PROGRAM GEO - Soils Win ver.2 per Windows. 3. Teoria e Normativa. 3.1 Definizione del problema.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "PROGRAM GEO - Soils Win ver.2 per Windows. 3. Teoria e Normativa. 3.1 Definizione del problema."

Transcript

1 3. Teora e Normatva PROGRAM GEO - Sols Wn ver.2 per Wndows 3.1 Defnzone del problema. Le procedure d anals d stablta' d un pendo n terra, attraverso la valutazone dell'equlbro lmte, consstono nella stma d un coeffcente d scurezza alla traslazone e/o alla rotazone del volume d terra compreso fra la superfce del versante ed una superfce d taglo potenzale mposta. La procedura d calcolo prende n consderazone tutte le forze e/o moment agent lungo l pano d taglo, fornendo una valutazone della stablta' globale attraverso le equazon d'equlbro fornte dalla statca. Il coeffcente d scurezza globale del pendo vene calcolato attraverso l rapporto fra la resstenza d taglo massma dsponble lungo la superfce d rottura e gl sforz tangenzal mobltat lungo tale pano: con Fsc= coeffcente d scurezza; Tmax= resstenza d taglo massma; Tmob= sforzo tangenzale mobltato. Fsc = Tmax / Tmob; All'equlbro(Tmax=Tmob) Fsc deve essere ovvamente uguale a 1. Il pendo potrebbe essere consderato n teora stable, quando Fsc rsulta maggore d 1 (Tmax>Tmob), nstable n caso contraro (Tmax<Tmob). In realta', per tener conto dell'ncertezza ntrodotta dalle potes semplfcatrc nella procedura d calcolo e soprattutto dell'approssmazone con cu sono not parametr geotecnc del terreno, per Legge e per consuetudne pratca la stablta' puo' drs raggunta solo nel caso n cu Fsc sa maggore d 1.3 (D.M ) o d 1,1 (D.M ) n condzon statche e maggore d 1.1 (D.M ) o d 1,0 (D.M ) n presenza d ssma. 85

2 PROGRAM GEO - Sols Wn ver.2 per Wndows 3.2 Impostazone della procedura d calcolo. Nell'applcare le equazon della statca al problema dell'anals d stablta' d un pendo n terra occorre potzzare che sano verfcate le seguent condzon: a) la verfca va eseguta prendendo n esame una strsca d versante d larghezza untara (soltamente d 1 metro), trascurando l nterazone laterale fra tale strsca ed l terreno contguo; b) la resstenza al taglo lungo la superfce potenzale d rottura deve essere esprmble attraverso la legge d Coulomb: Tmax = c + γ h tg ϕ; con Tmax = resstenza d taglo massma del terreno; c= coesone del terreno; γ= peso d volume del terreno; h= profondta' della superfce d rottura; ϕ = angolo d resstenza al taglo del terreno. c)la precsone con cu vengono stmat n sto o n laboratoro parametr geotecnc coesone e angolo d resstenza al taglo deve essere la stessa: n caso contraro la resstenza al taglo mobltata dovrebbe essere espressa nel seguente modo: Tmob = (c/fscc) + (γ h tg ϕ/fscp); con Fsc =coeffcente d scurezza legato a c; Fscp =coeffcente d scurezza legato a ϕ; Con l D.M due fattor d scurezza parzal vanno post ugual a 1, mentre nel D.M sono ugual rspettvamente a (Approcco I combnazone 2): Fsc =1,25 (coesone drenata) o 1,40 (coesone non drenata); Fscp =1,25. 86

3 PROGRAM GEO - Sols Wn ver.2 per Wndows d) deve avers una dstrbuzone omogenea degl sforz tangenzal mobltat (Tmob) lungo la superfce potenzale d rottura. Questo sgnfca che n ogn punto del pano potetco d scvolamento parametr dell'equazone d Coulomb c, ϕ, γ ed h devono avere lo stesso valore. Per lmtare l'errore ntrodotto nel calcolo da quest ultma potes, la superfce d scvolamento vene, nella maggor parte delle procedure d calcolo note n letteratura, suddvsa n pu' settor (conc), all'nterno de qual s consdera realzzata la condzone d omogeneta' d Tmob. Nella pratca lmt de conc vengono fatt cadere dove v sa una varazone sgnfcatva d γ, c e ϕ del terreno o n corrspondenza d varazon sgnfcatve nel proflo topografco del versante. Questo modo d'mpostare l problema conduce pero' all'ntroduzone nella rsoluzone analtca d nuove ncognte che esprmono l modo n cu nteragscono fra loro, lungo le superfc dvsore, var conc. In defntva nel calcolo del valore d Fsc ntervengono le seguent ncognte(n=numero de conc preso n consderazone): a) le forze normal (N) agent sulla base del conco ( n ncognte); b) le forze tangenzal (T) agent sulla base de conc ( n ncognte); c) punt, sulla base del conco, d applcazone delle forze normal e tangenzal (n ncognte); d) le forze orzzontal agent lungo le superfc d separazone de conc ( n- 1 ncognte); e) le forze vertcal agent lungo le superfc d separazone de conc (n-1 ncognte); f) punt d applcazone, sulle superfc d separazone de conc, delle forze d) ed e) (n-1 ncognte); g) l coeffcente d scurezza Fsc (1 ncognta). In totale l problema comporta l'ntroduzone d 6n-2 ncognte. Per la sua rsoluzone sono dsponbl: a) 3n equazon d'equlbro; b) n equazon del tpo: 87

4 PROGRAM GEO - Sols Wn ver.2 per Wndows con l = lunghezza del conco; T = (c l + N tg ϕ)/fsc; che collegano fra loro, per ogn conco, le ncognte N, T ed Fsc. c) n equazon ottenute ponendo che l punto d applcazone d N e T cada a meta' della base del conco. In totale qund sono dsponbl 5n equazon per la soluzone analtca del problema. Perche' s possa arrvare alla determnazone d Fsc occorrerebbero ovvamente tante equazon quante sono le ncognte. In realta' perche' l problema sa statcamente determnato, e qund rsolvble, mancano ancora n-2 equazon (la dfferenza fra l numero delle ncognte,6n-2, ed l numero delle equazon dsponbl, 5n). Le equazon mancant possono essere ottenute ntroducendo nell'anals ulteror potes semplfcatrc. Tal potes rguardano generalmente la dstrbuzone delle forze lungo le superfc d separazone de conc. Le vare procedure d rsoluzone del problema dfferscono essenzalmente per la schematzzazone che vene fatta d questa dstrbuzone. 88

5 PROGRAM GEO - Sols Wn ver.2 per Wndows 3.3 Rsoluzone con metod dell'equlbro lmte Metodo d Fellenus. Con l metodo d Fellenus s pone la condzone che le forze agent sulle superfc d separazone de conc (forze d nterstrsca) sano trascurabl. E un metodo basato sull equlbro de moment agent. Posto: N=Wconco() cos α; con Wconco()=peso del volume d terra compreso nel conco -esmo; α=nclnazone della base del conco -esmo; N=componente normale alla base del conco d Wconco(). Imponendo l equlbro de moment rspetto al centro della superfce crcolare d scvolamento potenzale del pendo, s può scrvere: ΣR sen α Wconco()=ΣR T; n cu l prodotto R sen α rappresenta l bracco d Wconco(). S ottene nfne: Fsc = Σ(C Lconco()+N tg ϕ) / Σsen α Wconco(); con C=coesone agente lungo la base del conco ; Lconco()=lunghezza della base del conco ; ϕ=angolo d attrto agente lungo la base del conco ; Introducendo l contrbuto dovuto alla presenza d falda drca s ottene: Fsc = ΣC Lconco() + (N-hfalda() Lconco())tg ϕ] / ΣWconco() sen α ; 89

6 PROGRAM GEO - Sols Wn ver.2 per Wndows n cu: hfalda()=altezza della falda rspetto alla base del conco ; Il metodo d Fellenus conduce generalmente a sottostme d Fsc rspetto a metod pù rgoros, soprattutto n terren coesv e/o sovraconsoldat e per superfc profonde. L errore è comunque a favore della scurezza, anche se n alcun cas può superare l 20% rspetto a metod rgoros. Può essere utlzzato con superfc d calcolo crcolar e d forma qualsas. Questo metodo, come successv che verrano pres n esame, può a volte fornre coeffcent d scurezza negatv. Cò s verfca, quando l nclnazone della superfce d scvolamento al pede assume valor negatv molto elevat, come nel caso d superfc molto profonde rspetto alla loro estensone n lunghezza. Queste superfc vanno consderate scuramente stabl e l valore d Fs stmato prvo d sgnfcato. Nel programma le superfc d scvolamento che presentano valor d Fs negatv vengono gnorate Metodo d rsoluzone d Bshop (semplfcato). Con l metodo d Bshop semplfcato s pone la condzone che le forze vertcal agent sulle superfc d separazone de conc sano trascurabl. D conseguenza conc nteragscono fra d loro solo attraverso forze orentate lungo l'orzzontale. E anche questo un metodo basato sull equlbro de moment agent. Vene supposto che la superfce potenzale d scvolamento sa crcolare. La resstenza al taglo massma dsponble lungo la superfce potenzale d rottura e' data, per ogn conco da: T max = X / (1 + Y / F s ); con X = ( c + (g x h - g w x h w ) x tg ϕ) x dx / cos α con gw = peso d volume dell'acqua; h w = altezza dell'acqua sulla base del conco; dx = lunghezza del conco lungo l'orzzontale; 90

7 PROGRAM GEO - Sols Wn ver.2 per Wndows α = nclnazone del conco sull'orzzontale. Y = tg α x tg ϕ La resstenza al taglo mobltable lungo l pano d taglo e' per ogn conco data da: con Z = g x h x dx x sen α T mob = Z Il coeffcente d scurezza del pendo vene espresso come segue: F s = (=1-n) T max / (=1-n)T mob S not che l coeffcente d scurezza Fs, che e' la grandezza da determnare, vene a comparre anche al numeratore attraverso l'espressone della T max. D conseguenza non sarà possble la determnazone dretta d Fs. La procedura da adottare dovra' essere d tpo teratvo, fno all'ottenmento della convergenza su un valore pratcamente costante d Fs. Quest sono pass da segure: 1. s ntroduce un valore nzale d Fs (per es. ottenuto applcando Fellenus) e s calcola un prmo valore del coeffcente d scurezza; 2. l nuovo valore d Fs (Fs') ottenuto vene confrontato col valore d partenza; 3. se la dfferenza supera un lmte prefssato ( es. Fs'-Fs>0.001), s rtorna al passo a), nserendo, al posto del valore d partenza d Fs, l nuovo valore calcolato; 4. se la dfferenza rmane contenuta nel lmte ndcato, l'elaborazone va nterrotta: l coeffcente d scurezza cercato e' Fs'. 91

8 PROGRAM GEO - Sols Wn ver.2 per Wndows Generalmente l procedmento rchede dalle quattro alle otto terazon per convergere. Il metodo d Bshop rchede che sano, per tutt conc, rspettate le due seguent condzon: s' = (g x h - g w x h w - c x tg α / Fs)/(1+Y / Fs) > 0 con s' = pressone normale agente sulla base del conco; cos α x (1 + Y/Fs) > 0.2. In caso contraro l metodo puo' condurre a valor del coeffcente d scurezza non realstc. Il metodo va applcato preferblmente su versant costtut da terren omogene, dal punto d vsta ltologco e delle caratterstche geotecnche, o, al lmte, su terren n cu la stratfcazone non port a contatto ltologe a comportamento meccanco sgnfcatvamente dverso (per esempo sabba su arglla); se ne sconsgla l'uso anche n presenza d terren fortemente sovraconsoldat. Confrontando l metodo d Bshop semplfcato con la sua versone completa, s ottengono dfferenze massme ne valor de coeffcent d scurezza non superor all'uno percento. Rspetto ad altr metod pu' rgoros, come l G.L.E., lo scarto non supera l 5%, tranne nel caso, d scarso nteresse pratco, n cu sa Fs< Metodo d rsoluzone d Janbu (semplfcato). Nel metodo d Janbu semplfcato s pone la condzone che le forze vertcal agent sulle superfc d separazone de conc sano trascurabl. D conseguenza sngol conc nteragscono fra d loro solo attraverso forze orentate lungo l'orzzontale. Questo metodo, a dfferenza d quello d Bshop, consente d verfcare superfc potenzal d scvolamento d forma qualsas ed è un metodo basato sull equlbro delle forze agent. La resstenza al taglo massma dsponble lungo la superfce potenzale d rottura e' data, per ogn conco, da: 92

9 PROGRAM GEO - Sols Wn ver.2 per Wndows T max = X / (1+Y/Fs); con X = [c+(g x h-gw x hw ) x tg ϕ] x [1+(tg ϕ2)] x dx con gw = peso d volume dell'acqua; hw = altezza dell'acqua sulla base del conco; dx = lunghezza del conco lungo l'orzzontale; α = nclnazone del conco sull'orzzontale. Y = tg α x tg ϕ La resstenza al taglo mobltable lungo l pano d taglo e' per ogn conco data da: con Z = g x h x dx x tg α T mob = Z Il coeffcente d scurezza del pendo vene espresso come segue: Fs = (=1-n)T max / (=1-n)T mob S not che l coeffcente d scurezza Fs, che e' la grandezza da determnare, vene a comparre anche al numeratore attraverso l'espressone della T max. D conseguenza non sara' possble la rsoluzone dretta. La procedura da adottare, anche n questo caso, dovra' essere d tpo teratvo fno all'ottenmento della convergenza su un valore pratcamente costante d Fs. Quest sono pass da segure: 1. s ntroduce un valore nzale d Fs (per es. con Fellenus) e s dtermna un prmo valore del coeffcente d scurezza; 93

10 PROGRAM GEO - Sols Wn ver.2 per Wndows 2. l nuovo valore d Fs (Fs') ottenuto vene confrontato col valore d partenza; 3. se la dfferenza supera un lmte prefssato ( es. Fs'-Fs>0.001), s rtorna al passo a), nserendo al posto del valore d partenza d Fs, l nuovo valore calcolato; 4. se la dfferenza rmane contenuta nel lmte ndcato, l'elaborazone va nterrotta: l coeffcente d scurezza cercato e' Fs'. Generalmente l procedmento rchede dalle quattro alle otto terazon per convergere. Il metodo va applcato preferblmente su versant costtut da terren eterogene, dal punto d vsta ltologco e delle caratterstche geotecnche, o fortemente sovraconsoldat. In quest cas nfatt la superfce potenzale d rottura avra' probablmente forma rregolare, lontana dalla crcolarta'. Il metodo d Janbu puo' condurre, rspetto ad altr metod pu' rgoros, come l G.L.E., a scart non trascurabl n presenza d superfc potenzal d rottura profonde o n presenza d forte coesone. E' qund consglable, n queste stuazon, l'ntroduzone d un fattore correttvo che mnmzz tale scarto. Janbu suggersce per tale coeffcente la seguente forma: f = 1 + K x [ d/l x (d/l) 2 ]; con l = lunghezza del segmento retto congungente l pede del versante con la sua estremta' superore; d = scarto massmo fra la congungente l pede del versante e l' estremtà superore e la superfce potenzale d scvolamento, msurato lungo la perpendcolare del prmo; K = costante uguale a 0.31 n terren prv d coesone (c=0) e a 0.5 per terren coesv (c>0). Il coeffcente d scurezza corretto e' dato qund da: 94

11 PROGRAM GEO - Sols Wn ver.2 per Wndows Fs' = f x Fs con Fs = coeffcente d scurezza non corretto Metodo d rsoluzone d Spencer Nel metodo d Spencer s pone la condzone che le forze d'nterazone lungo le superfc d dvsone de sngol conc sano orentate parallelamente fra loro ed applcate nel punto medo della base del conco. S tratta, nella sua espressone analtca, d un' estensone del metodo d Bshop semplfcato, ed è qund valdo per superfc d scvolamento sub-crcolar. E un metodo rgoroso n quanto basato sa sull equlbro de moment che delle forze agent. La forza d'nterazone fra conc applcata nel punto medo della base del conco -esmo è data da: Q = [(c x l /Fs) x (W cos α - h x gw x l x sec α) x tg ϕ / Fs - W sen α] / (cos (α-θ) x m a con m a =1+ [tg ϕ x tg(α-θ)] / Fs θ = angolo d'nclnazone della forza Q rspetto all'orzzontale. Imponendo l'equlbro de moment rspetto al centro dell'arco descrtto dalla superfce d scvolamento s ha: con R= raggo dell'arco d cercho. (1) Q x R x cos(α-θ)=0; Imponendo l'equlbro delle forze orzzontal e vertcal s ha rspettvamente: Q cos θ=0; 95

12 PROGRAM GEO - Sols Wn ver.2 per Wndows Q sen θ=0. Con l'assunzone delle forze Q parallele fra loro, s può anche scrvere: (2) Q =0. Il metodo propone d calcolare due coeffcent d scurezza: l prmo (Fsm), ottenuto dalla (1) legato all'equlbro de moment; l secondo (Fsf) dalla (2), legato all'equlbro delle forze. In pratca s procede rsolvendo la (1) e la (2) per un dato ntervallo d valor dell'angolo teta, consderando come valore unco del coeffcente d scurezza quello per cu s abba Fsm=FsF. Il metodo è valdo per superfc d scvolamento crcolar e d forma qualsas Metodo d rsoluzone G.L.E. (General Lmt Equlbrum) Il metodo G.L.E. (Fredlund e Kran, 1977) rappresenta una rformulazone del quello d Morgenstern Prce. S tratta d un metodo rgoroso, che coè prende n consderazone sa l equlbro de moment che delle forze. L espressone della forma normale agente sulla base del conco -esmo è la seguente: N ' = W + ( X X ) 1 dove: W =Peso del conco; X =Forza d nterstrsca vertcale; V =Forze esterne vertcal; u =Carco draulco; l =Lunghezza della base del conco; 1 + V ul cosα Fs 1 cosα + senα tgϕ F s c l senα 96

13 PROGRAM GEO - Sols Wn ver.2 per Wndows α =Inclnazone della base del conco. Il coeffcente d scurezza per l equlbro delle forze è dato dalla relazone: F forze = ( c l + N ' tgϕ ) cosα ( N ' + ul ) senα + kw O dove: O = Forze esterne orzzontal; k = Coeffcente ssmco orzzontale. Il coeffcente d scurezza per l equlbro de moment è dato nvece dall espressone: ( cl + N ' tgϕ ) r Fm om ent = W d N ' + ul s + kw m O n + V d ( ) dove: r = Dstanza, msurata lungo la perpendcolare, della base del conco dal centro d rotazone ; s = Dstanza, msurata lungo la parallela, del punto medano della base del conco dal centro d rotazone ; d = Dstanza, msurata lungo l orzzontale, del punto medano della base del conco dal centro d rotazone ; m = Dstanza, msurata lungo la vertcale, del barcentro del conco dal centro d rotazone ; n = Dstanza, msurata lungo la vertcale, del punto topografco gacente sulla vertcale del punto medano della base del conco dal centro d rotazone. A queste espresson va aggunta quella che lega le forze d nterstrsca vertcal (X) a quelle orzzontal (E): X ( x) = E( x) λf ( x) dove: E = Forze d nterstrsca orzzontal; λ = Coeffcente varable da 0 a 1; f(x) = Funzone d nterstrsca, posta nel programma costante e uguale a 1. 97

14 PROGRAM GEO - Sols Wn ver.2 per Wndows Nella pratca la determnazone d Fs s ottene con la seguente procedura d calcolo. S stma un prmo valore d Fs, per esempo con l metodo d Fellenus. Facendo varare l coeffcente λ all nterno dell ntervallo 0-1 con passo prestablto (per esempo 0,1), s calcolano, con procedura teratva, le forze normal N, le forze d nterstrsca, partendo da un valore nzale d X=0 e E=0, e qund fattor d scurezza F forze e F moment. Il valore d Fs da adottare è quello per cu, valor d N, X e E calcolat danno F forze = F moment.. La scelta della funzone f(x) da utlzzare non nfluenza n manera sgnfcatva l calcolo. Il metodo è valdo per superfc d scvolamento crcolar e d forma qualsas Metodo d rsoluzone d Sarma Il metodo d Sarma s dfferenza da metod dell equlbro lmte vst per un approcco al problema basato non sulla stma del coeffcente d scurezza, ma sulla valutazone del coeffcente ssmco crtco per l quale l pendo s trova n condzon d equlbro lmte (Fs=1). Le forze d nterstrsca, n questo caso, vengono calcolate con la relazone: X 1 X = λψ ; dove ψ è una forza, nserta dall operatore, tale per cu sa abba: Ψ = 0. Il coeffcente λ può essere calcolato drettamente con la relazone: dove: λ = Ψ D ( y y g ) [( x x ) + ( y y ) tg( ϕ α )] g g 98

15 PROGRAM GEO - Sols Wn ver.2 per Wndows D = W tg( ϕ α ) c b cosϕ secα u l senϕ + ; cosα cosϕ + senα senϕ b x, y x g, y g = lunghezza del conco proettata sull orzzontale; = coordnate del punto medano della base del conco; = coordnate del barcentro del volume d terreno solato dalla superfce d scvolamento. Determnato l coeffcente λ s può procedere al calcolo dretto del coeffcente ssmco crtco. s ( ϕ α ) D + λ ψ tg kc = W Il valore d Kc determnato rappresenta qund l coeffcente ssmco al quale è assocable un coeffcente d scurezza Fs=1. Pù problematco è l calcolo nverso, coè, noto l valore d Kc, che può anche essere uguale a zero, la determnazone del coeffcente d scurezza ad esso abbnable. La procedura suggerta n letteratura è presentata d seguto. S determna l valore d Kc n condzon crtche (Fs=1). S fssa un valore arbtraro d Fs, per esempo 1,3, e s rpete l calcolo d Kc, utlzzando valor della coesone dell angolo d attrto corrett come segue: c ϕ c c =, ϕ c =. F F Rpetendo la procedura con nuov valor d Fs, s costrusce un dagramma con, lungo le ascsse, valor d Fs e lungo le ordnate valor d Kc, dal quale s può rcavare mmedatamente l valore d Fs assocato ad ogn valore d Kc. In realtà questo dagramma non è esattamente lneare, qund l nterpolazone conduce ad un errore spesso non trascurable. S consgla qund d utlzzare questo metodo esclusvamente per la determnazone d kc n condzon crtche, n anals d stabltà n zona ssmca. s 99

16 PROGRAM GEO - Sols Wn ver.2 per Wndows Stma del defct d forza. Consderando l equlbro alla traslazone del volume d terreno delmtato dalla superfce d scvolamento, è possble valutare la forza che è necessaro appplcare per raggungere l equlbro, coè la condzone fs=1 (defct d forza). Per l equlbro alla traslazone orzzontale s ha per l conco -esmo: E = ( c l + N tgϕ )cosα ( N + U ) senα Se l volume d terreno è n condzon d equlbro (fs=1) la sommatora de defct d forza orzzontal estesa a tutt conc dovrà essere uguale a zero: E Nell potes fs<1 la sommatora fornrà l valore della forza orzzontale da applcare per raggungere l equlbro. = 0 100

17 PROGRAM GEO - Sols Wn ver.2 per Wndows 3.4 Scelta de parametr geotecnc da utlzzare nelle verfche. S dstnge fra terren prevalentemente ncoerent e terren prevalentemente coesv Terren ncoerent. In sabbe o ghae va utlzzato l'angolo d resstenza al taglo d pcco o crtco a seconda del grado d addensamento del terreno (quantfcable attraverso l parametro densta' relatva). Per densta' relatve mnor del 20% s consgla l'mpego dell'angolo d resstenza al taglo crtco, rcavable, n prma approssmazone, dal valore d pcco attraverso la relazone d Terzagh: tg ϕ' = 2/3 x tg ϕ; con ϕ'= angolo d resstenza al taglo crtco; ϕ = angolo d resstenza al taglo d pcco. Per densta' relatve superor al 70% va utlzzato l'angolo d'attrto d pcco. Ne cas ntermed occorre nterpolare fra due valor estrem (ph' e ph). Per verfche lungo superfc d scvolamento d frane gà n movmento va nvece utlzzato l angolo d attrto a volume costante. Per verfche d stablta' a breve termne (per esempo per scav provvsor) s deve tener conto anche della debole coesone temporanea che puo' essere presente n terren umd o leggermente cementat dalle acque crcolant Terren coesv. Pu' problematco e' l caso d un versante costtuto n prevalenza da terren coesv arglle e lm plastc). Le verfche d stablta' vanno sempre, tranne che n cas partcolar, condotte consderando le condzon a lungo termne, che sono le pu' sfavorevol alla scurezza. Vanno qund utlzzat parametr geotecnc angolo d resstenza al taglo e coesone drenat. 101

18 PROGRAM GEO - Sols Wn ver.2 per Wndows Nel caso d pend costtut da terren coesv normalmente consoldat, n frane d neoformazone, va utlzzato l'angolo d'attrto d pcco ( la coesone drenata n questo caso e' nulla). Per versant n arglla o lmo sovraconsoldat e non fessurat, sempre per frane d neoformazone, vanno mpegat l'angolo d resstenza al taglo d pcco e la coesone drenata. In presenza d fessure dffuse va potzzato un annullamento a lungo termne della coesone, che va qund trascurata. Per verfche d stablta' su versant ga' moblzzat da event franos passat puo' essere mpegato per l calcolo solo l'angolo d resstenza al taglo resduo, ponendo uguale a zero la coesone. Nel caso d anals d stablta' a breve termne (per esempo per scav provvsor) puo' essere utlzzata la coesone non drenata, gnorando l'angolo d resstenza al taglo. 102

19 PROGRAM GEO - Sols Wn ver.2 per Wndows 3.5 Calcolo dell'nfluenza d carch estern e d opere d sostegno sulla stabltà del versante Sovraccarch estern. Con Sn ndchamo la componente normale al pano potenzale d taglo della somma delle forze applcate sulla superfce della base del conco da sovraccarch estern (S). La sua espressone è la seguente: S n = S (sen β cos α + cos β sn α); con α=nclnazone della base del conco. β=nclnazone de sovraccarch rspetto all'orzzontale, crescente n senso antoraro. Con St ndchamo la componente tangenzale al pano potenzale d taglo della somma delle forze applcate sulla superfce del conco da sovraccarch estern (S). La sua espressone è la seguente: S t = S (cos β cos α - sen β sen α); L'effetto d un sovraccarco sul pendo e' qund duplce: s ha una varazone postva o negatva (a seconda dell'nclnazone del sovraccarco rspetto alla superfce potenzale d rottura ) sa delle forze normal sa d quelle tangenzal, con conseguente modfca de valor della resstenza al taglo massma e d quella mobltata. Forze Fs = Forze stab nstab + Sn + St 103

20 PROGRAM GEO - Sols Wn ver.2 per Wndows Sollectazon ssmche. L anals dell nfluenza delle sollectazon ssmche sulla stabltà globale d un versante può essere condotta attraverso due approcc dfferent: 1. s può ntrodurre la semplfcazone che l ssma agsca come un sstema d forze sul pendo d ntenstà e verso costante per tutta la durata dell evento ssmco (metodo pseudostatco); 2. s può ntrodurre nel calcolo un sstema d forze che tenga conto delle varazon d verso ed ntenstà della sollectazone ssmca durante l evento (metodo dnamco). La seconda procedura (metodo dnamco), pur conducendo a valutazon pù realstche, rchede la conoscenza o la smulazone d un accelerogramma d rfermento, che fornsca per ogn stante dell evento ssmco l andamento delle accelerazon subte dal pendo. Quest dat non sono però d facle acquszone, fatto che lmta n pratca l utlzzo d questo approcco. Il programma utlzza l metodo pseudostatco, metodo meno precso d quello dnamco (fornsce n genere stme a favore della scurezza della stabltà globale), ma che presenta l vantaggo d essere d facle applcazone. Gl unc dat rchest n questo caso sono l accelerazone ssmca massma orzzontale Il valore Ago (accelerazone massma orzzontale), s rcava dalla seguente relazone: Ago = S S a dove a g è l accelerazone ssmca orzzontale al bedrock che, n mancanza d valutazon mglor, nel caso s applch l D.M. 14/01/2008, può essere rcavato drettamente dall allegato relatvo alla percolostà ssmca del decreto. Quest valor devono essere moltplcat per un fattore correttvo S s (amplfcazone stratgrafca) e per un fattore St (amplfcazone topografca). Per l calcolo del fattore S s vengono dentfcate 5 class, A, B, C, D e E. s t g 104

21 PROGRAM GEO - Sols Wn ver.2 per Wndows Lo schema, con l D.M.14/01/2008, vara leggermente: Classe Descrzone S S A 1,00 B Ammass roccos afforant o terren molto rgd caratterzzat da valor d V s30 superor a 800 m/s, comprendent eventual strat d alterazone superfcale d spessore massmo par a 3 m. Rocce tenere e depost d terren a grana grossa molto addensat o terren a grana fna molto consstent, con spessor superor a 30m, caratterzzat da un graduale mgloramento delle propretà meccanche con la profondtà e da valor d V s30, compres fra 360 m/s e 800 m/s (N spt,30 >50 ne terren a grana grossa o cu 30 >250 kpa ne terren a grana fna). C Depost d terren a grana grossa medamente addensat o terren a grana fna medamente consstent, con spessor superor a 30 metr, caratterzzat da un graduale mgloramento delle propretà meccanche con la profondtà e da valor d V s30 compres fra 180 e 360 m/s (15< N spt,30 <50 ne terren a grana grossa, 70< cu 30 <250 kpa ne terren a grana fna). D Depost d terren a grana grossa scarsamente addensat oppure d terren a grana fna scarsamente consstent, con spessor superor a 30 metr, caratterzzat da un graduale mgloramento delle propretà meccanche con la profondtà e da valor d V s30 <180 m/s (N spt,30 <15 ne terren a grana grossa, cu 30 <70 kpa ne terren a grana fna). E Terren d tpo C o D per spessore non superore a 20 m, gacent su un substrato d rfermento (V s30 >800 m/s). 1,00 1,40-0,40F 0 a g 1,20 1,00 1,70-0,60F 0 a g 1,50 0,90 2,40-1,50F 0 a g 1,80 1,00 2,00-1,10F 0 a g 1,60 F 0 è l amplfcazone spettrale massma, su bedrock orzzontale, e ha un valore mnmo d 2,2; s rcava, come a g, dalla tabella allegata al D.M.14 gennao

22 PROGRAM GEO - Sols Wn ver.2 per Wndows Per V s30 s ntende la meda pesata delle veloctà delle onde S negl strat fno a 30 metr d profondtà dal pano d posa della fondazone, calcolata secondo la relazone: 30 Vs30 = h Analogamente per N spt30 e cu 30 : = 1, N V s N spt,30 cu 30 = = 30 h N = 1, N spt, = 1, N 30 h cu Nel caso non sano dsponbl le msure d Vs per prm 30 metr e terren sano costtut da alternanze d terren a grana grossa e fna, s procede calcolando le class corrspondent per N spt,30 e cu 30, assumendo qund la classe peggore fra le due calcolate. In generale l fenomeno dell amplfcazone ssmca dventa pù accentuato passando dalla classe A alla classe E. Il fattore d amplfcazone topografca, con l D.M.14/09/2008, S t s ottene dal seguente schema: Categora Caratterstche della superfce Ubcazone S t topografca topografca dell opera T1 Superfce paneggante, pend e rlev solat con nclnazone meda ,00 T2 Pend con nclnazone meda >15. Sommtà del pendo 1,20 T3 Rlev con larghezza n cresta molto mnore che alla Cresta del rlevo 1,20 T4 base e nclnazone meda Rlev con larghezza n cresta molto mnore che alla base e nclnazone meda >30. Cresta del rlevo 1,40 Per l parametro Agv (accelerazone massma vertcale) una stma può essere fatta applcando la relazone proposta da Tezcan et al (1971): 106

23 PROGRAM GEO - Sols Wn ver.2 per Wndows Agv = f x Ago; con f = fattore d trasformazone varable da 0.5 a 0.67 (f=0.5 secondo l D.M. 14/01/2008). Una valutazone dell effetto d un ssma sulla stabltà d un versante può essere fatta, supponendo che, durante l ntervallo d tempo n cu s ha la manfestazone dell evento ssmco, su ogn sngolo conco venga applcata una forza orzzontale, applcata al barcentro del conco e dretta verso l esterno, d modulo uguale a: F = k W ssma c con kc = coeffcente ssmco orzzontale dato da βago; W = peso del conco -esmo. Nel D.M.14/01/2008 β va rcavato dalla seguente tabella: Categora del sottosuolo A B,C,D,E β β 0,2<a g 0,4 0,30 0,28 0,1<a g 0,2 0,27 0,24 a g 0,1 0,20 0,20 Nella verfca occorre tener conto anche dell azone ssmca vertcale che va ad ncrementare l peso de sngol conc secondo l espressone: W = W 1± k s ( ) n cu kv è l coeffcente ssmco vertcale, da porre uguale alla metà d kc. Nella stma del coeffcente d scurezza la forza ssmca calcolata va aggunta alle forze nstablzzant. Fs = Forze nstab Forze v stab + F ssma cosα 107

24 3.5.3 Trant. PROGRAM GEO - Sols Wn ver.2 per Wndows La trantatura d un versante potenzalmente nstable cerca d consegure l duplce obettvo d ntrodurre forze tangenzal (St) che s oppongano a quell nstablzzant dovut alla forza d gravtà e d aumentare le forze normal (Sn) agent sulla base del conco. S fa una dstnzone fra trant passv, attv e parzalmente attv. TIRANTI PASSIVI Nel caso d trant passv l ancoraggo non vene pretensonato. In questo caso l effetto dell opera è quello d ncrementare, a lungo termne, a seguto della deformazone del volume d terreno a monte, le forze normal stablzzant agent sulla superfce d scvolamento. Analtcamente la varazone del fattore d scurezza può essere espresso come segue: Forzestab + T cosθ Fs = Forzenstab T=resstenza allo sflamento del trante; θ= angolo che l trante forma con la perpendcolare alla base del conco, dove vene applcato. TIRANTI ATTIVI Nel caso d trant attv l ancoraggo vene pretensonato fno al raggungmento della resstenza massma allo sflamento. In questo caso l effetto dell opera è quello d contrastare mmedatamente le forze tangenzal nstablzzant agent sulla superfce d scvolamento. Analtcamente la varazone del fattore d scurezza può essere espresso come segue: Forzestab Fs = Forzenstab Tsnθ T=resstenza allo sflamento del trante; θ= angolo che l trante forma con la perpendcolare alla base del conco, dove vene applcato. TIRANTI PARZIALMENTE ATTIVI 108

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS Captolo 7 1. Il modello IS-LM La «sntes neoclassca» e l modello IS-LM Defnzone: ndvdua tutte le combnazon d reddto e saggo d nteresse per le qual l mercato de ben (curva IS) e l mercato della moneta (curva

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

CAPITOLO 3 Incertezza di misura Pagina 26

CAPITOLO 3 Incertezza di misura Pagina 26 CAPITOLO 3 Incertezza d msura Pagna 6 CAPITOLO 3 INCERTEZZA DI MISURA Le operazon d msurazone sono tutte nevtablmente affette da ncertezza e coè da un grado d ndetermnazone con l quale l processo d msurazone

Dettagli

Il pendolo di torsione

Il pendolo di torsione Unverstà degl Stud d Catana Facoltà d Scenze MM.FF.NN. Corso d aurea n FISICA esna d ABORAORIO DI FISICA I Il pendolo d torsone (sezone costante) Moreno Bonaventura Anno Accademco 005/06 Introduzone. I

Dettagli

MODELLISTICA DI SISTEMI DINAMICI

MODELLISTICA DI SISTEMI DINAMICI CONTROLLI AUTOMATICI Ingegnera Gestonale http://www.automazone.ngre.unmore.t/pages/cors/controllautomatcgestonale.htm MODELLISTICA DI SISTEMI DINAMICI Ing. Federca Gross Tel. 059 2056333 e-mal: federca.gross@unmore.t

Dettagli

Induzione elettromagnetica

Induzione elettromagnetica Induzone elettromagnetca L esperenza d Faraday L'effetto d produzone d corrente elettrca n un crcuto prvo d generatore d tensone fu scoperto dal fsco nglese Mchael Faraday nel 83. Egl studò la relazone

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

Normativa sismica Ponti pagina 1/33 1 CAMPO DI APPLICAZIONE...3 2 OBIETTIVI DEL PROGETTO...3 3 CRITERI GENERALI DI PROGETTAZIONE...

Normativa sismica Ponti pagina 1/33 1 CAMPO DI APPLICAZIONE...3 2 OBIETTIVI DEL PROGETTO...3 3 CRITERI GENERALI DI PROGETTAZIONE... Normatva ssmca Pont pagna 1/33 NORME TECNICHE PER IL PROGETTO SISMICO DEI PONTI 1 CAMPO DI APPLICAZIONE...3 OBIETTIVI DEL PROGETTO...3 3 CRITERI GENERALI DI PROGETTAZIONE...3 4 LIVELLI DI PROTEZIONE ANTISISMICA...3

Dettagli

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO GLI ERRORI SPERIMETALI ELLE MISURE DI LABORATORIO MISURA DI UA GRADEZZA FISICA S defnsce grandezza fsca una propretà de corp sulla quale possa essere eseguta un operazone d msura. Msurare una grandezza

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

A. AUMENTO DELLA SPESA PUBBLICA FINANZIATO ESCLUSIVAMENTE TRAMITE INDEBITAMENTO

A. AUMENTO DELLA SPESA PUBBLICA FINANZIATO ESCLUSIVAMENTE TRAMITE INDEBITAMENTO 4. SCHMI ALTRNATIVI DI FINANZIAMNTO DLLA SPSA PUBBLICA. Se l Governo decde d aumentare la Spesa Pubblca G (o Trasferment TR), allora deve anche reperre fond necessar per fnanzare questa sua maggore spesa.

Dettagli

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione Captolo 6 Rsultat pag. 468 a) Osmannoro b) Case Passern c) Ponte d Maccone Fgura 6.189. Confronto termovalorzzatore-sorgent dffuse per l PM 10. Il contrbuto del termovalorzzatore alle concentrazon d PM

Dettagli

Calcolo della caduta di tensione con il metodo vettoriale

Calcolo della caduta di tensione con il metodo vettoriale Calcolo della caduta d tensone con l metodo vettorale Esempo d rete squlbrata ed effett del neutro nel calcolo. In Ampère le cadute d tensone sono calcolate vettoralmente. Per ogn utenza s calcola la caduta

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse Lezone 1. L equlbro del mercato fnanzaro: la struttura de tass d nteresse Ttol con scadenza dversa hanno prezz (e tass d nteresse) dfferent. Due ttol d durata dversa emess dallo stesso soggetto (stesso

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

2 Modello IS-LM. 2.1 Gli e etti della politica monetaria

2 Modello IS-LM. 2.1 Gli e etti della politica monetaria 2 Modello IS-LM 2. Gl e ett della poltca monetara S consderun modello IS-LM senzastatocon seguent datc = 0:8, I = 00( ), L d = 0:5 500, M s = 00 e P =. ) S calcolno valor d equlbro del reddto e del tasso

Dettagli

MODELLI DI SISTEMI. Principi di modellistica. Considerazioni energetiche. manca

MODELLI DI SISTEMI. Principi di modellistica. Considerazioni energetiche. manca ONTOI UTOMTII Ingegnera della Gestone Industrale e della Integrazone d Impresa http://www.automazone.ngre.unmore.t/pages/cors/ontrollutomatcgestonale.htm MODEI DI SISTEMI Ing. ug Bagott Tel. 05 0939903

Dettagli

Analisi del moto pre e post urto del veicolo

Analisi del moto pre e post urto del veicolo Captolo Anals del moto pre e post urto del vecolo 3.1 Moto rettlneo p. xx 3.1.1 Accelerazone unforme p. xx 3.1. Dstanza per l arresto del vecolo ed evtabltà p. xx 3.1.3 Dagramm veloctà-tempo e dstanza

Dettagli

Adattamento di una relazione funzionale ai dati sperimentali

Adattamento di una relazione funzionale ai dati sperimentali Adattamento d una relazone 1 funzonale a dat spermental Sno ad ora abbamo vsto come può essere stmato, con un certo lvello d confdenza, l valore vero d una grandezza fsca (dretta o dervata) con l suo ntervallo

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

STATISTICA DESCRITTIVA CON EXCEL

STATISTICA DESCRITTIVA CON EXCEL STATISTICA DESCRITTIVA CON EXCEL Corso d CPS - II parte: Statstca Laurea n Informatca Sstem e Ret 2004-2005 1 Obettv della lezone Introduzone all uso d EXCEL Statstca descrttva Utlzzo dello strumento:

Dettagli

E. Il campo magnetico

E. Il campo magnetico - 64 - - 65 - E. Il campo magnetco V è un mportante effetto che accompagna sempre la presenza d una corrente elettrca e s manfesta sa all nterno del conduttore sa al suo esterno: alla corrente elettrca

Dettagli

Strutture deformabili torsionalmente: analisi in FaTA-E

Strutture deformabili torsionalmente: analisi in FaTA-E Strutture deformabl torsonalmente: anals n FaTA-E Il comportamento dsspatvo deale è negatvamente nfluenzato nel caso d strutture deformabl torsonalmente. Nelle Norme Tecnche cò vene consderato rducendo

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

Corrente elettrica e circuiti

Corrente elettrica e circuiti Corrente elettrca e crcut Generator d forza elettromotrce Intenstà d corrente Legg d Ohm esstenza e resstvtà esstenze n sere e n parallelo Effetto termco della corrente Legg d Krchhoff Corrente elettrca

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

Concetti principale della lezione precedente

Concetti principale della lezione precedente Corso d Statstca medca e applcata 6 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone precedente I concett prncpal che sono stat presentat sono: I fenomen probablstc RR OR ROC-curve Varabl

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

Introduzione al Machine Learning

Introduzione al Machine Learning Introduzone al Machne Learnng Note dal corso d Machne Learnng Corso d Laurea Magstrale n Informatca aa 2010-2011 Prof Gorgo Gambos Unverstà degl Stud d Roma Tor Vergata 2 Queste note dervano da una selezone

Dettagli

Calibrazione. Lo strumento idealizzato

Calibrazione. Lo strumento idealizzato Calbrazone Come possamo fdarc d uno strumento? Abbamo bsogno d dentfcare l suo funzonamento n condzon controllate. L dentfcazone deve essere razonalmente organzzata e condvsa n termn procedural: s tratta

Dettagli

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz LEZIONE e 3 La teora della selezone d portafoglo d Markowtz Unverstà degl Stud d Bergamo Premessa Unverstà degl Stud d Bergamo Premessa () È puttosto frequente osservare come gl nvesttor tendano a non

Dettagli

PARTE II LA CIRCOLAZIONE IDRICA

PARTE II LA CIRCOLAZIONE IDRICA PARTE II LA CIRCOLAZIONE IDRICA La acque d precptazone atmosferca che gungono al suolo scorrono n superfce o penetrano n profondtà dando orgne alla crcolazone, la quale subsce l nfluenza d molt fattor

Dettagli

Grafico di una serie di dati sperimentali in EXCEL

Grafico di una serie di dati sperimentali in EXCEL Grafco d una sere d dat spermental n EXCEL 1. Inseramo sulla prma rga l ttolo che defnsce l contenuto del foglo. Po nseramo su un altra rga valor spermental della x e su quella successva valor della y.

Dettagli

Indicatori di rendimento per i titoli obbligazionari

Indicatori di rendimento per i titoli obbligazionari Indcator d rendmento per ttol obblgazonar LA VALUTAZIONE DEGLI INVESTIMENTI A TASSO FISSO Per valutare la convenenza d uno strumento fnanzaro è necessaro precsare: /4 Le specfche esgenze d un nvesttore

Dettagli

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi Regressone Multpla e Regressone Logstca: concett ntroduttv ed esemp I Edzone ottobre 014 Vncenzo Paolo Senese vncenzopaolo.senese@unna.t Indce Note prelmnar alla I edzone 1 Regressone semplce e multpla

Dettagli

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE UNA RASSEGNA SUI METODI DI STIMA DEL VALUE at RISK (VaR) Chara Pederzol - Costanza Torrcell Dpartmento d Economa Poltca - Unverstà degl Stud d Modena e Reggo Emla Marzo 999 INDICE Introduzone. Il concetto

Dettagli

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007 Fondament d Vsone Artfcale (Seconda Parte PhD. Ing. Mchele Folgherater Corso d Robotca Prof.ssa Guseppna Gn Anno Acc.. 006/007 Caso Bdmensonale el caso bdmensonale, per ndvduare punt d contorno degl oggett

Dettagli

Rilevati sui terreni molli

Rilevati sui terreni molli Rlevat ferrovar, rlevat stradal, argn, serbato ndustral Sono tpologe ostruttve he trasmettono al terreno arh rlevant (100-200 kpa) su ampe aree. E neessaro verfare ogn fase della ostruzone, nel breve e

Dettagli

Manuale di istruzioni Manual de Instruções Millimar C1208 /C 1216

Manuale di istruzioni Manual de Instruções Millimar C1208 /C 1216 Manuale d struzon Manual de Instruções Mllmar C1208 /C 1216 Mahr GmbH Carl-Mahr-Str. 1 D-37073 Göttngen Telefon +49 551 7073-0 Fax +49 551 Cod. ord. Ultmo aggornamento Versone 3757474 15.02.2007 Valda

Dettagli

ANALISI DELLA SICUREZZA STRUTTURALE DI UN EDIFICIO DI C.A. SITO IN PERUGIA

ANALISI DELLA SICUREZZA STRUTTURALE DI UN EDIFICIO DI C.A. SITO IN PERUGIA ANALISI DELLA SICUREZZA STRUTTURALE DI UN EDIFICIO DI C.A. SITO IN PERUGIA Annbale Lug MATERAZZI Straordnaro d Progetto d Strutture Dpartmento d Ingegnera Cvle e Ambentale. Unverstà d Peruga Marco BRECCOLOTTI

Dettagli

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm.

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm. Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE Prof. Daro Amodo d.amodo@unvpm.t Ing. Ganluca Chappn g.chappn@unvpm.t http://www.dpmec.unvpm.t/costruzone/home.htm (Ddattca/Dspense) Testo d rfermento: Stefano

Dettagli

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard Corso d Statstca (canale P-Z) A.A. 2009/0 Prof.ssa P. Vcard VALORI MEDI Introduzone Con le dstrbuzon e le rappresentazon grafche abbamo effettuato le prme sntes de dat. E propro osservando degl stogramm

Dettagli

UNIVERSITA DI PALERMO CORSO DI IMPIANTI DI TRATTAMENTO SANITARIO-AMBIENTALE FILTRAZIONE

UNIVERSITA DI PALERMO CORSO DI IMPIANTI DI TRATTAMENTO SANITARIO-AMBIENTALE FILTRAZIONE UNIVERSITA DI PALERMO DIPARTIMENTO DI INGEGNERIA CIVILE AMBIENTALE E AEROSPAZIALE CORSO DI IMPIANTI DI TRATTAMENTO SANITARIO-AMBIENTALE FILTRAZIONE a cura d: Prof. Ing. Gaspare Vvan e Ing. Mchele Torregrossa

Dettagli

Cenni di matematica finanziaria Unità 61

Cenni di matematica finanziaria Unità 61 Prerequst: - Rsolvere equazon algebrche d 1 grado ed equazon esponenzal Questa untà è rvolta al 2 benno del seguente ndrzzo dell Isttuto Tecnco, settore Tecnologco: Agrara, Agroalmentare e Agrondustra.

Dettagli

9.6 Struttura quaternaria

9.6 Struttura quaternaria 9.6 Struttura quaternara L'ultmo lvello strutturale é la struttura quaternara. Non per tutte le protene è defnble una struttura quaternara. Infatt l esstenza d una struttura quaternara é condzonata alla

Dettagli

10.2 Come stimare l amaro di una birra: le unita IBU 1

10.2 Come stimare l amaro di una birra: le unita IBU 1 10.2 Come stmare l amaro d una brra: le unta IBU 1 Il prncpale contrbuto al sapore amaro della brra provene dagl alfa-acd (abbrevato n AA) del luppolo che durante l processo d bolltura vengono trasformat

Dettagli

Antonio Licciulli, Antonio Greco Corso di scienza e ingegneria dei materiali. Microstrutture, equilibrio e diagrammi di fase

Antonio Licciulli, Antonio Greco Corso di scienza e ingegneria dei materiali. Microstrutture, equilibrio e diagrammi di fase Antono Lccull, Antono Greco Corso d scenza e ngegnera de materal Mcrostrutture, equlbro e dagramm d fase 1 Fase Fase d un sstema è una parte d esso nella quale la composzone (natura e concentrazone delle

Dettagli

Economie di scala, concorrenza imperfetta e commercio internazionale

Economie di scala, concorrenza imperfetta e commercio internazionale Sanna-Randacco Lezone n. 14 Econome d scala, concorrenza mperfetta e commerco nternazonale Non v è vantaggo comparato (e qund non v è commerco nter-ndustrale). S vuole dmostrare che la struttura d mercato

Dettagli

Modello idraulico - Rapporto tecnico. (Rev. 0b)

Modello idraulico - Rapporto tecnico. (Rev. 0b) ASAP LIFE06/ENV/IT/000255 ASAP_D4-3_ModelloIdraulcoRappTecnco_IT_0b 1/20 LIFE06/ENV/IT/255 A.S.A.P. Actons for Systemc Aqufer Protecton The ASAP proect s partally funded by the European Unon LIFE Programme

Dettagli

Fondamenti di Fisica Acustica

Fondamenti di Fisica Acustica Fondament d Fsca Acustca Pro. Paolo Zazzn - DSSARR Archtettura Pescara Anals n requenza de segnal sonor, bande d ottava e terz d ottava. Rumore banco e rumore rosa. Lvello equvalente. Fsologa dell apparato

Dettagli

Misure su sistemi trifasi

Misure su sistemi trifasi Msure su sstem trfas - Msure su sstem trfas - Tp d collegamento Collegamento a stella Un sstema trfase è caratterzzato n generale da tre fl d lnea (L L L ) pù un eventuale quarto conduttore L detto conduttore

Dettagli

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni:

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni: Anals ammortzzata Anals ammortzzata S consdera l tempo rchesto per esegure, nel caso pessmo, una ntera sequenza d operazon. Se le operazon costose sono relatvamente meno frequent allora l costo rchesto

Dettagli

Dati di tipo video. Indicizzazione e ricerca video

Dati di tipo video. Indicizzazione e ricerca video Corso d Laurea n Informatca Applcata Unverstà d Urbno Dat d tpo vdeo I dat vdeo sono generalmente rcch dal punto d vsta nformatvo. Sottottol (testo) Colonna sonora (audo parlato e/o musca) Frame (mmagn

Dettagli

METODOLOGIE DI INDIVIDUAZIONE DELLE AREE SOGGETTE A RISCHIO IDRAULICO DI ESONDAZIONE

METODOLOGIE DI INDIVIDUAZIONE DELLE AREE SOGGETTE A RISCHIO IDRAULICO DI ESONDAZIONE Unone Europea Repubblca Italana Regone Calabra Autortà d Bacno POR Calabra 000-006 Asse I - Rsorse natural Msura.4 - Azone.4.c "STUDIO E SPERIMENTAZIONE DI METOLOGIE E TECNICHE PER LA MITIGAZIONE DEL RISCHIO

Dettagli

Unità Didattica N 25. La corrente elettrica

Unità Didattica N 25. La corrente elettrica Untà Ddattca N 5 : La corrente elettrca 1 Untà Ddattca N 5 La corrente elettrca 01) Il problema dell elettrocnetca 0) La corrente elettrca ne conduttor metallc 03) Crcuto elettrco elementare 04) La prma

Dettagli

DALLA TEORIA DEGLI ERRORI AL TRATTAMENTO DEI DATI

DALLA TEORIA DEGLI ERRORI AL TRATTAMENTO DEI DATI Captolo - Dalla teora degl error al trattamento de dat DALLA TEORIA DEGLI ERRORI AL TRATTAMENTO DEI DATI LA MISURA DELLE GRANDEZZE Nel descrere fenomen, occorre da un lato elaborare de modell (coè delle

Dettagli

7. TERMODINAMICA RICHIAMI DI TEORIA

7. TERMODINAMICA RICHIAMI DI TEORIA 7. ERMODINMI RIHIMI DI EORI Introduzone ermodnamca: è lo studo delle trasformazon dell energa da un sstema all altro e da una forma all altra. Sstema termodnamco: è una defnta e dentfcable quanttà d matera

Dettagli

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri Artmetca de calcolator Rappresentazone de numer natural e relatv Addzone e sommator: : a propagazone d rporto, veloce, con segno Moltplcazone e moltplcator: senza segno, con segno e algortmo d Booth Rappresentazone

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità alcolo delle Probabltà Quanto è possble un esto? La verosmglanza d un esto è quantfcata da un numero compreso tra 0 e. n partcolare, 0 ndca che l esto non s verfca e ndca che l esto s verfca senza dubbo.

Dettagli

Errori nel Posizionamento Satellitare

Errori nel Posizionamento Satellitare Error nel Poszonamento Satelltare Tpologe Casual Sstematc o d Modello D Osservazone L accuratezza è stmata come l 1% della lunghezza d onda (Regola Emprca). Codce C/A: ±3 m; Codce P: ±0,3 m; Portant L1,

Dettagli

Progetto Lauree Scientifiche. La corrente elettrica

Progetto Lauree Scientifiche. La corrente elettrica Progetto Lauree Scentfche La corrente elettrca Conoscenze d base Forza elettromotrce Corrente Elettrca esstenza e resstvtà Legge d Ohm Crcut 2 Una spra d rame n equlbro elettrostatco In un crcuto semplce

Dettagli

PARTE I EDIFICI IN MURATURA. Analisi dei Meccanismi Locali di Collasso in Edifici Esistenti in Muratura

PARTE I EDIFICI IN MURATURA. Analisi dei Meccanismi Locali di Collasso in Edifici Esistenti in Muratura REGIONE MOLISE IL RESIDENTE DELL REGIONE MOLISE COMMISSRIO DELEGTO (Legge del 7 Dcembre 00 n.86) Decreto n. 76 del 3 agosto 005 rotocollo d rogettazone per la Realzzazone degl Intervent d Rcostruzone ost-ssma

Dettagli

MACROECONOMIA A.A. 2014/2015

MACROECONOMIA A.A. 2014/2015 MACROECONOMIA A.A. 2014/2015 ESERCITAZIONE 2 MERCATO MONETARIO E MODELLO /LM ESERCIZIO 1 A) Un economa sta attraversando un perodo d profonda crs economca. Le banche decdono d aumentare la quota d depost

Dettagli

FORMAZIONE ALPHAITALIA

FORMAZIONE ALPHAITALIA ALPHAITALIA PAG. 1 DI 13 FORMAZIONE ALPHAITALIA IL SISTEMA DI GESTIONE PER LA QUALITA Quadro ntroduttvo ALPHAITALIA PAG. 2 DI 13 1. DEFINIZIONI QUALITA Grado n cu un nseme d caratterstche ntrnseche soddsfa

Dettagli

Soluzione attuale ONCE A YEAR. correlation curve (ISO10155) done with, at least 9 parallel measurements

Soluzione attuale ONCE A YEAR. correlation curve (ISO10155) done with, at least 9 parallel measurements Torna al programma Sstema per la garanza della qualtà ne sstem automatc d msura alle emsson: applcazone del progetto d norma pren 14181:2003. Rsultat dell esperenza n campo presso due mpant plota. Cprano

Dettagli

Questo è il secondo di una serie di articoli, di

Questo è il secondo di una serie di articoli, di DENTRO LA SCATOLA Rubrca a cura d Fabo A. Schreber Il Consglo Scentfco della rvsta ha pensato d attuare un nzatva culturalmente utle presentando n ogn numero d Mondo Dgtale un argomento fondante per l

Dettagli

MODULO 1 GLI AMPLIFICATORI OPERAZIONALI

MODULO 1 GLI AMPLIFICATORI OPERAZIONALI MODULO GL AMPLFCATO OPEAZONAL. PAAMET CAATTESTC D UN AMPLFCATOE OPEAZONALE Per la corretta utlzzazone un A.O. reale bsogna nterpretare at caratterstc fornt al costruttore e conoscere termn pù comunemente

Dettagli

Economia del Lavoro. Argomenti del corso

Economia del Lavoro. Argomenti del corso Economa del Lavoro Argoment del corso Studo del funzonamento del mercato del lavoro. In partcolare, l anals economca nerente l comportamento d: a) lavorator, b) mprese, c) sttuzon nel processo d determnazone

Dettagli

Valutazione delle opzioni col modello di Black e Scholes

Valutazione delle opzioni col modello di Black e Scholes Valutazone delle opzon col modello d Black e Scholes Rosa Mara Mnnn a.a. 2014-2015 1 Introduzone L applcazone del moto Brownano all economa é stata nnescata prncpalmente da due cause. Attorno agl ann 70,

Dettagli

L AUTORITÀ PER L ENERGIA ELETTRICA E IL GAS

L AUTORITÀ PER L ENERGIA ELETTRICA E IL GAS Delberazone 20 ottobre 2004 Approvazone delle condzon general d accesso e d erogazone del servzo d rgassfcazone d gnl predsposte dalla socetà Gnl Itala Spa (delberazone n. 184/04) L AUTORITÀ PER L ENERGIA

Dettagli

Economia del Settore Pubblico 97. Economia del Settore Pubblico 99. Quale indice di diseguaglianza usare? il rapporto interdecilico PROBLEMA:

Economia del Settore Pubblico 97. Economia del Settore Pubblico 99. Quale indice di diseguaglianza usare? il rapporto interdecilico PROBLEMA: Economa del Settore Pubblco Laura Vc laura.vc@unbo.t www.dse.unbo.t/lvc/edsp_.htm LEZIONE 4 Rmn, 9 aprle 008 Economa del Settore Pubblco 96 I prncpal ndc d dseguaglanza: ndc d entropa generalzzata Isprata

Dettagli

IMMAGINE RICONOSCIMENTO. 6.1 La densità di vegetazione: l indice NDVI DELLA VEGETAZIONE SULL I

IMMAGINE RICONOSCIMENTO. 6.1 La densità di vegetazione: l indice NDVI DELLA VEGETAZIONE SULL I CAPITOLO SESTO RICONOSCIMENTO DELLA VEGETAZIONE SULL I IMMAGINE QUICKBIRDIRD 6.1 La denstà d vegetazone: l ndce NDVI Allo scopo d caratterzzare la dstrbuzone della vegetazone sulle superfc d barena s è

Dettagli

Trasformazioni termodinamiche - I parte

Trasformazioni termodinamiche - I parte Le trasormazon recproche tra le energe d tpo meccanco e l calore, classcato da tempo come una delle orme nelle qual avvene lo scambo d energa, sono l oggetto d studo su cu s onda la Termodnamca, una mportante

Dettagli

Edifici a basso consumo energetico: tra ZEB e NZEB

Edifici a basso consumo energetico: tra ZEB e NZEB Edfc a basso consumo energetco: tra ZEB e NZEB Prof. Ing. Percarlo Romagnon Dpartmento d Progettazone e Panfcazone n Ambent Compless Unverstà IUAV d Veneza Dorsoduro 2206 30123 Veneza perca@uav.t Modell

Dettagli

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente Unverstà d Macerata Facoltà d Scenze Poltche - Anno accademco - La Regressone Varable ndpendente (data) Varable dpendente Dpendenza funzonale (o determnstca): f ; Da un punto d vsta analtco, valor della

Dettagli

10-7-2009. GAZZETTA UFFICIALE DELLA REPUBBLICA ITALIANA Serie generale - n. 158. ALLEGATO 1 (Allegato A, paragrafo 2)

10-7-2009. GAZZETTA UFFICIALE DELLA REPUBBLICA ITALIANA Serie generale - n. 158. ALLEGATO 1 (Allegato A, paragrafo 2) ALLEGATO 1 (Allegato A, paragrafo 2) Indcazon per l calcolo della prestazone energetca d edfc non dotat d mpanto d clmatzzazone nvernale e/o d produzone d acqua calda santara 1. In assenza d mpant termc,

Dettagli

FIBRE TESSILI: PROVE E CONTROLLI

FIBRE TESSILI: PROVE E CONTROLLI CAPITOLO 4 FIBRE TESSILI: PROVE E CONTROLLI 1. INTRODUZIONE 2. CONTENUTO DI UMIDITÀ E CONDIZIONATURA DELLE FIBRE TESSILI 2.1 METODI DIRETTI: ESSICCAZIONE IN STUFA 2.2 METODI INDIRETTI DI CONDIZIONATURA

Dettagli

MODELLO SPEDITIVO PER LA PREVISIONE DELLA DISPONIBILITÀ IDRICA NEL BACINO DEL PO IN PERIODI DI SICCITA

MODELLO SPEDITIVO PER LA PREVISIONE DELLA DISPONIBILITÀ IDRICA NEL BACINO DEL PO IN PERIODI DI SICCITA U.O. Protezone Cvle MODELLO SPEDITIVO PER LA PREVISIONE DELLA DISPONIBILITÀ IDRICA NEL BACINO DEL PO IN PERIODI DI SICCITA Centro Funzonale Component del gruppo d lavoro: Nomnatvo Ente Tel. Fax Ing. Maurzo

Dettagli

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013 Modul su un domno a deal prncpal Maurzo Cornalba versone 15/5/2013 Sa A un anello commutatvo con 1. Indchamo con A k l modulo somma dretta d k cope d A. Un A-modulo fntamente generato M s dce lbero se

Dettagli

Newsletter "Lean Production" Autore: Dott. Silvio Marzo

Newsletter Lean Production Autore: Dott. Silvio Marzo Il concetto d "Produzone Snella" (Lean Producton) s sta rapdamente mponendo come uno degl strument pù modern ed effcac per garantre alle azende la flessbltà e la compettvtà che l moderno mercato rchede.

Dettagli

Appunti delle lezioni di Laboratorio di Strumentazione e Misura

Appunti delle lezioni di Laboratorio di Strumentazione e Misura Sergo Frasca Appunt delle lezon d Laboratoro d Strumentazone e Msura Dpartmento d Fsca Unverstà d Roma La Sapenza Museo del Dpartmento d Fsca dell'unverstà La Sapenza Versone 5 ottobre 004 Versone aggornata

Dettagli

Laboratorio di Strumentazione e Misura. Cesare Bini

Laboratorio di Strumentazione e Misura. Cesare Bini Laboratoro d Strumentazone e Msura Cesare Bn Corso d laurea n Fsca Anno Accademco 006-007 Quest appunt sono basat sulle lezon del modulo d Laboratoro d Strumentazone e Msura del prmo anno delle lauree

Dettagli

Lezione n.13. Regime sinusoidale

Lezione n.13. Regime sinusoidale Lezone 3 Regme snusodale Lezone n.3 Regme snusodale. Rcham sulle funzon snusodal. etodo de fasor e fasor. mpedenza ed ammettenza. Dagramm fasoral 3. Potenza n regme snusodale 3. Potenza attva e reattva

Dettagli

Il Ministro delle Infrastrutture e dei Trasporti

Il Ministro delle Infrastrutture e dei Trasporti Il Mnstro delle Infrastrutture e de Trasport VISTO l decreto legslatvo 30 aprle 1992, n. 285, come da ultmo modfcato dal decreto legslatvo 18 aprle 2011, n. 59, recante Attuazone delle drettve 2006/126/CE

Dettagli

2. Le soluzioni elettrolitiche

2. Le soluzioni elettrolitiche . Le soluzon elettroltche Classfcazone degl elettrolt: 1) soluzon elettroltche ) solvent onc: a) sal fus b) lqud onc 3) elettrolt sold Struttura del solvente Interazone one/solvente Interazone one/one

Dettagli

Problemi variazionali invarianti 1

Problemi variazionali invarianti 1 Problem varazonal nvarant 1 A F. Klen per l cnquantesmo annversaro del dottorato. Emmy Noether a Gottnga. Comuncazone presentata da F. Klen nella seduta del 26 luglo 1918 2. 1 Invarante Varatonsprobleme,

Dettagli

Per il seminario di cultura formale - Dottorato GIA

Per il seminario di cultura formale - Dottorato GIA Per l semnaro d cultura formale - Dottorato GIA Luca Mar, dcembre 003 Lezone 1: la matematca come strumento per pensare Cnque ncontr, da 1 ora e mezza cascuno. Con questo tempo complessvo a dsposzone,

Dettagli

ROBOTS A CINEMATICA RIDONDANTE: NUOVI SVILUPPI CONSENTITI DAGLI AZIONAMENTI DIRETTI E DAGLI ALGORITMI DI CONTROLLO GENETICI

ROBOTS A CINEMATICA RIDONDANTE: NUOVI SVILUPPI CONSENTITI DAGLI AZIONAMENTI DIRETTI E DAGLI ALGORITMI DI CONTROLLO GENETICI ROBOTS A CINEMATICA RIDONDANTE: NUOVI SVILUPPI CONSENTITI DAGLI AZIONAMENTI DIRETTI E DAGLI ALGORITMI DI CONTROLLO GENETICI R. Fagla (*), M. Flppn (**), A. Zappon (***) (*)Dp. Ing. Meccanca Unv. degl Stud

Dettagli

Misura della distanza focale. di una lente convergente. Metodo di Bessel

Misura della distanza focale. di una lente convergente. Metodo di Bessel Zuccarello Francesco Laboratoro d Fsca II Msura della dstanza focale d una lente convergente Metodo d Bessel A.A. 003-004 Indce Introduzone..pag. 3 Presuppost Teorc.pag. 4 Anals de dat.pag. 8. Modo d operare...pag.

Dettagli

Apprendimento Automatico e IR: introduzione al Machine Learning

Apprendimento Automatico e IR: introduzione al Machine Learning Apprendmento Automatco e IR: ntroduzone al Machne Learnng MGRI a.a. 2007/8 A. Moschtt, R. Basl Dpartmento d Informatca Sstem e produzone Unverstà d Roma Tor Vergata mal: {moschtt,basl}@nfo.unroma2.t 1

Dettagli

Kit di conversione gas CELSIUS/Hydrosmart

Kit di conversione gas CELSIUS/Hydrosmart Kt d conversone gas CELSIUS/Hydrosmart IT (04.06) SM Indce 2 Indcazon per la scurezza 3 Legenda de smbol 3 1 Regolazone del gas - Celsus/Hydrosmart 4 1.1 Trasformazone gas 4 1.2 Impostazon d fabbrca 4

Dettagli

Elementi di linear discriminant analysis per la classificazione e il posizionamento nelle ricerche di marketing

Elementi di linear discriminant analysis per la classificazione e il posizionamento nelle ricerche di marketing http://www.mauroennas.eu Element d lnear dscrmnant analyss per la classfcazone e l poszonamento nelle rcerche d maretng Mauro Ennas Lnear Dscrmnant Analyss http://www.mauroennas.eu ADL_fnale_confronto_Ecel.sav

Dettagli

Dipartimento di Economia Aziendale e Studi Giusprivatistici. Università degli Studi di Bari Aldo Moro. Corso di Macroeconomia 2014

Dipartimento di Economia Aziendale e Studi Giusprivatistici. Università degli Studi di Bari Aldo Moro. Corso di Macroeconomia 2014 Dpartmento d Economa Azendale e Stud Gusprvatstc Unverstà degl Stud d Bar Aldo Moro Corso d Macroeconoma 2014 1.Consderate l seguente grafco: LM Partà de tass d nteresse LM B A IS IS Y E E E Immagnate

Dettagli

I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE

I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE Facoltà d Economa Valutazone de prodott e dell mpresa d asscurazone I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE Clauda Colucc Letza Monno Gordano Caporal Martna Ragg I Modell Multstato sono un

Dettagli

LA RETE DINAMICA NAZIONALE (RDN) ED IL NUOVO SISTEMA DI RIFERIMENTO ETRF2000

LA RETE DINAMICA NAZIONALE (RDN) ED IL NUOVO SISTEMA DI RIFERIMENTO ETRF2000 LA RETE DINAMICA NAZIONALE (RDN) ED IL NUOVO SISTEMA DI RIFERIMENTO ETRF2000 L. Baron, F. Caul, D. Donatell, G. Farolf, R. Maserol, Servzo Geodetco - Isttuto geografco Mltare - Frenze 1. Premessa La Rete

Dettagli

Riflessione, diffusione e rifrazione

Riflessione, diffusione e rifrazione LUCE E VISIONE I COLOI APPUNTI DI FISICA lessone, dusone e rrazone Per meglo capre prncìp della vsone è necessaro conoscere come s propaga la luce e come s comporta quando ncontra un ostacolo Una prma

Dettagli