Figura 1. supporre inoltre che il disco sia soggetto ad una coppia frenante di tipo viscoso Γ

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Figura 1. supporre inoltre che il disco sia soggetto ad una coppia frenante di tipo viscoso Γ"

Transcript

1 DIMOSTRAZIONE DEL PERCHÉ AD UN UOVO CRUDO APPOGGIATO SU UN TAVOLO NON SI RIESCE AD IMPRIMERE UNA RAPIDA ROTA- ZIONE ASSIALE (COSA INVECE POSSIBILE PER UN UOVO SODO). Com è noo, s a un uovo soo appoggiao su un avolo vin imprssa una rapia roazion assial, l uovo manin al roazion pr un mpo abbasanza lungo. S invc la sssa prova vin faa con un uovo cruo allora la roazion subisc in un mpo molo brv un calo novol poco opo finisc. La iffrnza i comporamno nll u siuazioni ora consira ipn al fao ch quano l uovo è soo il suo inrno si può consirar solial al guscio pr cui l uovo è in sosanza un corpo solio, mnr quano l uovo è cruo il suo inrno è liquio quini è soggo al cosio sloshing. () Pr spigar il fnomno in sam snza ricorrr alla inamica i fluii, inifichiamo l uovo con il mollo mccanico mosrao nlla sgun Figura. Figura Il guscio è schmaizzao con un soil involucro llissoial, rigio omogno, la chiara il uorlo sono schmaizzai con un isco circolar psan, anch sso omogno, in grao i ruoar auonomamn all inrno ll involucro llissoial grazi a un asa rigia, i massa rascurabil, solial al isco passan pr il suo cnro (si suppon ch in un qualch moo l asa sia cosanmn a conao con la suprfici inrna ll involucro llissoial). Fra l srmià ll asa l involucro llissoial obbiamo supporr ch si manifsi una coppia i ipo viscoso Γ, non nulla s l involucro llissoial il isco hanno vlocià i roazion ivrsa. Dobbiamo supporr inolr ch il isco sia soggo a una coppia frnan i ipo viscoso Γ, ipnn alla sola vlocià i roazion l isco. La coppia Γ sinizza l inrazion viscosa fra il guscio la chiara, mnr la coppia Γ sinizza lo smorzamno l moo lla chiara a causa lla sua viscosià. Possiamo invc rascurar l azion ll ario i giro sull involucro llissoi. Infai, in gnral, l ffo ll ario i giro è rascurabil rispo all azion ll coppi Γ Γ la sua inrouzion complichrbb inuilmn la raazion mamaica in quano occorrrbb spzzar lo suio l problma in vari sai succssivi (com si v far, a smpio, quano si consira il moo i un puno marial vincolao a muovrsi su una suprfici scabra soo l azion i una forza i richiamo lasico). Smpr pr non complicar la raazion mamaica, possiamo assumr ch ) Ricoriamo ch si col rmin sloshing si inn il movimno ch si inuc in un fluio racchiuso in un connior a causa l moo l connior ssso. Tal movimno ha poi ovviamn anch un ffo sul moo l connior.

2 l involucro llissoial abbia simmria i roazion rascurar i moi i prcssion nuazion ll involucro llissoial l isco. Il nosro scopo infai è ar una spigazion l fnomno non suiar in aglio la roazion ll uovo. Così facno allora, l roazioni l sisma in sam avvngano cosanmn aorno a un ass prpnicolar al piano i appoggio, com mosrao in Figura il sisma ha u soli grai i librà, con novol smplificazion ll quazioni l moo. Sia m la massa ll involucro llissoial (coincin con la massa l guscio) m la massa l isco (coincin con la massa lla chiara l uorlo, quini maggior i qulla l guscio). Inichiamo quini, com mosrao in Figura, con ω la vlocià i roazion ll involucro llissoial con Ω la vlocià i roazion l isco. Sia infin J il momno inrzia ll involucro llissoial J il momno inrzia l isco aorno all ass i roazion consi - rao; chiaramn, J > J. Allora, l quazioni l moo l nosro sisma sono l sguni: J ω = Γ () () J Ω =Γ+Γ ov, pr quano prcnmn o, obbiamo assumr: Γ = ( ω Ω) (3) Γ = Ω (4) Nlla (3), con si è inicao il cofficin i accoppiamno viscoso fra involucro llissoial isco, mnr nlla (4) con si è inicao il cofficin i smorzamno viscoso lla roazion l isco. Chiaramn,, >. Avvalnosi ll (3) (4) l () () assumono la forma sgun: J ω = ( ω Ω) (5) J Ω = ( ω Ω ) Ω (6) All quazioni (5) (6), vono poi associarsi l conizioni iniziali: ω() = ω (7) Ω () = (8) Espliciano ω alla (6) si oin: J + ω = Ω + Ω (9)

3 quini anch: J + ω = Ω + Ω () Pr cui è possibil liminar ω nlla (5) onno un quazion iffrnzial linar l scono orin in Ω, ch ingraa in conformià a opporun conizioni iniziali, risolv in praica il problma in sam, in quano, noa la funzion Ω (), alla (9) si oin la funzion ω (). L quazion alla qual Ω v soisfar è la sgun: J J 4 Ω Ω Ω J + = J () JJ mnr l conizioni iniziali ch a ssa vono associarsi sono: Ω () = () Ω () = ω (3) J La () è la (7) mnr la (3) si oin alla (9) avvalnosi lla (7) lla (8). Com è noo, l ingral gnral lla quazion () è la funzion biparamrica: Ω (; c, c ) = c + c (4) ov c, c sono cosani arbirari mnr, sono l raici ll quazion algbrica: J + J 4 + J + J + = JJ (5) Impon no alla (4) l conizioni iniziali () (3) risula ch l cosani c, c bbono soisfar al sgun sisma algbrico linar: c c + = (6) c + c = ω (7) J pr cui, ossrvano ch l raici lla quazion (5) risulano: + + = + ± + J J ( J J) ( J J), J J J J (8) 3

4 possiamo conclur ch la funzion Ω () soluzion l problma iffrnzial (), (), (3) risula la sgun: Ω () = ω ( ) ( J J) ( J J) J J + + (9) E ncssario a quso puno suiar il sgno ll raici, in quano sso cararizza l proprià lla funzion Ω (). E facil vr ch comunqu siano i valori i si ha: ( J J) ( J J) J J + + > () Infai, il iscriminan ll quazion i scono grao in / ch si oin uguagliano a zro il primo mmbro lla () è: 6 J = () J pr cui, ssno pr finizion J, J >, si ha smpr < l quazion consiraa non amm raici rali. Il primo mmbro lla () è quini ffivamn smpr posiivo in quano lo è a smpio pr / =. In virù lla (), il nominaor lla (9) è quini smpr ral posiivo. I valori i, sono invc nrambi smpr rali ngaivi. Infai il rmin fra parnsi quar a scono mmbro lla (8) ha la forma sgun: a+ x± a + x bx () ov a b sono u cosani posiiv, ali ch a + x bx > pr ogni valor ral i x (ciò in virù lla ()). Esso prciò è smpr posiivo in quano: ( a+ b) x a + x bx = a + x + ax ax bx = ( a+ x) = ( a+ x) ( a+ b) x = ( a + x) < a+ x ( a+ x) (3) Possiamo quini conclur ch il moo l isco è smpr i ipo aprioico smorzao, inipnnmn ai valori i J, J,,, alrano lo è qullo ll involucro llissoial in virù lla (9). Non ci soffrmrmo olr su un analisi formal l moo l sisma mccanico consi - rao ci limiiamo solo a riporar qui i sguio, in Figura, l anamno ipico ll funzioni Ω () ω () ch scrivono il moo i roazion l isco ll involucro llissoial pr l conizioni iniziali a noi consira. 4

5 Figura Com si v, il mollo i uovo cruo a noi consirao m in vinza com la roazion lla chiara provochi un brusco rasfrimno i momno angolar al guscio alla chiara sssa ciò rn cono l prché con un uovo cruo si manifsi il fnomno l rapio smorzamno lla roazion. Si nga prsn infai ch il pso l guscio è novolmn infrior a qullo ll inrno ll uovo, com si porbb vrificar con un analisi lla funzion Ω (), più il rapporo J / J è gran, più il rasfrimno i momno angolar all involucro llissoial al isco è rapio rilvan (anch s poi, a parià i, il mpo i arrso è maggior). La sgun Figura 3, illusra quano ora o. Figura 3 Concluiamo la prsn noa consirano il caso i un uovo soo. In qusa siuazion, com si è già o, l uovo si può assimilar a un corpo rigio quini, con lo schma prcnmn a- oao (ov ora il isco si v assumr rigiamn connsso all involucro), la sua roazion può ssr scria pr mzzo l sgun problma iffrnzial l primo orin: ( J + J ) ω = h ( m+ m g ) g (4) 5

6 ω() = ω (5) ov a scono mmbro si è inrooo l ario i giro, cararizzao al cofficin imnsional h; nlla (4) g è l acclrazion i gravià. Si noi ch l inrouzion ll ario i giro è ora ssnzial pr giusificar lo smorzamno lla roazion pr il sisma in sam non cra problmi formali. Com si v, nl caso i un uovo soo lo smorzamno lla roazion assial risula linar non sponnzial com nl caso prcnmn consirao. Esso inolr è molo piccolo poiché al è i norma il valor i h (a mno i suprfici paricolarmn frnani com nl caso ll ovagli i spugna). La roazion i un uovo soo prosgu quini pr un mpo novol con uno smorzamno lno graual. M. G. Busao 6

Progetto di cinghie trapezoidali

Progetto di cinghie trapezoidali Progo i cinghi rapzoiali L cinghi rapzoiali sono uilizza rqunmn pr la rasmission i ponza Vanaggi Basso coso Smplicià i insallazion Capacià i assorbir vibrazioni orsionali picchi i coppia Svanaggi Mancanza

Dettagli

ECONOMIA POLITICA II - ESERCITAZIONE 4 Parità dei tassi d interesse IS-LM in economia aperta

ECONOMIA POLITICA II - ESERCITAZIONE 4 Parità dei tassi d interesse IS-LM in economia aperta CONOMIA POLITICA II - SRCITAZION 4 Parià i assi inrss IS-LM in conomia apra srcizio Suppon ch all sro il asso i inrss sia l 5.5% ch l aual asso i cambio nominal sia pari a.5. a) Nl caso in cui ci si aspi

Dettagli

Integrale di sin t/t e varianti

Integrale di sin t/t e varianti Ingral di sin / variani Annalisa Massaccsi dicmbr Ingral di sin / In rifrimno all s. 7 dl VII gruppo di srcizi, com già viso ad srciazion, vogliamo dimosrar ch sin / d R. Ossrvazion. Ossrviamo innanziuo

Dettagli

SVOLGIMENTO. 2 λ = b S

SVOLGIMENTO. 2 λ = b S RELAZIONE Dimnsionar sol d anima dl longhron d il rivsimno dl bordo di aacco, in una szion disan 4 m dalla mzzria, pr un ala monolonghron di un vlivolo avn l sguni cararisich: - pso oal W 4700 N - suprfici

Dettagli

CINETICA FENOMENOLOGICA

CINETICA FENOMENOLOGICA Univrsià gli sui i MILNO Facolà i GRRI El. i Chimica Chimica Fisica Mo. 2 CHIMIC FISIC Lzion 9 nno ccamico 200-20 Docn: Dimirios Fssas CINETIC FENOMENOLOGIC rasformazion chimica fisica microbiologica Sao

Dettagli

Lezione 15 (BAG cap. 14) Le aspettative: nozioni di base

Lezione 15 (BAG cap. 14) Le aspettative: nozioni di base Lzion 5 (BAG cap. 4) L aspaiv: nozioni di bas Corso di Macroconomia Prof. Guido Ascari, Univrsià di Pavia Il asso di inrss in rmini di mona è do asso di inrss nominal Il asso di inrss in rmini di bni è

Dettagli

Sollecitazioni semplici La torsione

Sollecitazioni semplici La torsione Sollciazioni smlici La orsion Considrazioni inroduiv Un lmno sruural è soggo a sollciazion di orsion quando su di sso agiscono du momni uguali d oosi giacni su un iano rndicolar al suo ass longiudinal

Dettagli

Laurea triennale in BIOLOGIA A. A

Laurea triennale in BIOLOGIA A. A Laura rinnal in BIOLOGIA A. A. 3-4 4 CHIMICA Vn 8 novmbr 3 Lzioni di Chimica Fisica Cinica chimica: razioni paralll razioni conscuiv Effo dlla mpraura sulla cosan di vlocià Prof. Anonio Toffoli Chimica

Dettagli

Innanzitutto, dalla descrizione data nel testo dell esercizio possiamo scrivere:

Innanzitutto, dalla descrizione data nel testo dell esercizio possiamo scrivere: Corso di conomia Poliica II (HZ) /0/202 Soluzion srcizio Innanziuo, dalla dscrizion daa nl so dll srcizio possiamo scrivr: i * 0,06, 5. a) Sappiamo ch il asso di apprzzamno/dprzzamno dlla mona nazional

Dettagli

Progetto di cinghie trapezoidali

Progetto di cinghie trapezoidali Progtto i cinghi trapzoiali L cinghi trapzoiali sono utilizzat frquntmnt pr la trasmission i potnza Vantaggi Basso costo Smplicità i installazion Capacità i assorbir vibrazioni torsionali picchi i coppia

Dettagli

Richiami su numeri complessi

Richiami su numeri complessi Richiami su numri complssi Insim C di numri complssi E' l'insim dll coppi ordina di numri rali = Z R j Z I ; Z R, Z I R Z = Z R, Z I j Δ = (0,1) unià immaginaria Si noi ch C conin R; in paricolar linsim

Dettagli

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 )

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 ) Sri di Fourir a mpo coninuo La rapprsnazion di sgnali nl dominio dlla frqunza Jan Bapis Josph Fourir (768 83 ) Fourir sviluppò la oria mamaica dl calor uilizzando funzioni rigonomrich (sni cosni), ch noi

Dettagli

Il ruolo delle aspettative in economia

Il ruolo delle aspettative in economia Capiolo XV. Il ruolo dll aspaiv in conomia . Tassi di inrss nominali rali Il asso di inrss in rmini di mona è chiamao asso di inrss nominal. Il asso di inrss sprsso in rmini di bni è chiamao asso di inrss

Dettagli

Corso di Macroeconomia

Corso di Macroeconomia Corso di Macroconomia LE ASPETTATIVE: NOZIONI DI BASE. Tassi di inrss nominali rali Il asso di inrss in rmini di mona è chiamao asso di inrss nominal. Il asso di inrss sprsso in rmini di bni è chiamao

Dettagli

Formule generali di carica e scarica dei condensatori in un circuito RC

Formule generali di carica e scarica dei condensatori in un circuito RC Formul gnrali di aria saria di ondnsaori in un iruio A ura di ugnio Amirano onnuo dll ariolo:. Inroduzion........ 2 2. aria saria di un ondnsaor..... 2 3. Formula gnral pr nsioni fiss..... 4 4. Formula

Dettagli

I sensori di spostamento

I sensori di spostamento I snsori di sposamno Mol grandzz (prssion, mpraura, forza, acclrazion, c.) vngono rasforma in uno sposamno, prima di ssr convri in un sgnal lrico. 1 I ponziomri i p p i o i p I ponziomri sono snsori di

Dettagli

Appendice Analisi in frequenza dei segnali

Appendice Analisi in frequenza dei segnali Appndic Analisi in rqunza di sgnali - Appndic Analisi in rqunza di sgnali - Sgnali priodici Sviluppo in sri di Fourir Un sgnal è priodico nl mpo quando si rip ogni scondi. Si vda, com smpio, il sgnal in

Dettagli

ESERCITAZIONE N 12 SIMULAZIONE DI UN SISTEMA DI ATTESA M/M/1

ESERCITAZIONE N 12 SIMULAZIONE DI UN SISTEMA DI ATTESA M/M/1 ESERCITAZIONE N 12 SIMULAZIONE DI UN SISTEMA DI ATTESA M/M/1 Toria dll cod La oria dll cod comprnd lo sudio mamaico dll cod o sismi d'asa. La formazion dll lin di asa è un fnomno comun ch si vrifica ogni

Dettagli

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011 Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo

Dettagli

Oscillazioni e onde. Oscillatore armonico. x( t) e sostituendo nell equazione originale si ha. dx dt. x cos infatti. Periodo del moto armonico T

Oscillazioni e onde. Oscillatore armonico. x( t) e sostituendo nell equazione originale si ha. dx dt. x cos infatti. Periodo del moto armonico T No il k:\scuola\corsi\corso isica\ond\oscillaori aronico sorzao orzaodoc Crao il 5// 87 Dinsion il: 86 b ndra Zucchini Elaborao il 5// all or 885, salao il 5// 87 sapao il 5// 88 Wb: hp://digilandrioli/prozucchini

Dettagli

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale.

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale. Aspaiv In qusa lzion: Discuiamo di prvisioni sull variabili fuur, di aspaiv. Dfiniamo assi di inrss nominal ral. Ridfiniamo lo schma IS-LM con inflazion. 198 Imporanza dll Aspaiv L dcisioni rlaiv a consumo

Dettagli

f x 45 Grandezza Coppia nom Velocità a vuoto Dimensioni Peso ➀ n imax

f x 45 Grandezza Coppia nom Velocità a vuoto Dimensioni Peso ➀ n imax S T I E B E R RUOTE IBERE GR.2 TIPO AS Sono ruo libr a rulli non auocnrani. In fas di insallazion è ncssario supporarl con cuscini prvdr lubrificazion nu. dimnsioni corrispondono ai cuscini dlla sri 62.

Dettagli

Sistemi dinamici lineari del 1 ordine

Sistemi dinamici lineari del 1 ordine Appuni di onrolli Auomaici Simi dinamici linari dl ordin Inroduzion... ipoa al gradino uniario... ipoa alla rampa... Empio...3 Empio...4 INTODUZIONE Si dfinic ima (lmnar) dl primo ordin un ima (linar mpo-invarian)

Dettagli

LABORATORIO DI FISICA INGEGNERIA "La Sapienza"

LABORATORIO DI FISICA INGEGNERIA La Sapienza ABOATOO D FSA NGEGNEA "a Sapinza" Prof. A. Sciubba APPOSSMAZONE NEAE o sudio di un qualsiasi sisma fisico richid una prima fas di modllizzazion nlla qual si crca di schmaizzar il fnomno in sudio in rmini

Dettagli

Lezione 21 (BAG cap. 19) Regimi di cambio. Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia

Lezione 21 (BAG cap. 19) Regimi di cambio. Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Lzion 21 (BAG cap. 19) Rgimi di cambio Corso di Macroconomia Prof. Guido Ascari, Univrsià di Pavia Il capiolo si occupa Aggiusamno nl mdio priodo d ffi di una svaluazion Crisi dl asso di cambio Tasso di

Dettagli

Corso di Analisi: Algebra di Base. 3^ Lezione

Corso di Analisi: Algebra di Base. 3^ Lezione Corso di Analisi: Algbra di Bas ^ Lzion Disquazioni algbrich. Disquazioni di. Disquazioni di. Disquazioni faoriali. Disquazioni biquadraich. Disquazioni binomi. Disquazioni fra. Sismi di disquazioni. Allgao

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Phillips (1958): Correlazione negativa stabile tra variazione percentuale dei salari monetari e il tasso di disoccupazione (Dati UK, )

Phillips (1958): Correlazione negativa stabile tra variazione percentuale dei salari monetari e il tasso di disoccupazione (Dati UK, ) INFLAZIONE E DISOCCUAZIONE: INTRODUZIONE hillips (958): Corrlazion ngaiva sabil ra variazion prcnal di salari monari il asso di disoccpazion (Dai UK, 86-957) Samlson Solow (960): confrmano il rislao di

Dettagli

Attuatore: Motore in corrente continua (DC)

Attuatore: Motore in corrente continua (DC) Auaor: Moor in corrn coninua DC Sisma: Movimnazion monoass Modllo pr moor DC Accoppiaor oico Circuio ingrao piloa pr moor DC Sisma di piloaggio razionao Encodr incrmnal 360 impulsi/giro Moor in DC Vi snza

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

del materiale sul carico critico

del materiale sul carico critico se compresse: ffei della non linearià RIF: LC III pag 39 del maeriale sul carico criico Il carico criico per unià di superficie corrispondene alla perdia di unicià della risposa in caso di comporameno

Dettagli

Il capitale è uno degli argomenti della funzione di produzione: Y = f(l,k)

Il capitale è uno degli argomenti della funzione di produzione: Y = f(l,k) MACROECONOMIA INVESTIMENTO Il capial è uno dgli argomni dlla funzion di produzion: Y = f(l,k) Il capial è rapprsnao dall insim di qui mzzi cnici ch parcipano alla produzion ma ch non si sauriscono nl ciclo

Dettagli

Spettro di densità di potenza e rumore termico

Spettro di densità di potenza e rumore termico Spro di dnsià di ponza rumor rmico lcomunicazioni pr l rospazio. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza- roprià sprali: rasormaa di Fourir RSFORM DI FOURIR NI-RSFORM DI FOURIR S s

Dettagli

Lezione 3. F. Previdi - Automatica - Lez. 3 1

Lezione 3. F. Previdi - Automatica - Lez. 3 1 Lzon 3. Movmno Equlbro F. Prv - Auomaca - Lz. 3 1 Schma lla lzon 1. Movmno ll usca un ssma LTI SISO. Movmno lbro movmno forzao 3. Equlbro un ssma LTI SISO 4. Guaagno saco un ssma LTI SISO F. Prv - Auomaca

Dettagli

9. Eventuali Punti di non derivabilità: Punti angolosi, cuspidi e flessi a tangente verticale. 10. Derivata seconda (calcolo)

9. Eventuali Punti di non derivabilità: Punti angolosi, cuspidi e flessi a tangente verticale. 10. Derivata seconda (calcolo) Capisaldi:. Insim di sisnza Sudio di una funzion.. Evnuali simmri pari, dispari, priodicià. Grafico riconducibil. Inrszioni con gli assi 4. Sgno dlla funzion [f 0] 5. Limii alla fronira dll insim di dfinizion

Dettagli

9. Eventuali Punti di non derivabilità: Punti angolosi, cuspidi e flessi a tangente verticale. 10.Derivata seconda (calcolo)

9. Eventuali Punti di non derivabilità: Punti angolosi, cuspidi e flessi a tangente verticale. 10.Derivata seconda (calcolo) Capisaldi:. Insim di sisnza Sudio di una funzion.. Evnuali simmri pari, dispari, priodicià. Grafico riconducibil. Inrszioni con gli assi. Sgno dlla funzion [f 0] 5. Limii alla fronira dll insim di dfinizion

Dettagli

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti Equazioni di Scondo Grado in Una Variabil, x Complt, Pur Spuri. Tcnich pr risolvrl d Esmpi svolti Francsco Zumbo www.francscozumbo.it http://it.gocitis.com/zumbof/ Qusti appunti vogliono ssr un ultrior

Dettagli

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza):

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza): Nozioni di bas sull conich (lliss (x^2/a^2)+(y^2/b^2)=1, iprbol(x^2/a^2)-(y^2/b^2)=1, parabola circonfrnza): Dlta =0, significa un solo punto di intrszion tra fascio di rtt conica Dlta >=0, significa 2

Dettagli

Calore Specifico

Calore Specifico 6.08 - Calor Spcifico 6.08.a) Lgg Fondamntal dlla Trmologia Un modo pr far aumntar la Tmpratura di un Corpo è qullo di cdr ad sso dl Calor, pr smpio mttndolo in Contatto Trmico con un Corpo a Tmpratura

Dettagli

Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e temi d esame sull oscillatore armonico

Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e temi d esame sull oscillatore armonico Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e emi d esame sull oscillaore armonico 4-marzo4 1. Una massa M = 5. kg è sospesa ad una molla di cosane elasica k = 5. N/m ed oscilla vericalmene. All

Dettagli

prof. Valerio Curcio: Sistemi oscillanti semplici

prof. Valerio Curcio: Sistemi oscillanti semplici prof. Valrio Curcio: Sisi oscillani splici Iniziao il nosro sudio ll oscillazioni sainando la dfinizion gnral di un sisa oscillan. Da qusa dfinizion possiao sainar il caso spcial dll oscillazion aronica,

Dettagli

3. IL SETTORE ESTERO. Le condizioni H-O-S. Intensità fattoriale 3.1. COMMERCIO INTERNAZIONALE. Un economia con due paesi e due prodotti

3. IL SETTORE ESTERO. Le condizioni H-O-S. Intensità fattoriale 3.1. COMMERCIO INTERNAZIONALE. Un economia con due paesi e due prodotti 3. IL SETTORE ESTERO 3.. Commrcio inrnazional 3.2. Il asso di cambio 3.3. Il modllo IS-LM-BP 3.4. Parià scopra parià copra di assi di inrss 3.5. Ipr-razion di assi di cambio (ovrshooing) 3.. COMMERCIO

Dettagli

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II Facolà i Inggnria Doorao i ricrca in Inggnria i Sismi Iraulici, i Trasporo Trrioriali XXIV ciclo. Caniao Luigi Cimorlli Tsi i oorao: "Mollazion progazion oimizzaa

Dettagli

Aspettative, produzione e politica economica

Aspettative, produzione e politica economica Lzion 18 (BAG cap. 17) Aspttativ, produzion politica conomica Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia 2 1 L aspttativ la curva IS Dividiamo il tmpo in du priodi: 1. un priodo corrnt

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

Macroeconomia. Laura Vici. laura.vici@unibo.it. www.lauravici.com/macroeconomia LEZIONE 22. Rimini, 19 novembre 2014

Macroeconomia. Laura Vici. laura.vici@unibo.it. www.lauravici.com/macroeconomia LEZIONE 22. Rimini, 19 novembre 2014 Macroconomia Laura Vici laura.vici@unibo.i www.lauravici.com/macroconomia LEZIONE 22 Rimini, 19 novmbr 2014 Macroconomia 362 I mrcai finanziari in conomia apra Dao ch l acquiso o la vndia di aivià finanziari

Dettagli

Esercizi sugli studi di funzione

Esercizi sugli studi di funzione Esrcizi sugli studi di funzion Studiar l andamnto tracciar il grafico dll sgunti funzioni di : (a) ; (b) 4 3 + ; (c) cos sin ; (d) 3 ; () log 3 ; (f) arctg + ; (g) ( + ) log ; (h) sin ; (i) tg ; (j) +

Dettagli

12. Funzioni differenziabili

12. Funzioni differenziabili . Funzioni irnziabili L unzioni continu in un punto si possono rossolanamnt inir com qull unzioni c assumono vicino al punto valori prossimi al valor assunto proprio in. Siamo cioè al livllo più lmntar

Dettagli

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1 Analisi di Sistmi Soluzion dl compito dl 26 Giugno 23 Esrcizio. Pr i du sistmi dscritti dai modlli sgunti, individuar l proprità strutturali ch li carattrizzano: linar o non linar, stazionario o tmpovariant,

Dettagli

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico Misurazion dl valor mdio di una tnsion tramit l uso di un voltmtro numrico La zion si conduc slzionando la funzion dc dllo strumnto collgando i trminali dllo strumnto al gnrator sotto zion: tnndo conto

Dettagli

Campi Elettromagnetici e Circuiti I Circuiti del secondo ordine

Campi Elettromagnetici e Circuiti I Circuiti del secondo ordine Facolà Inggnra Unrsà gl su Paa orso Laura Trnnal n Inggnra Elronca Informaca amp Elromagnc rcu I rcu l scono orn amp Elromagnc rcu I a.a. 3/4 Prof. Luca Prrgrn rcu l scono orn, pag. ommaro Dfnzon rcuo

Dettagli

Università della Calabria

Università della Calabria Univrsià lla Calabria FACOLTA DI INGEGNERIA Corso i Laura in Inggnria r l Ambin il Trriorio CORSO DI IDROLOGIA N.O. Prof. Pasual Vrsac SCHEDA DIDATTICA N 8 MODELLI DI TRASFORMAZIONE AFFLUSSI-DEFLUSSI A.A.

Dettagli

Meccanica for dummies. Centro di Formazione Professionale Villaggio del Ragazzo

Meccanica for dummies. Centro di Formazione Professionale Villaggio del Ragazzo Mccanica for dummis Cnro di Formazion Profssional Villaggio dl Ragazzo I d Mccanica for dummis è un blog idao, crao aggiornao dagli allivi dai docni dlla class IV anno - Tcnico pr la conduzion la manunzion

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y)

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y) Campi Vttoriali Form iffrnziali-sconda Part Torma (sconda condizion sufficint pr i campi consrvativi piani): Sia F (, y) un campo vttorial piano dfinito in un aprto A di R, si supponga ultriormnt = y ;

Dettagli

CORSO di RECUPERO di FISICA Classi seconde (anno scolastico ) CINEMATICA: richiami teorici

CORSO di RECUPERO di FISICA Classi seconde (anno scolastico ) CINEMATICA: richiami teorici CORSO di RECUPERO di FISICA Classi seconde (anno scolasico 015-016) giorno daa Ora inizio Ora fine aula mercoledì 9/06/016 giovedì 30/06/016 maredì 05/07/016 giovedì 07/07/016 08:45 10:15 401 Nel corso

Dettagli

Esempi di domande per l esame di Economia Monetaria

Esempi di domande per l esame di Economia Monetaria Esmpi di domand pr l sam di Economia Monaria La domanda di mona 1. In ch modo gli conomisi di Cambridg modificano l quazion dgli scambi di Fishr con quali consgunz?. Com si possono sprimr i guadagni asi

Dettagli

PROPRIETA DI CORRELAZIONE

PROPRIETA DI CORRELAZIONE PROPRIEA DI CORRELAZIONE Da un sgnal s() ral cmplss, si dfinisc nrgia al E dl sgnal la sgun grandzza ral (s sis): / / () / / E lim s() s () lim s() 0 L nrgia al ha significa fisic quand s() è ral: ssa,

Dettagli

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI ANALISI ESERCITAZIONE DEL 06//00 PUNTI CRITICI Un punto critico è un punto in cui la funzion è diffrnziabil il piano tangnt al grafico è orizzontal Riconosciamo qusti punti prché il gradint è il vttor

Dettagli

Blanchard, Macroeconomia, Il Mulino 2009 Capitolo VIII. Il tasso naturale di disoccupazione e la curva di Phillips. Capitolo VIII.

Blanchard, Macroeconomia, Il Mulino 2009 Capitolo VIII. Il tasso naturale di disoccupazione e la curva di Phillips. Capitolo VIII. Capiolo VIII. Il asso naral di disoccpazion la crva di Phillips Capiolo VIII. Il asso naral di disoccpazion la crva di Phillips Capiolo VIII. Il asso naral di disoccpazion la crva di Phillips 1. Inflazion,

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

La tabella presenta 4 casi ed i relativi differenziali di rendimento tra un investimento in Dollari ed uno in Euro:

La tabella presenta 4 casi ed i relativi differenziali di rendimento tra un investimento in Dollari ed uno in Euro: MONETA E FINANZA INTERNAZIONALE Lzion 3 ARBITRAGGIO SUI TASSI DI INTERESSE Invsimno sro domanda di valua sra Disinvsimno rischio di cambio prché rndimno ral dipnd da R La ablla prsna 4 casi d i rlaivi

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

sedimentazione Approfondimenti matematici

sedimentazione Approfondimenti matematici sedimenazione Approfondimeni maemaici considerazioni sulla velocià L espressione p A F = R (1) che fornisce la relazione sulle forze ageni nel processo della sedimenazine, indica che all inizio il moo

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ FUNZINI E LR RAPPRESENTAZINE Tst di autovalutazion 0 0 0 0 0 50 60 70 80 90 00 n Il mio puntggio, in cntsimi, è n Rispondi a ogni qusito sgnando una sola dll 5 altrnativ. n Confronta l tu rispost

Dettagli

Introduzione alla Trasformata di Fourier

Introduzione alla Trasformata di Fourier Corso di Laura Magisral in Chimica A.A. 3-4 Sproscopi Magnich Inroduzion alla Trasformaa di Fourir La Trasformaa di Fourir è usaa in moli divrsi campi: dalla analisi di sgnali lrici, alla analisi dll immagini

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

Dipartimento di Management. Anno accademico 2014/2015. Macroeconomia (9 CFU)

Dipartimento di Management. Anno accademico 2014/2015. Macroeconomia (9 CFU) Univrsià dgli Sudi di Torino Diparimno di Managmn Anno accadmico 2014/2015 Macroconomia (9 CFU) Noizipraich Orari: lundì 14.00-17.00 (3-4 or accadmich) vnrdì 14.00-17.00 (3-4 or accadmich) Vdr smpr su

Dettagli

Errore standard di misurazione. Calcolare l intervallo del punteggio vero

Errore standard di misurazione. Calcolare l intervallo del punteggio vero Error sandard di misurazion Calcolar l inrvallo dl punggio vro Problmi di prcision La prsnza noa dll rror di misura rnd incro il significao dl punggio onuo. L andibilià dl s ci informa di quano rror di

Dettagli

RSA e PARIGP: POSSIBILI ATTACCHI

RSA e PARIGP: POSSIBILI ATTACCHI RSA PARIGP: POSSIBILI ATTACCHI Di Cristiano Armllini, cristiano.armllini@alic.it Supponiamo i consirar un problma RSA : p 7, q, n 87 ϕ( n) (7 )( ) 60 7, MCD(, ϕ( n)), mo( ϕ( n)) C M M C,mo( n),mo( n) ov

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli

Geotecnica e Laboratorio

Geotecnica e Laboratorio Corso di Lara a ciclo Unico in Inggnria Edil Archira Gocnica Laboraorio Toria dlla consolidaion ion monodimnsional mail: Prof. Ing. Marco Faari marco.faari@nipd.i wbsi: bi www.marcofaari.n Ch cos é la

Dettagli

La Trasformata di Laplace. Pierre-Simon Laplace

La Trasformata di Laplace. Pierre-Simon Laplace a Traformaa di aplac Pirr-Simon aplac 749-827 a Traformaa di Eulro onhard Eulr Eulro 707-783 Dfinizion Si dfinic raformaa di aplac dlla funzion f la funzion F coì dfinia: Dov σjωσj2πf. 0 F { f } f d Dfinizion

Dettagli

La valutazione finanziaria

La valutazione finanziaria STUDIO BERETTA DOTTTARELLI TTARELLI DOTTORI COMMERCIALISTI ASSOCIATI Srgio Bra La valuazion finanziaria Prmssa Il valor dl capial conomico vin simao considrando i flussi di cassa prodoi in fuuro dall imprsa

Dettagli

Prova scritta di Algebra 23 settembre 2016

Prova scritta di Algebra 23 settembre 2016 Prova scritta di Algbra 23 sttmbr 2016 1. Si considri la sgunt applicazion: { Z21 Z ϕ : 3 Z 7 [x] 21 ([2x] 3, [x] 7 ) a) Vrificar ch ϕ è bn dfinita. b) Dir s ([1] 3, [5] 7 ) Imϕ in tal caso trovarn la

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

Lezioni Curva di Phillips e modello macroeconomico: Il modello di Friedman Il modello di Phelps Il modello di Lucas Il modello di Tobin

Lezioni Curva di Phillips e modello macroeconomico: Il modello di Friedman Il modello di Phelps Il modello di Lucas Il modello di Tobin Lzioni 9- Curva di hillips modllo macroconomico: Il modllo di Fridman Il modllo di hlps Il modllo di Lucas Il modllo di Tobin Scopo dll lzioni: mosrar com inrprazion dl rapporo inflazion disoccupazion

Dettagli

Verifica di Matematica Classe V

Verifica di Matematica Classe V Liceo Scienifico Pariario R. Bruni Padova, loc. Pone di Brena, 6/3/17 Verifica di Maemaica Classe V Soluzione Problemi. Risolvi uno dei due problemi: 1. Facciamo il pieno. Il serbaoio del carburane di

Dettagli

Relazione di Laboratorio di Fisica Generale Misura del momento d inerzia di un volano

Relazione di Laboratorio di Fisica Generale Misura del momento d inerzia di un volano Paolo Marinis Triese, 8 luglio 003 Universià egli Sui i Triese - Facolà i ngegneria Corso i Laurea in ngegneria Civile Relazione i Laboraorio i Fisica Generale Misura el oeno inerzia i un volano nrouzione

Dettagli

ESERCIZI DI MECCANICA QUANTISTICA

ESERCIZI DI MECCANICA QUANTISTICA SCIZI DI MCCANICA QUANTISTICA.uonaura : ISIS ALTINI NOLA (NA) & GSF-AIF 1 - srcizio 6 ( Corpo Nro) Considriamo un piana a disanza r dal Sol (in Unià Asronomich S 11 r 1UA 1.496 1 m ST ) di raggio. a) Calcolar

Dettagli

P suolo in P; 2. la distanza d, dall uscita dello

P suolo in P; 2. la distanza d, dall uscita dello acolà di Ingegneria Prova Generale di isica I 1.07.004 Compio A Esercizio n.1 Uno sciaore di massa m = 60 Kg pare da fermo da un alezza h = 8 m rispeo al suolo lungo uno scivolo inclinao di un angolo α

Dettagli

CONOSCENZE. 1. La derivata di una funzione y = f (x)

CONOSCENZE. 1. La derivata di una funzione y = f (x) ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)

Dettagli

Dispense del corso di Processi e Impianti Chimici. Corso di Laurea Specialistica in Chimica Industriale. Docente Guido Sassi

Dispense del corso di Processi e Impianti Chimici. Corso di Laurea Specialistica in Chimica Industriale. Docente Guido Sassi Dispns dl corso di rocssi Ipiani hiici orso di Laura Spcialisica in hiica Indusrial Docn Guido Sassi Facolà di Scinz Maaich Fisich Naurali Univrsià di Torino aori 3 aori oogni isori con razioni coplss...

Dettagli

Chimica Fisica Industriale Modulo A

Chimica Fisica Industriale Modulo A Chimica Fisica Indusrial Modulo Prof. Savrio Sani Diparimno di Scinz Chimich Via Marzolo Padova 49 8759 savrio.sani@unipd.i Ricvimno: ui i giorni pr appunamno Savrio Sani -Scinz Chimich - Principi di Cinica

Dettagli

E stato dimostrato sperimentalmente che la rapidità con cui una famiglia di nuclei radioattivi decade dipende da una legge di natura statistica.

E stato dimostrato sperimentalmente che la rapidità con cui una famiglia di nuclei radioattivi decade dipende da una legge di natura statistica. 5. La lgg dl dcadino radioaivo Il nuro di nucli naurali arificiali oggi conosciui sono circa 700 di cui solo circa 70 sono qulli sabili. I nucli insabili ndono a rasforarsi sponanan in alr spci nuclari

Dettagli

Unità didattica: Grafici deducibili

Unità didattica: Grafici deducibili Unità didattica: Grafici dducibili Dstinatari: Allivi di una quarta lico scintifico PNI tal ud è insrita nllo studio dll funzioni rali di variabil ral. Programmi ministriali dl PNI: Dal Tma n 3 funzioni

Dettagli

Capitolo 7 - Schermature

Capitolo 7 - Schermature Appuni di Compaibilià lomagnica Capiolo 7 - Schmau Inoduzion... fficinza di schmaua... Impoanza dlla schmaua di cavi ch aavsano lo schmo...3 Impoanza dll apu: pincipio di Babin...5 Considazioni gnali...6

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Prof. Ailio Sanocchia Ufficio presso il Diparimeno di Fisica (Quino Piano) Tel. 75-585 78 E-mail: ailio.sanocchia@pg.infn.i Web: hp://www.fisica.unipg.i/~ailio.sanocchia

Dettagli

ESERCIZI DI CALCOLO NUMERICO

ESERCIZI DI CALCOLO NUMERICO ESERCIZI DI CALCOLO NUMERICO Mawll Equazioni non linari: problma di punto fisso Esrcizio : Si vogliono approssimar l soluzioni dll quazion non linar. Dtrminar il numro di radici dll quazion localizzarl.

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

QUESTIONARIO FAMIGLIE SERVIZI RESIDENZIALI ( CSS) 2015

QUESTIONARIO FAMIGLIE SERVIZI RESIDENZIALI ( CSS) 2015 QUSTIONARIO FAMIGLI SRVIZI RSINZIALI ( CSS) 2015 COS È? Il seguente questionario è uno strumento che utilizziamo per cogliere la soddisfazione delle FAMIGLI relativamente ai servizi residenziali che Anffas

Dettagli

Correnti di linea e tensioni concatenate

Correnti di linea e tensioni concatenate Sismi Trifas Sismi rifas l rasporo la disribuzion di nrgia lrica avvngono in prvalnza pr mzzo di lin rifas Un sisma rifas è alimnao mdian gnraori a r rminali rapprsnabili mdian rn di gnraori sinusoidali

Dettagli

INDICE. Studio di funzione. Scaricabile su: TEORIA. Campo di esistenza. Intersezione con gli assi

INDICE. Studio di funzione. Scaricabile su:  TEORIA. Campo di esistenza. Intersezione con gli assi P r o f. Gu i d of r a n c h i n i Antprima Antprima Antprima www. l z i o n i. j i md o. c o m Scaricabil su: http://lzioni.jimdo.com/ Studio di funzion INDICE TEORIA Campo di sistnza Intrszion con gli

Dettagli

I dati di alcuni esercizi sono differenziati secondo il numero di matricola. u rappresenta l ultima cifra del numero matricola.

I dati di alcuni esercizi sono differenziati secondo il numero di matricola. u rappresenta l ultima cifra del numero matricola. II rova in Iinere del Corso di MECCAICA ALICATA ALLE MACCHIE L - Anno Accadeico 009-00 Cognoe oe Maricola I dai di alcuni esercizi sono differenziai secondo il nuero di aricola. u rappresena l ulia cifra

Dettagli

Distribuzione gaussiana

Distribuzione gaussiana Appunti di Misur Elttric Distribuion gaussiana Funion dnsità di probabilità di Gauss... Calcolo dlla distribuion cumulativa pr una variabil di Gauss... Funion dnsità di probabilità congiunta...6 Funion

Dettagli

Fisica Generale VI Scheda n. 1 esercizi di riepilogo dei contenuti di base necessari. 1.) Dimostrare le seguenti identità vettoriali:

Fisica Generale VI Scheda n. 1 esercizi di riepilogo dei contenuti di base necessari. 1.) Dimostrare le seguenti identità vettoriali: Fisica Gnral VI Schda n. 1 srcizi di ripilogo di contnuti di bas ncssari 1.) Dimostrar l sgunti idntità vttoriali:. A (B C) = B (A C) C (A B) (A B) = ( A) B ( B) A ( A) = ( A) 2 A. suggrimnto: è important

Dettagli

Rivelatori a semiconduttore

Rivelatori a semiconduttore Rivlaori a smicoduor Proprià Grali Smicoduori di Tipo p Smicoduori di ipo Giuzio p- Coo sulla dimsio dlla giuzio p- Coo sulla forma dl sgal grao Rivlaori al Silicio Rivlaori al Grmaio Rivlaori a smicoduor

Dettagli

EQUAZIONI DIFFERENZIALI. Saper integrare equazioni differenziali del primo ordine lineari e a variabili separabili.

EQUAZIONI DIFFERENZIALI. Saper integrare equazioni differenziali del primo ordine lineari e a variabili separabili. EQUAZIONI DIFFERENZIALI OBIETTIVI MINIMI Sapr riconoscr classificar l quazioni diffrnziali. Sapr intgrar quazioni diffrnziali dl primo ordin linari a variabili sparabili. Sapr intgrar quazioni diffrnziali

Dettagli

Rivelatori a semiconduttore

Rivelatori a semiconduttore Rivlaori a smicoduor Proprià Grali Smicoduori di Tipo p Smicoduori di ipo Giuzio p- Coo sulla dimsio dlla giuzio p- Coo sulla forma dl sgal grao Rivlaori al Silicio Rivlaori al Grmaio Rivlaori a smicoduor

Dettagli