è altro che l modulo del vettore d Poyntng. Per ottenere allora l volume cercato, basta dvdere tale quanttà per la denstà d energa, ottenendo: v e =P(t)/[w E (t)+w H (t)]=[(e o /ζ)cos (ωt-βz)]/[εeo cos (ωt-βz)]=1/(ζε)= = 1/ µε =v Tale quanttà v (veloctà della luce nel mezzo) è anche, come è noto, la veloctà d fase. Tuttava n altr cas queste due veloctà non sono necessaramente ugual. S rcord che la veloctà dell'energa è vncolata ad essere al massmo uguale alla veloctà della luce nel mezzo v, a dfferenza della veloctà d fase, che può essere anche maggore. La confgurazone del campo elettromagnetco è ad un certo stante (t=0) del tpo n fgura seguente. Il perodo delle oscllazon lungo z è π/β=π/(π/λ)=λ. I camp rsultano n fase, ad un massmo d E corrsponde un massmo d H, e così per mnm. 40

41 Al varare del tempo, le sagome s spostano rgdamente nel verso delle z postve, alla veloctà d fase. x E 0 E E 0 η y H z S consder ora l caso d onda puramente stazonara (rflessone totale), sempre per polarzzazone lneare. S ha nel domno del tempo (supponendo E o =E o reale postvo): E (z,t)=re[- x o E o j sn(βz)e jωt ]= x o E o sn(βz)sn(ωt) H (z,t)=re[(e o /ζ) y o cos(βz)e jωt ]= (E o /ζ) y o cos(βz)cos(ωt) La confgurazone del campo elettromagnetco è ad un certo stante (ωt=π/4) del tpo: x E o E E o η y H z 41

42 In questo caso camp sono n quadratura, con E (t) che raggunge l suo valore d pcco quando H (t) vale zero, e vceversa. Inoltre, coerentemente con la natura stazonara dell'onda, non c'è spostamento delle sagome nella drezone z. In corrspondenza a nod dell'onda stazonara per E, ossa su pan βz=nπ, z=nπ/(π/λ)=nλ/ con n ntero, s ha per ogn t: E =0. Il fatto che l campo elettrco tangenzale sa nullo su un certo pano geometrco permetterebbe d sostture a tale pano un pano fsco perfettamente conduttore. Infatt tale sosttuzone non modfca le condzon al contorno, e qund non altera l campo elettromagnetco. Questo fa capre come nel caso dell'onda stazonara s abba una stuazone a compartment stagn, senza nfluenze fra queste regon d spessore λ/. Per l vettore d Poyntng s ha: P (z,t)= z o E o sn(βz) sn(ωt) (E o /ζ) cos(βz) cos(ωt)= =4 z o (E o /ζ) sn(βz) cos(βz) sn(ωt) cos(ωt)= z o (E o /ζ) sn(βz) sn(ωt) S trova conferma del fatto che l valor medo nel tempo è nullo (non c'è flusso d potenza n meda). Per le denstà d energa s ha: w E (z,t)=(1/) ε 4 E o sn (βz) sn (ωt)=ε Eo sn (βz) sn (ωt) w H (z,t)=(1/) µ (E o /ζ ) 4 cos (βz) cos (ωt)=ε Eo cos (βz) cos (ωt) Come s vede, negl stant n cu la denstà d energa elettrca è massma, la denstà d energa magnetca è zero, e vceversa. L'energa vene scambata tra le forme elettrca e magnetca. S consder ora l caso d polarzzazone crcolare, e d onda puramente progressva (trasmssone totale), ossa del tpo (fasore): E =( x o -j y o )E o e -jβz Il verso d polarzzazone è antoraro, se s guarda dal sempano z>0 (essendo E y =-je x ). 4

43 Il campo magnetco sarà dato dalla relazone: H =(1/ζ) z o E, ossa: H =(1/ζ) z o ( x o -j y o )E o e -jβz =(1/ζ) ( y o +j x o )E o e -jβz =j( x o -j y o ) (E o /ζ) e -jβz I camp E ed H sono n quadratura. Nel domno del tempo s ha (supponendo E o reale): E (z,t)=re[( x o -j y o )E o e -jβz e jωt ]=E o x o cos(ωt-βz)+e o y o sn(ωt-βz) (E o sarebbe l raggo della crconferenza) H (z,t)=re[(1/ζ) ( y o +j x o )E o e -jβz e jωt ]= = (E o /ζ) y o cos(ωt-βz)-(e o /ζ) x o sn(ω t-βz) Le sagome d E x e E y, H x e H y s spostano rgdamente nel tempo con la veloctà d fase. In questo caso una rappresentazone dnamca dell'onda rcorda un moto elcodale nella drezone z. S può verfcare (come doveva essere, trattandos d un'onda pana unforme n mezz prv d perdte) che s ha E (z,t) H (z,t)=0 per ogn t. Consderando ora l vettore d Poyntng s ha: P (z,t)=[e o x o cos(ωt-βz)+e o y o sn(ωt-βz)] [E o /(ζ) y o cos(ωt-βz)+ -E o /(ζ) x o sn(ωt-βz)]= = z o (E o /ζ) cos (ωt-βz)+ z o (E o /ζ) sn (ωt-βz)= z o (E o /ζ) Per le denstà d energa s ha: w E (z,t)=(1/) ε[e o cos (ωt-βz)+e o sn (ωt-βz)]=(1/) ε E o w H (z,t)=(1/) µ[(e o /ζ ) cos (ωt-βz) + (E o /ζ ) sn (ωt-βz)]= = (1/) (µ/ζ ) E o =(1/) ε Eo =we Come s vede, nel caso della polarzzazone crcolare non c'è varazone delle denstà d potenza e d energa nel tempo e nello spazo. S ha un flusso stazonaro d potenza. Per l vettore d Poyntng complesso s ha: P =(1/) E H *=(1/)( x o -j y o )E o e -jβz (-j)( x o +j y o ) (E o /ζ) e jβz = =-(1/) j(e o /ζ)( x o -j y o ) ( x o +j y o )=-(1/)j(E o /ζ)(j z o +j z o )=(E o /ζ) z o ) P (z,t) puramente reale, come doveva essere. 43

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

urto v 2f v 2i e forza impulsiva F r F dt = i t

urto v 2f v 2i e forza impulsiva F r F dt = i t 7. Urt Sstem a due partcelle Defnzone d urto elastco, urto anelastco e mpulso L urto è un nterazone fra corp che avvene n un ntervallo d tempo normalmente molto breve, al termne del quale le quanttà d

Dettagli

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO INTODUZION ALL SPINZA 4: STUDIO DLLA POLAIZZAZION DIANT LAIN DI ITADO Un utle rappresentazone su come agscono le lamne su fasc coerent è ottenuta utlzzando vettor e le matrc d Jones. Vettore d Jones e

Dettagli

Soluzione del compito di Fisica febbraio 2012 (Udine)

Soluzione del compito di Fisica febbraio 2012 (Udine) del compto d Fsca febbrao (Udne) Elettrodnamca È data una spra quadrata d lato L e resstenza R, ed un flo percorso da corrente lungo z (ved fgura). Dcamo a e b le dstanze del lato parallelo pù vcno e pù

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

IL RUMORE NEGLI AMPLIFICATORI

IL RUMORE NEGLI AMPLIFICATORI IL RUMORE EGLI AMPLIICATORI Defnzon S defnsce rumore elettrco (electrcal nose) l'effetto delle fluttuazon d corrente e/o d tensone sempre present a termnal degl element crcutal e de dspostv elettronc.

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

PROBLEMA 1. Soluzione. β = 64

PROBLEMA 1. Soluzione. β = 64 PROBLEMA alcolare l nclnazone β, rspetto al pano stradale, che deve avere un motocclsta per percorrere, alla veloctà v = 50 km/h, una curva pana d raggo r = 4 m ( Fg. ). Fg. Schema delle condzon d equlbro

Dettagli

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza 5: Strato fsco: lmtazone d banda, formula d Nyqust; caratterzzazone del canale n frequenza Larghezza d banda d un segnale La larghezza d banda d un segnale è data dall ntervallo delle frequenze d cu è

Dettagli

Circuiti dinamici. Circuiti del secondo ordine. (versione del ) Circuiti del secondo ordine

Circuiti dinamici. Circuiti del secondo ordine.  (versione del ) Circuiti del secondo ordine rcut dnamc rcut del secondo ordne www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 9-6- rcut del secondo ordne rcut del secondo ordne: crcut l cu stato è defnto da due varabl x ( e x ( Per un crcuto

Dettagli

links utili:

links utili: dspensa d Govann Bachelet Meccanca de Sstem, maggo 2003 lnks utl: http://scenceworld.wolfram.com/physcs/angularmomentum.html http://hyperphyscs.phy-astr.gsu.edu/hbase/necon.html Momento della quanttà d

Dettagli

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare.

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare. Una semplce applcazone del metodo delle caratterstche: la propagazone d un onda d marea all nterno d un canale a sezone rettangolare. In generale la propagazone d un onda monodmensonale n una corrente

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

Misure Topografiche Tradizionali

Misure Topografiche Tradizionali Msure Topografche Tradzonal Grandezze da levare ngol Dstanze Gonometr Dstanzometro Stazone Totale Prsma Dslvell Lvello Stada Msure Strettamente Necessare Soluzone geometrca Msure Sovrabbondant Compensazone

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

COMPORTAMENTO DINAMICO DI ASSI E ALBERI

COMPORTAMENTO DINAMICO DI ASSI E ALBERI COMPORTAMENTO DNAMCO D ASS E ALBER VBRAZON TORSONAL Costruzone d Macchne Generaltà l problema del progetto d un asse o d un albero non è solo statco Gl ass e gl alber, come sstem elastc, sotto l azone

Dettagli

CARATTERISTICHE DEI SEGNALI RANDOM

CARATTERISTICHE DEI SEGNALI RANDOM CARATTERISTICHE DEI SEGNALI RANDOM I segnal random o stocastc rvestono una notevole mportanza poché sono present, pù che segnal determnstc, nella maggor parte de process fsc real. Esempo d segnale random:

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

Momento di forza su una spira immersa in un campo di induzione magnetica: il momento magnetico.

Momento di forza su una spira immersa in un campo di induzione magnetica: il momento magnetico. Momento d forza su una spra mmersa n un campo d nduzone magnetca: l momento magnetco. In precedenza abbamo vsto che la forza totale agente su una spra percorsa da una corrente mmersa n un campo d nduzone

Dettagli

Sviluppo in serie di Fourier. Introduzione e richiami sulle basi di spazi vettoriali. Serie di Fourier di segnali a supporto illimitato

Sviluppo in serie di Fourier. Introduzione e richiami sulle basi di spazi vettoriali. Serie di Fourier di segnali a supporto illimitato eora de segnal Introduzone a segnal determnat tolo untà Introduzone e rcham sulle bas d spaz vettoral Sere d Fourer d segnal a supporto lmtato Spettro d un segnale Sere d Fourer d segnal a supporto llmtato

Dettagli

La ripartizione trasversale dei carichi

La ripartizione trasversale dei carichi La rpartzone trasversale de carch La dsposzone de carch da consderare ne calcol della struttura deve essere quella pù gravosa, ossa quella che determna massm valor delle sollectazon. Tale aspetto nveste

Dettagli

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite:

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite: ESERCIZIO.1 Sa X la varable casuale che descrve l numero d teste ottenute nella prova lanco d tre monete truccate dove P(Croce)= x P(Testa). 1) Defnrne la dstrbuzone d probabltà ) Rappresentarla grafcamente

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

Campi magnetici variabili nel tempo. Esercizi.

Campi magnetici variabili nel tempo. Esercizi. Camp magnetc varabl nel tempo. Esercz. Mauro Sata Versone provvsora. Novembre 2014 1 Per comment o segnalazon d error scrvere, per favore, a: maurosata@tscalnet.t Indce 1 Induzone elettromagnetca. 1 2

Dettagli

Lez. 10 Forze d attrito e lavoro

Lez. 10 Forze d attrito e lavoro 4/03/015 Lez. 10 Forze d attrto e lavoro Pro. 1 Dott., PhD Dpartmento Scenze Fsche Unverstà d Napol Federco II Compl. Unv. Monte S.Angelo Va Cnta, I-8016, Napol mettver@na.nn.t +39-081-676137 1 4/03/015

Dettagli

Esercitazione 12 ottobre 2011 Trasformazioni circuitali. v 3. v 1. Per entrambi i casi, i valori delle grandezze sono riportati in Tab. I.

Esercitazione 12 ottobre 2011 Trasformazioni circuitali. v 3. v 1. Per entrambi i casi, i valori delle grandezze sono riportati in Tab. I. Eserctazone ottobre 0 Trasformazon crcutal Sere e parallelo S consderno crcut n Fg e che rappresentano rspettvamente un parttore d tensone e uno d corrente v v v v Fg : Parttore d tensone Fg : Parttore

Dettagli

Teorema di Thévenin-Norton

Teorema di Thévenin-Norton 87 Teorema d Téenn-Norton E detto ance teorema d rappresentazone del bpolo, consente nfatt d rappresentare una rete lneare a due morsett (A, B) con: un generatore d tensone ed un resstore sere (Téenn)

Dettagli

RIPARTIZIONE DELLE FORZE SISMICHE ORIZZONTALI

RIPARTIZIONE DELLE FORZE SISMICHE ORIZZONTALI RIPARTIZIONE DELLE FORZE SISMICHE ORIZZONTALI (Modellazone approssmata alla rnter) Le strutture degl edfc sottopost alle forze ssmche sono organsm spazal pù o meno compless, l cu comportamento va analzzato

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017 Esercz 3 Pan d ammortamento Eserczo 1. Un prestto d 12000e vene rmborsato n 10 ann con rate mensl e pano all

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi Allenament d matematca: Teora de numer e algebra modulare Soluzon esercz 29 novembre 2013 1. Canguro salterno. Un canguro salterno s trova a ped d una scala nfnta che ntende salre nel seguente modo: Salta

Dettagli

Corrente elettrica e circuiti

Corrente elettrica e circuiti Corrente elettrca e crcut Generator d forza elettromotrce Intenstà d corrente Legg d Ohm esstenza e resstvtà esstenze n sere e n parallelo Effetto termco della corrente Legg d Krchhoff Corrente elettrca

Dettagli

IL GRUPPO SIMMETRICO S n

IL GRUPPO SIMMETRICO S n EMILIO ZAPPA MATRICOLA UNIVERSITA DEGLI STUDI DI TORINO DIPARTIMENTO DI MATEMATICA ANNO ACCADEMICO 00/00 TESINA PER IL LABORATORIO DI COMBINATORICA IL GRUPPO SIMMETRICO S n IL GIOCO DEL Sa A un nseme fnto

Dettagli

Trasformatore monofase. Le norme definiscono il rendimento convenzionale di un trasformatore come: = + Perdite

Trasformatore monofase. Le norme definiscono il rendimento convenzionale di un trasformatore come: = + Perdite Rendmento l rendmento effettvo d un trasformatore vene defnto come: otenza erogata al carco η otenza assorbta dalla rete 1 1 1 1 Le norme defnscono l rendmento convenzonale d un trasformatore come: η otenza

Dettagli

Principi di ingegneria elettrica. Lezione 2 a

Principi di ingegneria elettrica. Lezione 2 a Prncp d ngegnera elettrca Lezone 2 a Defnzone d crcuto elettrco Un crcuto elettrco (rete) è l nterconnessone d un numero arbtraro d element collegat per mezzo d fl. Gl element sono accessbl tramte termnal

Dettagli

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE E IL TERRITORIO METODI DI LOCALIZZAZIONE DEL RISALTO IDRAULICO RELATORE Ch.mo Prof. Ing.

Dettagli

Elementi di statistica

Elementi di statistica Element d statstca Popolazone statstca e campone casuale S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..) e

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestone della produzone e della supply chan Logstca dstrbutva Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Un algortmo per l flusso su ret a costo mnmo: l smplesso su ret Convergenza

Dettagli

B - ESERCIZI: IP e TCP:

B - ESERCIZI: IP e TCP: Unverstà d Bergamo Dpartmento d Ingegnera dell Informazone e Metod Matematc B - ESERCIZI: IP e TCP: F. Martgnon Archtetture e Protocoll per Internet Eserczo b. S consder l collegamento n fgura A C =8 kbt/s

Dettagli

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( )

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( ) Generaltà Problema: soluzone d una equazone derenzale alle dervate ordnare d ordne n: n n K soggetta alle n condzon nzal: K n Ovvero rcercare la soluzone d un sstema d n equazon derenzal ordnare del prmo

Dettagli

Elettricità e circuiti

Elettricità e circuiti Elettrctà e crcut Generator d forza elettromotrce Intenstà d corrente Legg d Ohm esstenza e resstvtà Effetto termco della corrente esstenze n sere e n parallelo Legg d Krchoff P. Maestro Elettrctà e crcut

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Lezione n.13. Regime sinusoidale

Lezione n.13. Regime sinusoidale Lezone 3 Regme snusodale Lezone n.3 Regme snusodale. Rcham sulle funzon snusodal. etodo de fasor e fasor. mpedenza ed ammettenza. Dagramm fasoral 3. Potenza n regme snusodale 3. Potenza attva e reattva

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3:

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3: Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 3: 21022012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/31? Captalzzazone msta S usa l regme composto per l

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Fondamenti di meccanica classica: simmetrie e leggi di conservazione

Fondamenti di meccanica classica: simmetrie e leggi di conservazione Fondament d meccanca classca: smmetre e legg d conservazone d Marco Tulu A. A. 2005/2006 1 Introduzone Un corpo s dce omogeneo se ha n ogn suo punto ugual propretà fsche e chmche, ed è sotropo se n ogn

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

TEOREMI DI EQUIVALENZA E SIMMETRIE

TEOREMI DI EQUIVALENZA E SIMMETRIE Facoltà d Ingegnera Corso d laurea specalstca n Ingegnera Elettronca Dspense per l corso d Camp Elettromagnetc II Prof. Fabrzo Frezza TEOREMI DI EQUIVALENZA E IMMETRIE Gampero Lovat Unverstà Laapenza droma

Dettagli

La retroazione negli amplificatori

La retroazione negli amplificatori La retroazone negl amplfcator P etroazonare un amplfcatore () sgnfca sottrarre (o sommare) al segnale d ngresso (S ) l segnale d retroazone (S r ) ottenuto dal segnale d uscta (S u ) medante un quadrpolo

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro Metod d anals www.de.ng.unbo.t/pers/mastr/ddattca.htm ersone del -0-00 Premessa Nel caso pù generale è possble ottenere la soluzone d un crcuto rsolendo un sstema formato

Dettagli

Elettronica dello Stato Solido Prova scritta del 4 settembre 2007

Elettronica dello Stato Solido Prova scritta del 4 settembre 2007 Elettronca dello Stato Soldo Prova scrtta del 4 settebre 7 Cognoe e Noe Matrcola Fla Posto Es.) In un esperento d dffrazone d ragg n un crstallo cubco, la cella untara del retcolo recproco s trova ad essere

Dettagli

Statistica descrittiva

Statistica descrittiva Statstca descrttva. Indc d poszone. Per ndc d poszone d un nseme d dat, ordnat secondo la loro randezza, s ntendono alcun valor che cadono all nterno dell nseme. Gl ndc pù usat sono: I. eda. II. edana.

Dettagli

Soluzione: Il campo generato da un elemento di filo dl è. db r = (1)

Soluzione: Il campo generato da un elemento di filo dl è. db r = (1) 1 Eserco 1 - Un flo conduttore percorso da corrente ha la forma mostrata n fgura dove tratt rettlne sono molto lungh. S calcol l campo d nduone magnetca ( dreone, verso e modulo) nel punto P al centro

Dettagli

LA CONVERSIONE STATICA ELETTRICA/ELETTRICA

LA CONVERSIONE STATICA ELETTRICA/ELETTRICA A COVERSIOE STATICA EETTRICA/EETTRICA a conversone statca elettrca/elettrca può avvenre n due mod: converttor statc a semconduttor dspostv elettromagnetc (trasformator) I a conversone statca elettrca/elettrca

Dettagli

5. Baricentro di sezioni composte

5. Baricentro di sezioni composte 5. Barcentro d sezon composte Barcentro del trapezo Il barcentro del trapezo ( FIURA ) s trova sull asse d smmetra oblqua (medana) della fgura; è suffcente, qund, determnare la sola ordnata. A tal fne,

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

Induzione elettromagnetica

Induzione elettromagnetica Induzone elettromagnetca L esperenza d Faraday L'effetto d produzone d corrente elettrca n un crcuto prvo d generatore d tensone fu scoperto dal fsco nglese Mchael Faraday nel 83. Egl studò la relazone

Dettagli

Dai circuiti ai grafi

Dai circuiti ai grafi Da crcut a graf Il grafo è una schematzzazone grafca semplfcata che rappresenta le propretà d nterconnessone del crcuto ad esso assocato Il grafo è costtuto da un nseme d nod e d lat Se lat sono orentat

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

LA CAPACITÀ ELETTRICA DEI CORPI

LA CAPACITÀ ELETTRICA DEI CORPI Pagna 1 d 6 LA CAPACIÀ ELERICA DEI CORPI La capactà elettrca de corp rappresenta l atttudne de corp ad osptare sulla loro superfce una certa quanttà d carca elettrca. L U.I. d msura è l FARAD segue pertanto

Dettagli

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student.

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student. Pccol campon I parametr della dstrbuzone d una popolazone sono n generale ncognt devono essere stmat dal campone de dat spermental per pccol campon (N N < 30) z = (x µ)/ )/σ non ha pù una dstrbuzone gaussana

Dettagli

Correlazione lineare

Correlazione lineare Correlazone lneare Varable dpendente Mortaltà per crros 50 45 40 35 30 5 0 15 10 5 0 0 5 10 15 0 5 30 Consumo d alcool Varable ndpendente Metodologa per l anals de dat spermental L anals d stud con varabl

Dettagli

Corso di laurea in Ingegneria per l Ambiente e il Territorio a.a RETI TOPOGRAFICHE

Corso di laurea in Ingegneria per l Ambiente e il Territorio a.a RETI TOPOGRAFICHE Corso d laurea n Ingegnera per l Ambente e l Terrtoro a.a. 006-007 Prof. V. Franco: Topografa e tecnche cartografche RETI TOPOGRAFICHE Unverstà degl Stud d Palermo Dpartmento d Rappresentazone Corso d

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE AA 2016/2017 1 Esercz 2 Regme d sconto commercale Eserczo 1 Per quale durata una somma a scadenza S garantsce lo stesso valore

Dettagli

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu)

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu) lement d Anals Numerca, Probabltà e Statstca, modulo 2: lement d Probabltà e Statstca ( cfu) Probabltà e Statstca (6 cfu) Scrtto del 06 febbrao 205. Secondo Appello Id: A Nome e Cognome: same da 6 cfu

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

Potenzialità degli impianti

Potenzialità degli impianti Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Potenzaltà degl mpant Impant ndustral Potenzaltà degl mpant 1 Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Defnzone della potenzaltà

Dettagli

I generatori dipendenti o pilotati e gli amplificatori operazionali

I generatori dipendenti o pilotati e gli amplificatori operazionali 108 Lucano De Menna Corso d Elettrotecnca I generator dpendent o plotat e gl amplfcator operazonal Abbamo pù volte rcordato che generator fn ora ntrodott, d tensone e d corrente, vengono dett deal per

Dettagli

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO ECONOMIA INDUSTRIALE Unverstà degl Stud d Mlano-Bcocca Chrstan Garavagla Soluzone 7 a) L ndce d concentrazone C (o CR k ) è la somma delle uote d mercato (o share)

Dettagli

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE GIOVANNI CRUPI, ANDREA DONATO SUMMARY. We characterze a set of

Dettagli

Università degli Studi di Roma Tor Vergata Dipartimento di Ing. Elettronica corso di ELETTRONICA APPLICATA RETROAZIONE & OSCILLATORI

Università degli Studi di Roma Tor Vergata Dipartimento di Ing. Elettronica corso di ELETTRONICA APPLICATA RETROAZIONE & OSCILLATORI Unverstà degl tud d oma Tor Vergata Dpartmento d ng. Elettronca corso d EETTON PPT ETOZONE & OTO POEDMENTO PE OVEE UT ON ETOZONE dentfca l tpo d reazone determna l crcuto dell amplfcatore senza reazone

Dettagli

Unità Didattica N 5. Impulso e quantità di moto

Unità Didattica N 5. Impulso e quantità di moto Imnpulso e quanttà d moto - - Impulso e quanttà d moto ) Sstema solato : orze nterne ed esterne...pag. 2 2) Impulso e quanttà d moto...pag. 3 3) Teorema d conservazone della quanttà d moto...pag. 6 4)

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Appello di FISICA, 22 febbraio 2011

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Appello di FISICA, 22 febbraio 2011 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Appello d FISICA, febbrao 11 1) Un autocarro con massa a peno carco par a M = 1.1 1 4 kg percorre con veloctà costante v = 7 km/h, un tratto stradale rettlneo. A causa

Dettagli

CORSO DI FISICA TECNICA 2 AA 2013/14 ACUSTICA. Lezione n 2:

CORSO DI FISICA TECNICA 2 AA 2013/14 ACUSTICA. Lezione n 2: CORSO DI FISICA TECNICA AA 013/14 ACUSTICA Lezone n : Lvell sonor: operazon su decbel e lvello sonoro equvalente. Anals n requenza de segnal sonor, bande d ottava e terz d ottava. Rumore banco e rumore

Dettagli

Ettore Limoli. Lezioni di Matematica Prof. Ettore Limoli. Sommario. Calcoli di regressione

Ettore Limoli. Lezioni di Matematica Prof. Ettore Limoli. Sommario. Calcoli di regressione Sto Personale d Ettore Lmol Lezon d Matematca Prof. Ettore Lmol Sommaro Calcol d regressone... 1 Retta d regressone con Ecel... Uso della funzone d calcolo della tendenza... 4 Uso della funzone d regressone

Dettagli

Progetto Lauree Scientifiche. La corrente elettrica

Progetto Lauree Scientifiche. La corrente elettrica Progetto Lauree Scentfche La corrente elettrca Conoscenze d base Forza elettromotrce Corrente Elettrca esstenza e resstvtà Legge d Ohm Crcut 2 Una spra d rame n equlbro elettrostatco In un crcuto semplce

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

Valutazione dei Benefici interni

Valutazione dei Benefici interni Corso d Trasport Terrtoro prof. ng. Agostno Nuzzolo Valutazone de Benefc ntern Valutazone degl ntervent Indvduazone degl effett rlevant La defnzone degl effett rlevant per un ntervento sul sstema d trasporto

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica.

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica. Lezone 7 Prereqst: L'nseme de nmer nter Lezone 6 Nmer prm Teorema Fondamentale dell'artmetca Defnzone 7 Un nmero ntero p dverso da 0 e s dce prmo se per ogn a b Z Altrment p s dce composto p ab p a oppre

Dettagli

MODELLISTICA DI SISTEMI DINAMICI

MODELLISTICA DI SISTEMI DINAMICI CONTROLLI AUTOMATICI Ingegnera Gestonale http://www.automazone.ngre.unmore.t/pages/cors/controllautomatcgestonale.htm MODELLISTICA DI SISTEMI DINAMICI Ing. Federca Gross Tel. 059 2056333 e-mal: federca.gross@unmore.t

Dettagli

V n. =, e se esiste, il lim An

V n. =, e se esiste, il lim An Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT La Fg. rappresenta un parttore resstvo, formato da squadre d restor tutt ugual ad, conness n cascata, e l cu numero n s fa tendere ad nfnto.

Dettagli

Capitolo 11: IL METODO DEI MINIMI QUADRATI. Nel Capitolo precedente ci siamo posti il problema di determinare la miglior retta che passa per

Capitolo 11: IL METODO DEI MINIMI QUADRATI. Nel Capitolo precedente ci siamo posti il problema di determinare la miglior retta che passa per Captolo : IL METODO DEI MINIMI QUADRATI. La mglor retta Nel Captolo precedente c samo post l problema d determnare la mglor retta che passa per cert punt spermental, ed abbamo dscusso un metodo graco.

Dettagli

Sommario. Obiettivo. Quando studiarla? La concentrazione. X: carattere quantitativo tra le unità statistiche. Quando studiarla?

Sommario. Obiettivo. Quando studiarla? La concentrazione. X: carattere quantitativo tra le unità statistiche. Quando studiarla? Corso d Statstca a.a. 9- uando studarla? Obettvo Dagramma d Lorenz Rapporto d concentrazone rea d concentrazone Esemp Sommaro La concentrazone uando studarla? Obettvo X: carattere quanttatvo tra le untà

Dettagli

Lezione n. 7. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità. Antonino Polimeno 1

Lezione n. 7. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità. Antonino Polimeno 1 Chmca Fsca Botecnologe santare Lezone n. 7 Legge d Raoult Legge d Henry Soluzon deal Devazon dall dealt dealtà Antonno Polmeno 1 Soluzon / comportamento deale - Il dagramma d stato d una soluzone bnara,

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modell descrttv, statstca e smulazone Master per Smart Logstcs specalst Roberto Cordone (roberto.cordone@unm.t) Statstca descrttva Cernusco S.N., govedì 28 gennao 2016 (9.00/13.00) 1 / 15 Indc d poszone

Dettagli

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013 Modul su un domno a deal prncpal Maurzo Cornalba versone 15/5/2013 Sa A un anello commutatvo con 1. Indchamo con A k l modulo somma dretta d k cope d A. Un A-modulo fntamente generato M s dce lbero se

Dettagli

Luciano Battaia. Versione del 22 febbraio L.Battaia. Condensatori e resistenze

Luciano Battaia. Versione del 22 febbraio L.Battaia. Condensatori e resistenze Lucano attaa Versone del 22 febbrao 2007 In questa nota presento uno schema replogatvo relatvo a condensator e alle, con partcolare rguardo a collegament n sere e parallelo. Il target prncpale è costtuto

Dettagli

Centro di massa. Coppia di forze. Condizioni di equilibrio. Statica Fisica Sc.Tecn. Natura. P.Montagna Aprile pag.1

Centro di massa. Coppia di forze. Condizioni di equilibrio. Statica Fisica Sc.Tecn. Natura. P.Montagna Aprile pag.1 L EQUILIBRIO LEQU L Corpo rgdo Centro d massa Equlbro Coppa d forze Momento d una forza Condzon d equlbro Leve pag.1 Corpo esteso so e corpo rgdo Punto materale: corpo senza dmenson (approx.deale) Corpo

Dettagli

RAPPRESENTAZIONE DI MISURE. carta millimetrata

RAPPRESENTAZIONE DI MISURE. carta millimetrata carta mllmetrata carta mllmetrata non è necessaro rportare sul foglo la tabella (ma auta; l mportante è che sta da qualche parte) carta mllmetrata 8 7 6 5 4 3 smbolo della grandezza con untà d msura!!!

Dettagli

Le forze conservative e l energia potenziale

Le forze conservative e l energia potenziale S dcono conservatve quelle orze che s comportano n accordo alla seguente denzone: La orza F s dce conservatva se l lavoro eseguto da tale orza sul punto materale P mentre s sposta dalla poszone P 1 alla

Dettagli

1. Fissato un conveniente sistema di riferimento cartesiano Oxy si studino le funzioni f e g e se ne disegnino i rispettivi grafici G, G.

1. Fissato un conveniente sistema di riferimento cartesiano Oxy si studino le funzioni f e g e se ne disegnino i rispettivi grafici G, G. Problema 1 S consderno le funzon f e g defnte, per tutt gl x real, da: f ( x) = x 3 4 x, g( x) = sn( π x) 1. Fssato un convenente sstema d rfermento cartesano Oxy s studno le funzon f e g e se ne dsegnno

Dettagli

x(t) x[n] x q [n] x q [n] Campionamento Quantizzazione Codifica

x(t) x[n] x q [n] x q [n] Campionamento Quantizzazione Codifica 1. a conversone analogco dgtale (A/D) a conversone A/D è una operazone che permette d rappresentare un segnale analogco, coè contnuo nel domno del tempo e delle ampezze, medante una seuenza d campon numerc.

Dettagli

Probabilità cumulata empirica

Probabilità cumulata empirica Probabltà cumulata emprca Se s effettua un certo numero d camponament da una popolazone con dstrbuzone cumulata F(y), s avranno allora n campon y, y,, y n. E possble consderarne la statstca d ordne, coè

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli