Esame di stato di istruzione secondaria superiore Indirizzi: LI02 SCIENTIFICO LI03 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE Tema di matematica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esame di stato di istruzione secondaria superiore Indirizzi: LI02 SCIENTIFICO LI03 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE Tema di matematica"

Transcript

1 Nicol D Ros Murià Esm di so di isruzion scondri suprior Indirizzi: LI SCIENIFICO LI - SCIENIFICO - OPZIONE SCIENZE APPLICAE m di mmic Il cndido risolv uno di du problmi rispond qusii dl qusionrio PROBLEMA Si sgundo un corso, nll'mbio dll'orinmno univrsirio, pr l prprzion gli sudi di Mdicin. Il docn inroduc l lzion dicndo ch un mdico bn prpro dv disporr di conoscnz, nch mmich, ch prmno di cosruir modlli d inrprr i di ch diniscono lo so di slu l siuzion clinic di pzini. Al uo gruppo di lvoro vin ssgno il compio di prprr un lzion sul m: "com vri nl mpo l concnrzion di un rmco nl sngu?". S il rmco vin somminisro pr vi ndovnos, si ipoizz pr smplicià ch l concnrzion dl rmco nl sngu rggiung subio il vlor mssimo ch immdimn inizi diminuir, in modo proporzionl ll concnrzion sss; nl cso ch il docn i h chiso di discur, pr ogni or ch pss l concnrzion diminuisc di / dl vlor ch vv nll or prcdn.. Individu l unzion ( ) ch prsn l ndmno richiso, ipoizzndo un concnrzion g inizil () = (microgrmmi milliliro) rpprsnl gricmn in un pino crsino ml g vn in sciss il mpo sprsso in or in ordin l concnrzion sprss in. ml S invc l somminisrzion vvin pr vi inrmuscolr, il rmco vin dpprim inio nl muscolo progrssivmn pss nl sngu. Si ipoizz prno ch l su concnrzion nl sngu umni pr un cro mpo, rggiung un mssimo poi inizi diminuir con un ndmno simil qullo risconro nl cso dll somminisrzion pr vi ndovnos.. Scgli r l sguni unzioni qull ch riini più d pr rpprsnr l ndmno dscrio pr il cso dll somminisrzion pr vi inrmuscolr, giusiicndo l u scl: y y sin y y. rcci il grico dll unzion scl in un pino crsino vn in sciss il mpo sprsso in g or in ordin l concnrzion y sprss in dscrivi l su crrisich principli, in ml rpporo l grico dll unzion rliv ll somminisrzion pr vi ndovnos. Pr vir dnni gli orgni ni quli il rmco si ccumul è ncssrio nr soo conrollo l concnrzion dl rmco nl sngu. Supponndo ch in un orgno il rmco si ccumuli con un g vlocià v, sprss in (microgrmmi milliliro ll or), proporzionl ll su concnrzion ml h nl sngu:

2 Nicol D Ros Murià v. Drmin l qunià ol di rmco ccumul nll orgno nl cso dll somminisrzion ndovnos di qull inrmuscolr sudi in prcdnz. In qul dll du l ccumulo srà mggior? y

3 Nicol D Ros Murià SVOLGIMENO cur di Nicol D Ros con N. Scrivimo l squnz di vlori y, y, y,, y y y y y y y y y y y y y y y Quindi y y d imponndo y si ricv y, N L unzion y, N il suo grico pr d y ndrà pr. non è lro ch un unzion ponz con bs,, prno.. Al ndr di l unzion di somminisrzion inrmuscolr dv vvicinrsi qull ndovnos, prno: L unzion y v scr in quno pr L unzion y oscil nch s pr L unzion y y ss nd y sin v scr in quno ssum nl mpo un ndmno ss nd y v scr in quno pr ss nd L unzion y pr sclusion è qull ccbil; d lrond y ss nd y pr

4 Nicol D Ros Murià y è dini posiiv pr si nnull pr. L su. L unzion ' d è posiiv driv prim è y s y è srmn ; di consgunz crscn in, srmn dcrscn in, prno è sciss di mssimo rlivo d ssoluo. L driv scond è y '' d è posiiv s y ; di consgunz volg concvià vrso il bsso in, vrso l lo dcrscn in, prno è sciss di lsso. Di sguio il grico.. L qunià di rmco nll inrvllo mporl [, ] è pri v d y ol è pri l vlor dl i v d y d. Nl cso di somminisrzion ndovnos si h: d ; l qunià

5 Nicol D Ros Murià ml g,9 d d d v Nl cso di somminisrzion inrmuscolr si h: ml g d d v In conclusion l ccumulo mggior si h nl cso di somminisrzion inrmuscolr.

6 Nicol D Ros Murià PROBLEMA Si l unzion dini d.. Dimosr ch l unzion possid un unico puno di minimo un unico puno di lsso. Clcol l coordin dl minimo dl lsso rcci il grico dll unzion;. Dimosr ch l unzion g è simmric rispo ll ss rccirn il grico G g ;. Di P Q i puni di inrszion rispivmn dl grico dl grico G g con l ss, drmin l r A dll porzion di pino di dl sgmno PQ di grici G g ;. Si l migli di unzioni dini d, con R. Pr ogni unzion l ngn l grico nl puno di lsso inrsc l ss l ss dindo un ringolo rngolo. Drmin i vlori di pr i quli l ringolo è nch isoscl, spigndo il procdimno sguio. SVOLGIMENO. Sudimo l unzion. Ess è dini in R, inrsc l ss dll sciss in, qullo dll ordin in,, è posiiv pr, non prsn sinoi vricli prsn y com sinoo orizzonl sinisro in quno mnr. L driv prim è ' 8 prno srmn crscn in, srmn dcrscn in, prno, rlivo d ssoluo. è è minimo L driv scond è '' 8 prno volg concvià vrso l lo in, è l unico puno di lsso. Di sguio il grico., concvià vrso il bsso in, prno

7 Nicol D Ros Murià. L unzion simmric di g. Di sguio il grico G g. rispo ll ss dll ordin è

8 Nicol D Ros Murià. I puno P Q hnno coordin,,, Q P L r richis pr simmri è pri d d S. L driv prim scond di sono: '' ' Il puno, è puno di lsso. L ngn in, è pri y '.

9 Nicol D Ros Murià L r y inconr l ss dll sciss in, qullo dll ordin in,. Il ringolo è rngolo nll origin (,) d h i li pri d è isoscl s i li sono uguli ovvro s.

10 Nicol D Ros Murià QUESIONARIO. Drminr il volum dl solido gnro dll rozion orno ll r di quzion = dll rgion di pino di dll curv di quzion = + dll r sss.. Vriicr ch l unzion: h un disconinuià di prim spci ( slo ), mnr l unzion: h un disconinuià di rz spci ( inbil ).. Durn il picco mssimo di un pidmi di inlunz il % dll popolzion è cs mmlo: ) qul è l probbilià ch in un clss di lunni c n sino più di du ssni pr l inlunz? b) dscrivr l oprzioni d compir pr vriicr ch, s l inr scuol h lunni, l probbilià ch c n sino più di inlunzi è mggior dl 99%.. Nllo spzio sono di du pini α β rispivmn di quzion: α) + = β) + + = Dopo vr drmino l'quzion prmric dll r r d ssi individu vriicr ch ss pprin l pino γ di quzion + + =.. Considr l prbol di quzion =, nl primo qudrn ciscun ngn ll prbol di con gli ssi coordini un ringolo. Drminr il puno di ngnz in modo ch l r di l ringolo si minim.. Drminr l unzion dnsià di probbilià di un vribil csul coninu ch ssum vlori nll inrvllo [, ] con un disribuzion uniorm. Drminr inolr il vlor mdio, l vrinz, l dvizion sndrd di l vribil l probbilià ch si.. Clcolr il vlor mdio dll unzion nll inrvllo [, ] drminr il vlor dll in cui l unzion ssum il vlor mdio. 8. Un sr h il rggio ch umn l pssr dl mpo scondo un d unzion r(). Clcolr il rggio dll sr nll isn in cui l vlocià di crsci dll suprici sric l vlocià di crsci dl rggio sono numricmn uguli. 9. In un ririmno crsino nllo spzio Oyz, d l r r di quzioni: y z il pino P di quzion: + + =, drminr pr qul vlor di l r r il pino P sono prllli, l disnz r di ssi.. Scrivr l quzion dll circonrnz C ch h il cnro sull ss y d è ngn l grico G di ( ) = nl suo puno di lsso.

11 Nicol D Ros Murià SVOLGIMENO. L cubic = + l r = si inrscno ni puni,,,,, rgion di cui clcolr il volum sguio di rozion orno ll r rpprsn: l = è di sguio Viso ch il volum è invrin ll rslzioni, sguimo l sgun rslzion ch por l cubic d vr il puno di lsso (,) coincidni con l origin: Y y onndo Y con l nuov rgion d ruor orno ll r Y=. Il volum pr simmri è quindi pri :

12 Nicol D Ros Murià 9 9 d d Y V. L unzion è dini in R. Clcoo i ii dsro sinisro pr ndn zro: prno = è un disconinuià di prim spci in quno i ii dsro sinisro sono inii m divrsi. L unzion è dini in R. Clcoo i ii dsro sinisro pr ndn zro: prno = è un disconinuià di rz spci ovvro inbil in quno i ii dsro sinisro sono inii d uguli.. L disribuzion dgli mmli è un binomil di prmro p=, con disribuzion P.8.. L probbilià ch in un clss di lunni c n sino più di du ssni pr l inlunz è pri

13 Nicol D Ros Murià P P P P , % Pr n= convin pprossimr l disribuzion binomil con un gussin con mdi,, vrinz,,8, dvizion sndrd,,98. L disribuzion gussin h pd p dov l unzion ch Q,, 999 l probbilià richis è pri,98 d Q Q Q, Q, Q è bul. Ispzionndo l bll di vlori dll Q-uncion si vinc p prno è dimosro ch s l scuol h lunni l probbilià ch c n sino più di inlunzi è suprior l 99%.. Sommndo l du quzioni sguni α) + = β) + + = 8 si oin y. Sorndo l du quzioni si oin y z. Di consgunz il gnrico puno dll coppi di r è,,. Sosiundo qus uo nll quzion + + = si oin prno,, pprin ll r.. Si, con il puno di ngnz. L quzion dll ngn è pri y. l ngn inrsc l ss dll sciss in, l ss dll ordin in,. Il ringolo ormo ll ngn con gli ssi h i li ch misurno prno l r è pri S con.

14 Nicol D Ros Murià L driv prim dll unzion r è pri ' S ch è posiiv in, ngiv in, prno l r è minim pr il puno di ngnz è 8,.. Si l vribil uniorm, U. Il vlor mdio è pri d E ch coincid con il vlor mdio dll inrvllo (,). Il vlor qudrico mdio è pri d E. L vrinz è pri 9 E E. L dvizion sndrd è. L probbilià ch si è pri d p.. Il vlor mdio è pri d d V M Poiché dducimo ch l unzion è coninu drivbil in [,] prno è possibil pplicr il orm di Lgrng norm dl qul b b c b c ' :, Applicndo il orm in [,] si ricv ' :, c c poiché, ' si dduc ch il vlor ch grnisc il vlor mdio è d ricrcr in [,]. Prno, ' :, c c c c ch è ccbil.

15 Nicol D Ros Murià 8. L suprici dll sr è S r l su vlocià di vrizion è S ' 8 r r'. L vlocià di vrizion dl rggio è r' prno imponndo l uguglinz in un isn gnrico si ricv 8r r' r' r L r r è individu dl vor di componni (,,) mnr il pino + + = è individuo l vor di componni (,, -). L r d il pino sono prllli s il prodoo sclr r i vori dll componni è nullo ovvro s +-= =. Un puno dll r r è (,,) l disnz di (,,) dl pino di quzion + + = è d.. L driv scond di è '' si dduc ch, è puno di lsso. si nnull in L quzion dll r ngn è ll ngn h quzion y ; ssndo ' y prno l quzion dll norml dll inrszion dll norml con l ss dll ordin ovvro è. Il cnro dll circonrnz è do,. Il rggio dll circonrnz è pri ll disnz r il cnro il puno di lsso ovvro, di consgunz l quzion dll circonrnz è y 9 y y r

Il candidato risolva uno dei due problemi e risponda a 5 dei 10 quesiti del questionario. PROBLEMA 1 Si consideri la funzione:

Il candidato risolva uno dei due problemi e risponda a 5 dei 10 quesiti del questionario. PROBLEMA 1 Si consideri la funzione: Sssion suppliv PNI 8 9 Soluzion cur di Nicol D Ros ESAME DI STATO DI LICEO SCIENTIFICO Indirizzo Y: P.N.I. sciniico uonomi sciniico sciniico-cnologico Brocc Proo. CORSO SPERIMENTALE Sssion suppliv 9 Tm

Dettagli

INCERTEZZA DELLE MISURE. Terminologia. Precisione: riproducibilità di una misura Accuratezza: vicinanza della misura con il valore vero

INCERTEZZA DELLE MISURE. Terminologia. Precisione: riproducibilità di una misura Accuratezza: vicinanza della misura con il valore vero INCERTEZZA DELLE MISURE Trminologi Prcision: riproduciilià di un misur Accurzz: vicinnz dll misur con il vlor vro Error sprimnl incrzz dll misur Tipologi di rrori sprimnli Error sismico: ls sismicmn l

Dettagli

Matematica e Fisica classe 5G Dinamiche delle popolazioni

Matematica e Fisica classe 5G Dinamiche delle popolazioni Mmic Fisic clss 5G Dinmich dll popolzioni Modlli di crsci Crsci linr d/d D cosn + c + c c, l coninuo: d c d c + c è l pndnz dll r (). Crsci sponnzil rcg(c) o D linr Thoms Mlhus, 798 λ frzion di nuovi ni

Dettagli

Esercizi di Segnali Aleatori per Telecomunicazioni

Esercizi di Segnali Aleatori per Telecomunicazioni Corso di Lur in Inggnri Inormic corso di Tlcomunicioni (ro. G. Giun) (diing cur dll ing. F. Bndo) srcii di Sgnli Alori r Tlcomunicioni Diniioni di momni sisici (di rimo scondo ordin) di vriili lori: -

Dettagli

Simulazione Prova Esame di Maturità di Matematica per Liceo Scientifico a.s SIMULAZIONE PROVA ESAME DI MATURITA PER LICEO SCIENTIFICO

Simulazione Prova Esame di Maturità di Matematica per Liceo Scientifico a.s SIMULAZIONE PROVA ESAME DI MATURITA PER LICEO SCIENTIFICO imulzion Prov Esm di Murià di Mmi pr Lio iniio.s. IMULAZIONE PROVA EAME DI MATURITA PER LICEO CIENTIFICO Prov di Mmi PROBLEMA i d l unzion g d. Drminr i oiini,, d,, nll origin un mssimo in ;, in modo g

Dettagli

9. Eventuali Punti di non derivabilità: Punti angolosi, cuspidi e flessi a tangente verticale. 10. Derivata seconda (calcolo)

9. Eventuali Punti di non derivabilità: Punti angolosi, cuspidi e flessi a tangente verticale. 10. Derivata seconda (calcolo) Capisaldi:. Insim di sisnza Sudio di una funzion.. Evnuali simmri pari, dispari, priodicià. Grafico riconducibil. Inrszioni con gli assi 4. Sgno dlla funzion [f 0] 5. Limii alla fronira dll insim di dfinizion

Dettagli

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE PROPRIETA GEOMETRICHE DELL ELLISSOIDE Al fin di stbilir un gomtri sull llissoid di rotzion è ncssrio non solo dfinir l quzioni dll curv idon d individur

Dettagli

9. Eventuali Punti di non derivabilità: Punti angolosi, cuspidi e flessi a tangente verticale. 10.Derivata seconda (calcolo)

9. Eventuali Punti di non derivabilità: Punti angolosi, cuspidi e flessi a tangente verticale. 10.Derivata seconda (calcolo) Capisaldi:. Insim di sisnza Sudio di una funzion.. Evnuali simmri pari, dispari, priodicià. Grafico riconducibil. Inrszioni con gli assi. Sgno dlla funzion [f 0] 5. Limii alla fronira dll insim di dfinizion

Dettagli

Nicola De Rosa, Liceo scientifico Americhe sessione ordinaria 2010, matematicamente.it. si determini quella che passa per il punto di coordinate 1

Nicola De Rosa, Liceo scientifico Americhe sessione ordinaria 2010, matematicamente.it. si determini quella che passa per il punto di coordinate 1 Nicol De Ros, Liceo scienifico Americhe sessione ordinri, memicmene.i PROBLEMA Nel pino riferio coordine cresino Oy:. si sudi l funzione f e se ne rcci il grfico.. Si deermini l mpiezz degli ngoli individui

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

CORSO DI ELEMENTI COSTRUTTIVI DELLE MACCHINE (NUOVO ORDINAMENTO)

CORSO DI ELEMENTI COSTRUTTIVI DELLE MACCHINE (NUOVO ORDINAMENTO) COSO DI ELEETI COSTUTTIVI DELLE CCHIE (UOVO ODIETO) ESE DEL GEIO 00 Il coprchio di srboio osro in igur è ono su un crdin doo di un ccniso in grdo di cilirn l prur conrobilncindon il pso. Tl ccniso è cosiuio

Dettagli

Innanzitutto, dalla descrizione data nel testo dell esercizio possiamo scrivere:

Innanzitutto, dalla descrizione data nel testo dell esercizio possiamo scrivere: Corso di conomia Poliica II (HZ) /0/202 Soluzion srcizio Innanziuo, dalla dscrizion daa nl so dll srcizio possiamo scrivr: i * 0,06, 5. a) Sappiamo ch il asso di apprzzamno/dprzzamno dlla mona nazional

Dettagli

CORSO DI TOPOGRAFIA A - A.A. 2006-2007 ESERCITAZIONI - 09.05.07 ALLEGATO al file Esercizi di geodesia. r a. Z c. nella quale

CORSO DI TOPOGRAFIA A - A.A. 2006-2007 ESERCITAZIONI - 09.05.07 ALLEGATO al file Esercizi di geodesia. r a. Z c. nella quale CORSO DI TOPOGRAFIA A - A.A. 6-7 ESERCITAZIONI - 9.5.7 ALLEGATO l fil Esrcizi di godsi Ellissoid trrstr Fin dll scond mtà dl VII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di

Dettagli

Richiami su numeri complessi

Richiami su numeri complessi Richiami su numri complssi Insim C di numri complssi E' l'insim dll coppi ordina di numri rali = Z R j Z I ; Z R, Z I R Z = Z R, Z I j Δ = (0,1) unià immaginaria Si noi ch C conin R; in paricolar linsim

Dettagli

ECONOMIA POLITICA II - ESERCITAZIONE 8 Curva di Phillips Legge di Okun - AD

ECONOMIA POLITICA II - ESERCITAZIONE 8 Curva di Phillips Legge di Okun - AD ECOOMIA POLITICA II - ESERCITAZIOE 8 Curv di Phillips Legge di Okun - AD Esercizio 1 Sino β = 0.5, α = 1, u = u n = 6%, λ = 0.5, g y = 0.03. Supponee che nell nno 0 l disoccupzione si 6% e che l bnc cenrle

Dettagli

Equazioni e disequazioni logaritmiche ed esponenziali. Sintesi delle teoria e guida alla risoluzione di esercizi

Equazioni e disequazioni logaritmiche ed esponenziali. Sintesi delle teoria e guida alla risoluzione di esercizi Equzioni e disequzioni rimiche ed esponenzili Sinesi delle eori e guid ll risoluzione di esercizi Esponenzile Definizione: si definisce funzione esponenzile, con come vlori l qunià elev ll poenz. è l rgomeno

Dettagli

Equazioni e disequazioni logaritmiche ed esponenziali. Guida alla risoluzione di esercizi

Equazioni e disequazioni logaritmiche ed esponenziali. Guida alla risoluzione di esercizi Equzioni e disequzioni rimiche ed esponenzili Guid ll risoluzione di esercizi Esponenzile Definizione: si definisce funzione esponenzile, con come vlori l qunià elev ll poenz. è l rgomeno dell esponenzile,

Dettagli

Regime dell interesse composto.

Regime dell interesse composto. Regime dell ineresse composo Formule d usre : M = monne ; I = ineresse ; C = cpile ; r = fore di cpilizzzione K = somm d sconre ; s = sso di scono unirio ; i = sso di ineresse unirio V = vlore ule ; ν

Dettagli

x BP, controllando che risulta :

x BP, controllando che risulta : Corso sprimntl - Sssion suppltiv -.s. 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- PROBLEMA E dt un circonrnz di cntro O dimtro AB. Sul prolungmnto

Dettagli

Scuole Italiane all'estero ESAMI DI STATO DI LICEO SCIENTIFICO Sessione SECONDA PROVA SCRITTA Tema di Matematica

Scuole Italiane all'estero ESAMI DI STATO DI LICEO SCIENTIFICO Sessione SECONDA PROVA SCRITTA Tema di Matematica Sssion ordinri Estro Scuol Itlin llestro ESAMI DI STATO DI LICEO SCIENTIFICO Sssion SECONDA PROVA SCRITTA Tm di Mtmtic PROBLEMA E ssnto un cilindro quiltro Q il cui rio di bs misur. ) Si dtrmini il cono

Dettagli

Oscillazioni e onde. Oscillatore armonico. x( t) e sostituendo nell equazione originale si ha. dx dt. x cos infatti. Periodo del moto armonico T

Oscillazioni e onde. Oscillatore armonico. x( t) e sostituendo nell equazione originale si ha. dx dt. x cos infatti. Periodo del moto armonico T No il k:\scuola\corsi\corso isica\ond\oscillaori aronico sorzao orzaodoc Crao il 5// 87 Dinsion il: 86 b ndra Zucchini Elaborao il 5// all or 885, salao il 5// 87 sapao il 5// 88 Wb: hp://digilandrioli/prozucchini

Dettagli

INTEGRALE IN SENSO IMPROPRIO E INTEGRALE DI LEBESGUE

INTEGRALE IN SENSO IMPROPRIO E INTEGRALE DI LEBESGUE INTEGRALE IN SENSO IMPROPRIO E INTEGRALE DI LEBESGUE OSSERVAZIONI ED ESEMPI Si f : [,+ ) : R inegrbile in senso improprio. Se,, f() llor f è inegrbile secondo Lebesgue, e i due inegrli coincidono. Infi

Dettagli

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale.

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale. Aspaiv In qusa lzion: Discuiamo di prvisioni sull variabili fuur, di aspaiv. Dfiniamo assi di inrss nominal ral. Ridfiniamo lo schma IS-LM con inflazion. 198 Imporanza dll Aspaiv L dcisioni rlaiv a consumo

Dettagli

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale Mtmtic (Esrcitzioni) Equzioni Disquzioni sponnzili - ritmich dott. Frncsco Ginnino dott. Vlri Montti Indic lzion Funzion sponnzil Equzioni disquzioni sponnzili Funzion ritmo Equzioni disquzioni ritmich

Dettagli

Integrale di sin t/t e varianti

Integrale di sin t/t e varianti Ingral di sin / variani Annalisa Massaccsi dicmbr Ingral di sin / In rifrimno all s. 7 dl VII gruppo di srcizi, com già viso ad srciazion, vogliamo dimosrar ch sin / d R. Ossrvazion. Ossrviamo innanziuo

Dettagli

macchina in corrente continua a magneti permanenti Struttura base del motore dc

macchina in corrente continua a magneti permanenti Struttura base del motore dc cchin in corrn coninu ni prnni Sruur bs dl oor dc l clssico oor in corrn coninu h un pr ch ir d ppuno roor o nch rur un pr ch nr un cpo nico fisso (nll'spio i du ni colori) d sor. Un inrruor ron do couor

Dettagli

Lezione 15 (BAG cap. 14) Le aspettative: nozioni di base

Lezione 15 (BAG cap. 14) Le aspettative: nozioni di base Lzion 5 (BAG cap. 4) L aspaiv: nozioni di bas Corso di Macroconomia Prof. Guido Ascari, Univrsià di Pavia Il asso di inrss in rmini di mona è do asso di inrss nominal Il asso di inrss in rmini di bni è

Dettagli

Aletti Butterfly Certificate. Per mettere le ali al momento giusto.

Aletti Butterfly Certificate. Per mettere le ali al momento giusto. Ali Burfly Crific Pr mr l li l momno giuso Ali Crific Ti porrmo dov d solo non riuscirsi d rrivr Lo srumno finnzirio ch consn di rlizzr un srgi d invsimno ch pnsvi inccssibil Quso è Ali Crific Bnc Ali,

Dettagli

Capitolo 3 Lo studio dell'evoluzione di perturbazioni di densità di fermioni nell'universo in espansione

Capitolo 3 Lo studio dell'evoluzione di perturbazioni di densità di fermioni nell'universo in espansione Cpiolo Lo sudio dll'voluzion di prurbzioni di dnsià di frmioni nll'univrso in spnsion Rispo ll finlià dllo sudio di Bisnov-Kogn Zl'dovich sull'voluzion di prurbzioni di dnsià di pricll clssich non collisionli,

Dettagli

Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario.

Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario. LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIVA Il cndidto risolv uno di du problmi di qusiti sclti nl qustionrio. N. D Ros, L prov di mtmtic pr il lico PROBLEMA Si ABC un tringolo quiltro di

Dettagli

LA DOMANDA DI TRASPORTO CARATTERIZZAZIONE E MODELLI (Capitolo 2)

LA DOMANDA DI TRASPORTO CARATTERIZZAZIONE E MODELLI (Capitolo 2) Fcolà d Inggnr - Unvrsà d Bologn nno ccdmco: 00/ TECNIC ED ECONOMI DEI TSPOTI Docn: Mrno Lup L DOMND DI TSPOTO CTTEIZZZIONE E MODELLI (Cpolo Modll d domnd - Modllo d domnd dscrvo (o non compormnl: non

Dettagli

Spettro di densità di potenza e rumore termico

Spettro di densità di potenza e rumore termico Spro di dnsià di ponza rumor rmico lcomunicazioni pr l rospazio. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza- roprià sprali: rasormaa di Fourir RSFORM DI FOURIR NI-RSFORM DI FOURIR S s

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

L ELLISSOIDE TERRESTRE

L ELLISSOIDE TERRESTRE L ELLISSOIDE TERRESTRE Fin dll scond mtà dl XVII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di rifrimnto pr l Trr è stt individut in un ELLISSOIDE DI ROTAZIONE. E l suprfici

Dettagli

Simulazione Prova Esame di Maturità di Matematica per Liceo Scientifico SIMULAZIONE PROVA ESAME DI MATURITA PER LICEO SCIENTIFICO. Prova di Matematica

Simulazione Prova Esame di Maturità di Matematica per Liceo Scientifico SIMULAZIONE PROVA ESAME DI MATURITA PER LICEO SCIENTIFICO. Prova di Matematica Simulzion Prov Esm di Mturità di Mtmtic pr Lico Scintiico SIMULAZIONE PROVA ESAME DI MATURITA PER LICEO SCIENTIFICO PROBLEMA Prov di Mtmtic Si dt l unzion. Studir l unzion dtrminndo l ntur vntuli punti

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

SVOLGIMENTO. 2 λ = b S

SVOLGIMENTO. 2 λ = b S RELAZIONE Dimnsionar sol d anima dl longhron d il rivsimno dl bordo di aacco, in una szion disan 4 m dalla mzzria, pr un ala monolonghron di un vlivolo avn l sguni cararisich: - pso oal W 4700 N - suprfici

Dettagli

Funzioni lineari e affini. Funzioni lineari e affini /2

Funzioni lineari e affini. Funzioni lineari e affini /2 Funzioni linari aini In du variabili l unzioni linari sono dl tipo a b l unzioni aini sono dl tipo a b c Il graico di una unzion linar è un piano passant pr l origin il graico di una unzion ain è un piano.

Dettagli

ESERCIZIO 1 Calcolare i raggi di curvatura delle sezioni normali principali nel Polo Nord dell' ellissoide di Hayford.

ESERCIZIO 1 Calcolare i raggi di curvatura delle sezioni normali principali nel Polo Nord dell' ellissoide di Hayford. CORSO DI OOGRAFIA A - A.A. 006-007 ESERCIAZIOI - 09.05.06 ESERCIZI DI GEODESIA ESERCIZIO 1 Clcolr i rggi di curvtur dll szioni normli principli nl olo ord dll' llissoid di Hyford. 1) Szioni ormli rincipli

Dettagli

ELABORAZIONE di DATI SPERIMENTALI

ELABORAZIONE di DATI SPERIMENTALI ELABORAZIONE DATI SPERIMENTALI Prof. Giovnn CATANIA Prof. Rit DONATI Dr. Tibrio T DI CORCIA L stribuzion norml o gusn com modlità borzion dti sprimntli qtittivmnt numro I N T R O D U Z I O N E Un Un dll

Dettagli

TRASFORMATA DI LAPLACE

TRASFORMATA DI LAPLACE TRASFORMATA DI LAPLACE. Inrodzion. In qo cpiolo dirmo n opror ingrl noo com l rorm di Lplc. Prim di dcrivr l opror ingrl prmimo lcn dinizioni. Un nzion F i dic conin ri in [,] è dini conin in [,], d cczion,

Dettagli

INTEGRALI. 1. Integrali indefiniti

INTEGRALI. 1. Integrali indefiniti INTEGRALI. Intgrli indiniti Si un unzion ontinu in [, ]. Un unzion F dinit ontinu in [, ], drivil in ], [, disi primitiv di in [, ] s F, ], [. Tormi. S F è un primitiv di in [, ] llor nh G F, on R, è un

Dettagli

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo.

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. 6. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. Funzion sponnzil f ( ) fissto f : ( + ) è l bs dll funzion sponnzil d è fisst è l sponnt dll funzion

Dettagli

Esempi di domande per l esame di Economia Monetaria

Esempi di domande per l esame di Economia Monetaria Esmpi di domand pr l sam di Economia Monaria La domanda di mona 1. In ch modo gli conomisi di Cambridg modificano l quazion dgli scambi di Fishr con quali consgunz?. Com si possono sprimr i guadagni asi

Dettagli

Esercitazione Dicembre 2014

Esercitazione Dicembre 2014 Esercitzione 10 17 Dicembre 2014 Esercizio 1 Un economi chius è crtterizzt di seguenti dti: A = 400 M = 250 γ = 1.5 (moltiplictore dell politic fiscle) β = 0.8 moltiplictore dell politic monetri z = 0.25

Dettagli

Il ruolo delle aspettative in economia

Il ruolo delle aspettative in economia Capiolo XV. Il ruolo dll aspaiv in conomia . Tassi di inrss nominali rali Il asso di inrss in rmini di mona è chiamao asso di inrss nominal. Il asso di inrss sprsso in rmini di bni è chiamao asso di inrss

Dettagli

Laurea triennale in BIOLOGIA A. A

Laurea triennale in BIOLOGIA A. A Laura rinnal in BIOLOGIA A. A. 3-4 4 CHIMICA Vn 8 novmbr 3 Lzioni di Chimica Fisica Cinica chimica: razioni paralll razioni conscuiv Effo dlla mpraura sulla cosan di vlocià Prof. Anonio Toffoli Chimica

Dettagli

Ellisse. L ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi. definizione. P semidistanza focale

Ellisse. L ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi. definizione. P semidistanza focale Elliss dfinizion L lliss è il luogo gomtrio di punti dl pino tli h l somm dll distnz d du punti fissi F1 F2 dtti fuohi è ostnt, ioè: smiss mggior smiss minor P smidistnz fol F 2 smidistnz fol F 1 F 2 smiss

Dettagli

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le Pro. Frnando D Anglo. class 5DS. a.s. 007/008. Nll pagin sgunti trovrt una simulazion di sconda prova su cui lavorrmo dopo l vacanz di Pasqua. Pr mrcoldì 6/03/08 guardat il problma 4 i qusiti 1 8 9-10.

Dettagli

tx P ty P 1 + t(z P 1)

tx P ty P 1 + t(z P 1) Esrcizi dll dcim sttimn - Soluzioni Indichimo con S R 3 l sfr unitri nll mtric Euclid di R 3, oro S {x, y, z R 3 x + y + z 1}. Indichimo con N S il polo nord il polo sud di S, rispttimnt, oro N,, 1 S,,

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

La valutazione finanziaria

La valutazione finanziaria STUDIO BERETTA DOTTTARELLI TTARELLI DOTTORI COMMERCIALISTI ASSOCIATI Srgio Bra La valuazion finanziaria Prmssa Il valor dl capial conomico vin simao considrando i flussi di cassa prodoi in fuuro dall imprsa

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

1 REGOLE DI INTEGRAZIONE

1 REGOLE DI INTEGRAZIONE UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcolà di Frmci e Medicin - Corso di Lure in CTF REGOLE DI INTEGRAZIONE. REGOLA DI INTEGRAZIONE PER PARTI f(x)g (x)dx = f(x)g(x) g(x)f (x)dx f(x)dg(x) = f(x)g(x)

Dettagli

Appendice Analisi in frequenza dei segnali

Appendice Analisi in frequenza dei segnali Appndic Analisi in rqunza di sgnali - Appndic Analisi in rqunza di sgnali - Sgnali priodici Sviluppo in sri di Fourir Un sgnal è priodico nl mpo quando si rip ogni scondi. Si vda, com smpio, il sgnal in

Dettagli

MODELLI DEI SISTEMI ELETTROMECCANICI

MODELLI DEI SISTEMI ELETTROMECCANICI Ing Mrigrzi Dotoli Controlli Autotici NO (9 CFU) Modlli di Sisti Elttroccnici MODELLI DEI SISTEMI ELETTROMECCANICI Nl sguito ci occupio dll odllzion di sisti ibridi ch cobinno sisti lttrici con sisti ccnici,

Dettagli

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo Integrli ll integrle deinito ll integrle indeinito Indice dell lezione Integrle Deinito Rettngoloide Integrle deinito come re del rettngoloide Esempi e propriet Primitiv Teorem ondmentle del clcolo integrle

Dettagli

Matematica 15 settembre 2009

Matematica 15 settembre 2009 Nom: Mtriol: Mtmti 5 sttmbr 2009 Non sono mmss loltrii. Pr l domnd rispost multipl, rispondr brrndo o rhindo hirmnt un un sol lttr. Pr l ltr domnd srivr l soluzion on svolgimnto ngli spzi prdisposti..

Dettagli

Macroeconomia. Laura Vici. laura.vici@unibo.it. www.lauravici.com/macroeconomia LEZIONE 22. Rimini, 19 novembre 2014

Macroeconomia. Laura Vici. laura.vici@unibo.it. www.lauravici.com/macroeconomia LEZIONE 22. Rimini, 19 novembre 2014 Macroconomia Laura Vici laura.vici@unibo.i www.lauravici.com/macroconomia LEZIONE 22 Rimini, 19 novmbr 2014 Macroconomia 362 I mrcai finanziari in conomia apra Dao ch l acquiso o la vndia di aivià finanziari

Dettagli

Lezione 21 (BAG cap. 19) Regimi di cambio. Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia

Lezione 21 (BAG cap. 19) Regimi di cambio. Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Lzion 21 (BAG cap. 19) Rgimi di cambio Corso di Macroconomia Prof. Guido Ascari, Univrsià di Pavia Il capiolo si occupa Aggiusamno nl mdio priodo d ffi di una svaluazion Crisi dl asso di cambio Tasso di

Dettagli

Errore standard di misurazione. Calcolare l intervallo del punteggio vero

Errore standard di misurazione. Calcolare l intervallo del punteggio vero Error sandard di misurazion Calcolar l inrvallo dl punggio vro Problmi di prcision La prsnza noa dll rror di misura rnd incro il significao dl punggio onuo. L andibilià dl s ci informa di quano rror di

Dettagli

Realizzazione fisica di superfici non orientabili mediante Prototipazione Rapida

Realizzazione fisica di superfici non orientabili mediante Prototipazione Rapida Rlizzzion fisic di suprfici non orinbili mdin Prooipzion Rpid Grgorio Frnzoni, Dnil Lcc, Monic Rluc Miscu, Sfno Monldo, Fbrizio Murgi, Piro Pili, drin urcu, CRS4, r GEMMS/EIP. chnicl Rpor, luglio 3 bsrc

Dettagli

Fisica Generale A. 2. Esercizi di Cinematica. Esercizio 1. Esercizio 1 (III) Esercizio 1 (II)

Fisica Generale A. 2. Esercizi di Cinematica. Esercizio 1. Esercizio 1 (III) Esercizio 1 (II) Fisic Generle A. Esercizi di Cinemic hp://cmpus.cib.unibo.i/57/ Esercizio 1 Un puno merile è incolo muoersi luno un uid reiline. Al empo il puno merile si ro in quiee. Il puno merile cceler con ccelerzione:

Dettagli

m kg M. 2.5 kg

m kg M. 2.5 kg 4.1 Due blocchi di mss m = 720 g e M = 2.5 kg sono posti uno sull'ltro e sono in moto sopr un pino orizzontle, scbro. L mssim forz che può essere pplict sul blocco superiore ffinchè i blocchi si muovno

Dettagli

Nota. Talvolta, quando non occorre mettere in evidenza il vettore v, si può indicare una

Nota. Talvolta, quando non occorre mettere in evidenza il vettore v, si può indicare una Cpiolo Le rslzioni. Richimi di eori Definizione. Si do un eore del pino. Si chim rslzione di eore (che si indic con il simolo ) l corrispondenz dl pino in sé che d ogni puno P ssoci il puno (P) = P le

Dettagli

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza Alri Informtic II Cpitolo 5 Alri E' un gnrlizzzion dll struttur squnz Si rilss il rquisito di linrità: ogni lmnto (nodo) h un solo prdcssor m può vr più succssori. Il numro di succssori (figli) può ssr

Dettagli

TRASFORMAZIONI GEOMETRICHE Una trasformazione geometrica del piano in sé è una corrispondenza biunivoca tra i punti del piano: ( ) , :,

TRASFORMAZIONI GEOMETRICHE Una trasformazione geometrica del piano in sé è una corrispondenza biunivoca tra i punti del piano: ( ) , :, TRASFORMAZIONI GEOMETRICHE Un rsforzione geoeric del pino in sé è un corrispondenz iunivoc r i puni del pino P P, P P P è l igine di P rispeo ll rsforzione. Ad ogni puno P(,) corrisponde uno ed un solo

Dettagli

Costruiamo un aquilone SLED

Costruiamo un aquilone SLED Costruimo un quon SLED Sgnr sul sgmnto cod du rifrimnti 3 cm dgli spigoli (vrso l'trno) poi sul bordo ntrior dll du li 11 cm dgli spigoli (vrso l'strno); qusto punto si dvono pplicr l du mnich sul bordo

Dettagli

FUNZIONI A DUE VARIABILI RICERCA DEI PUNTI DI MASSIMO E MINIMO

FUNZIONI A DUE VARIABILI RICERCA DEI PUNTI DI MASSIMO E MINIMO Pg. Pro. Muro D Ettorr UNZIONI A DUE VARIABILI RICERCA DEI PUNTI DI MASSIMO E MINIMO PREMESSE DERIVATE PARZIALI DI UNA UNZIONE A DUE O PIU VARIABILI Dt un unzon d n vrbl z=... n s dc drvt przl l unzon

Dettagli

EQUAZIONI DIFFERENZIALI. dx dx. = = = 2e

EQUAZIONI DIFFERENZIALI. dx dx. = = = 2e EQUAZINI DIFFERENZIALI Dfinizion : si dfinisc qzion diffrnzil ordinri ordinr diffrnil qion n qzion fnzionl ch bbi com inconi n fnzion ƒx dll ribil rl x ch sbilisc n lm fr x lmno n dll s dri. Dfinizion

Dettagli

ESERCITAZIONE N 12 SIMULAZIONE DI UN SISTEMA DI ATTESA M/M/1

ESERCITAZIONE N 12 SIMULAZIONE DI UN SISTEMA DI ATTESA M/M/1 ESERCITAZIONE N 12 SIMULAZIONE DI UN SISTEMA DI ATTESA M/M/1 Toria dll cod La oria dll cod comprnd lo sudio mamaico dll cod o sismi d'asa. La formazion dll lin di asa è un fnomno comun ch si vrifica ogni

Dettagli

Corso di Analisi: Algebra di Base. 3^ Lezione

Corso di Analisi: Algebra di Base. 3^ Lezione Corso di Analisi: Algbra di Bas ^ Lzion Disquazioni algbrich. Disquazioni di. Disquazioni di. Disquazioni faoriali. Disquazioni biquadraich. Disquazioni binomi. Disquazioni fra. Sismi di disquazioni. Allgao

Dettagli

11 DIMENSIONAMENTO DEL PIANO DI CODA ORIZZONTALE

11 DIMENSIONAMENTO DEL PIANO DI CODA ORIZZONTALE 11 DIMENSIONAMENTO DEL PIANO DI CODA ORIZZONTALE Avendo già fo un dimensionmeno preliminre del pino di cod orizzonle, riporimo i di oenui d le sim: S.7m b 3.7m profilo: NACA 0006 AR 5.15 Per effeure il

Dettagli

1 Espressioni polinomiali

1 Espressioni polinomiali 1 Espressioni polinomili Un monomio è un espressione letterle in un vribile x che contiene un potenz inter (non negtiv, cioè mggiori o uguli zero) di x moltiplict per un numero rele: x n AD ESEMPIO: sono

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

Nome.Cognome classe 5D 21 Febbraio Verifica di matematica. (punti 1.5) x è sempre decrescente in R? (punti 1)

Nome.Cognome classe 5D 21 Febbraio Verifica di matematica. (punti 1.5) x è sempre decrescente in R? (punti 1) Nome.Conome clsse 5D Febbrio Veriic di mtemtic Dt l unzione: ke k k per < per punti.5 Dimostr che k R è continu e derivbile R b Trov il vlore di k tle che l tnente l rico dell unzione nel suo punto di

Dettagli

MODELLI VISCOELASTICI DEL TESSUTO OSSEO MEDIANTE PROVE DI RILASSAMENTO

MODELLI VISCOELASTICI DEL TESSUTO OSSEO MEDIANTE PROVE DI RILASSAMENTO Associzion Ilin r l Anlisi dll Sollcizioni (AIAS XXXVI Convgno Nzionl 4-8 Smbr 7 Univrsià dgli Sudi di Noli Fdrico II Scond Univrsià dgli Sudi di Noli MODLLI VISCOLASTICI DL TSSUTO OSSO MDIANT PROV DI

Dettagli

Distribuzione gaussiana

Distribuzione gaussiana Appunti di Misur Elttric Distribuion gaussiana Funion dnsità di probabilità di Gauss... Calcolo dlla distribuion cumulativa pr una variabil di Gauss... Funion dnsità di probabilità congiunta...6 Funion

Dettagli

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica wwwmatmaticamntit Nicola D Rosa maturità Esam di stato di istruzion scondaria suprior Indirizzi: Scintifico Comunicazion Opzion Sportiva Tma di matmatica Il candidato risolva uno di du problmi risponda

Dettagli

ALLEGATO 4 al Disciplinare di gara DICHIARAZIONE DI OFFERTA ECONOMICA. Procedura per l affidamento della gestione del

ALLEGATO 4 al Disciplinare di gara DICHIARAZIONE DI OFFERTA ECONOMICA. Procedura per l affidamento della gestione del Allgo 4 ALLEGAT 4 l Disciplin di g DICHIARAZINE DI FFERTA ECNMICA Pocdu p l idmno dll gsion dl «Svizio di css vo dll Isiuo Compnsivo PISSASC I» p il innio 01/01/2014 31/12/2016 (Schm di o: compil su c

Dettagli

Corso di Macroeconomia

Corso di Macroeconomia Corso di Macroconomia LE ASPETTATIVE: NOZIONI DI BASE. Tassi di inrss nominali rali Il asso di inrss in rmini di mona è chiamao asso di inrss nominal. Il asso di inrss sprsso in rmini di bni è chiamao

Dettagli

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme LIMITI DI FUNZINI. CNCETT DI LIMITE Esula dallo scopo di qusto libro la trattazion dlla toria sui iti. Tuttavia, pnsando di far cosa gradita allo studnt, ch dv possdr qusta nozion com background, ritniamo

Dettagli

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 )

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 ) Sri di Fourir a mpo coninuo La rapprsnazion di sgnali nl dominio dlla frqunza Jan Bapis Josph Fourir (768 83 ) Fourir sviluppò la oria mamaica dl calor uilizzando funzioni rigonomrich (sni cosni), ch noi

Dettagli

U.D. N 15 Funzioni e loro rappresentazione grafica

U.D. N 15 Funzioni e loro rappresentazione grafica 54 Unità Didttic N 5 Funzioni e loro rppresentzione grfic U.D. N 5 Funzioni e loro rppresentzione grfic ) Le coordinte crtesine ) L distnz tr due punti 3) Coordinte del punto medio di un segmento 4) Le

Dettagli

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO Pag. / Sssion ordinaria 7 Sconda prova scria Y557 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PIANO NAZIONALE INFORMATICA Tma di: MATEMATICA Il candidao risolva uno di du problmi risponda

Dettagli

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia COME SOPRAVVIVERE ALLA MATEMATICA di Giuli Cnzin e Dominique Cppelletti Come potrete notre inoltrndovi nel corso di Introduzione ll economi, l interpretzione dell teori economic non presuppone conoscenze

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

Corso di Analisi: Algebra di Base 5^ Lezione Logaritmi. Proprietà dei logaritmi Equazioni logaritmiche. Disequazioni logaritmiche. Allegato Esercizi.

Corso di Analisi: Algebra di Base 5^ Lezione Logaritmi. Proprietà dei logaritmi Equazioni logaritmiche. Disequazioni logaritmiche. Allegato Esercizi. Corso di Anlisi: Algbr di Bs ^ Lzion Logritmi. Proprità di ritmi Equzioni ritmih. Disquzioni ritmih. Allgto Esrizi. LOGARITMI : Pr ritmo intndimo un sprssion lttrl indint un vlor numrio. Dfinizion : Si

Dettagli

Un carrello del supermercato viene lanciato con velocità iniziale

Un carrello del supermercato viene lanciato con velocità iniziale Esempio 44 Un utomobile procede lungo l utostrd ll velocità costnte di m/s, ed inizi d ccelerre in vnti di m/s.5 proprio nell istnte in cui super un cmion fermo in un re di sost. In quel preciso momento

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è:

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è: Titolzione Acido Debole Bse Forte L rezione che vviene nell titolzione di un cido debole HA con un bse forte NOH è: HA(q) NOH(q) N (q) A (q) HO Per quest rezione l costnte di equilibrio è: 1 = = >>1 w

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLAI.M. DA CONEGNARE IL PRIMO GIORNO DI ATTIVITA DI PORTELLO DEVI RIOLVERE PRIMA DI TUTTO I PROBLEMI E GLI EERCIZI QUI ELENCATI. TERMINATI QUETI, RIOLVI ALCUNI

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

Decalogo alimentazione estate 2012

Decalogo alimentazione estate 2012 con l nu propon 10 przioi conigli pr un limnzion corr icur in un priodo gnrlmn ccompgno d mggior mpo libro, con biudini limnri divr ripo l ro dll nno: mggior numro di pi fuori c, cr nzion gli ppori nuli,

Dettagli

5. Funzioni elementari trascendenti

5. Funzioni elementari trascendenti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 5. Funzioni elementri trscendenti A. A. 2013-2014 1 FUNZIONI ESPONENZIALI Le più semplici funzioni esponenzili sono le funzioni f: R R definite

Dettagli