Massimo Flusso. Ulteriori vincoli. Descrizione del problema. Rete di flusso. Flusso in G

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Massimo Flusso. Ulteriori vincoli. Descrizione del problema. Rete di flusso. Flusso in G"

Transcript

1 Maimizzare il # di PC prodoi Maimo Flo rre dai 2 Decrizione del problema Una fabbrica (orgene) di PC dee abilire il nmero di PC da aemblare giornalmene. Ti i PC prodoi erranno endi in n negozio (deinazione). La fabbrica ed il negozio ono collegai araero na ree di comnicazione. S di ogni rao della ree è in erizio n frgone che pò raporare n nmero fiao di PC (nmero che dipende dalla grandezza del frgone). rre dai 3 Uleriori incoli In ogni nodo della ree di comnicazione: Non è poibile prodrre PC Non è poibile occare PC In alre parole il nmero di PC che enra in n nodo è gale al nmero di PC che ece dal nodo. GOAL: Qale è il maggior nmero di PC che pò eere raporao dalla orgene alla deinazione enza iolare i incoli del problema? rre dai Ree di flo È n grafo orienao e peao G(V,E) con delle proprieà agginie Eiono de nodi paricolari V deo orgene V deo deinazione/pozzo Ad ogni arco (,) E è aegnao n alore c(,)>=0 deo capacià Per ogni V eiono: (cammino da a ) (cammino da a ) rre dai Flo in G È na fnzione f:vxv R È definia per ogni coppia di erici Indica le nià di bene (e.g., # di PC) che iaggia ra ogni coppia di nodi f(,) indica il flo della ree dal nodo al nodo rre dai 6 1

2 Flo in G La fnzione f:vxv R oddifa le egeni proprieà Vincolo lla capacià f(,) <= c(,), per ogni, V Simmeria obliqa f(,) = - f(,), per ogni, V Conerazione del flo V f(,) = 0, per ogni V-{,} Vincolo lla capacià Il flo da n nodo ad n alro non pò perare la capacià dell arco che conginge i de nodi Oio, da n nodo all alro, non i poono raporare più PC di qelli che enrano in n frgone rre dai 7 rre dai 8 Simmeria obliqa Conerazione del flo Il flo da n nodo ad n alro è l oppoo del flo nella direzione inera In paricolare f(,)=0, dao che f(,) = - f(,) 12 6 rre dai 9 rre dai 10 Uleriori proprieà Se (,),(,) E, allora non c è flo ra il nodo ed il nodo. (,),(,) E implica c(,)=c(,)=0 Dal incolo lla capacià f(,)<=0 e f(,)<=0 Dao che f(,) = -f(,), allora -f(,)<=0 implica f(,)>=0 Qindi, f(,)=0 In alre parole Se i è flo ra il nodo ed il nodo allora: (,) V oppre (,) V o enrambi rre dai rre dai 12 2

3 Valore del flo Noazione Dao n flo f di G, il alore del flo è definio come: f = V f(,) Proeremo che ale anche f = V f(,) Problema: Dao G, deerminare il flo di alore maimo 13 10/13 13 è la capacià 10 è il flo rre dai 13 rre dai 1 Eqialenza Eempio 8/10 3/ 10 /10 0/ f(,)= f(,)= rre dai 1 rre dai 16 Eempio Sorgeni e deinazioni mliple /16 12/ / 0/10 /9 7/7 1/ /13 3 /1 / 2 rre dai 17 rre dai 18 3

4 Sorgeni e deinazioni mliple Noazione implicia per il flo Dai de iniemi di erici X ed Y definiamo: f(x,y) = x X y Y f(x,y) S 3 2 T Come conegenza, la conerazione del flo pò eere cria come: f(,v) = 0, infai f(,v) = V f(,) rre dai 19 rre dai 20 Lemma 1 Sia G=(V,E) na ree di flo e ia f n flo per G. Allora: Per X V, ale f(x,x)=0 Per X,Y V, ale f(x,y) = -f(y,x) Per X,Y,Z V, con X Y=, ale f(x Y,Z)= f(x,z)+f(y,z) f(z,x Y)= f(z,x)+f(z,y) rre dai 21 Flo enrane in Dal precedene lemma poiamo dedrre che: f = f(v,) Ciò ignifica che il flo cene da è gale al flo enrane in, poiché, per la conerazione del flo, il flo in qalnqe alro nodo è gale a zero rre dai 22 Eercizi Sia G na ree di flo e iano f 1 e f 2 de fnzioni flo G. Sia g: VxV R ale che g(,) = f 1 (,) + f 2 (,). proare che g è n flo G. Sia G na ree di flo e iano f 1 e f 2 de fnzioni flo G e α na coane. Sia g: VxV R ale che g(,) = αf 1 (,) + (1- α)f 2 (,). proare che g è n flo G. rre dai 23 Meodo di Ford-Flkeron È n meodo per riolere il problema del maimo flo È baao re idee: Rei reide Percori amenani (agmening pah) Tagli (c) Non è n algorimo in qano da eo i poono deriare ari algorimi rre dai 2

5 Meodo di Ford-Flkeron FORD-FULKERSON-METHOD(G,,) inizializza il flo f a zero while eie n agmening pah p do amena il flo f lngo p endwhile rern f rre dai 2 Rei reide Iniiamene, na ree reida è coiia dagli archi che permeono il paaggio di leriore flo Dao G=(V,E),, ed n flo f in G la capacià reida di (,) è daa da: c f (,) = c(,) f(,) Qanià di flo, da a, che pò eere aggino ad f enza perare la il incolo lla capacià rre dai 26 Eempio c(,)=10, f(,)=8 c f (,)=2 c(,)=0, f(,)=7 c f (,)=7 c(,)=16, f(,)=- c f (,)=20 Ree reida indoa da f È definia come G f (V,E f ), doe E f ={(,) VxV : c f (,)>0} Gli archi in E f ono dei archi reidi È la ree coiia da i gli archi che poono ammeere ancora flo Se almeno n arco ra (,) e (,) è in G, pò accadere che (,) è in G f, qindi: E f <= 2 E rre dai 27 rre dai 28 Ree reida indoa da f Eempio di ree di flo La ree reida è ea ea na ree di flo con capacià c f Poiamo aere c f (,)>0 e c(,)>0 e f(,)<c(,), oppre e c(,)=0 e f(,)>0 Eie na relazione ra il flo in na ree di flo ed il flo in na ree reida 12/ /16 1/ 0/10 /9 8/13 7/7 3 /1 1/20 / rre dai 29 rre dai 30

6 Eempio di ree reida Lemma Sia G=(V,E) na ree di flo e ia f n flo in G. Sia G f la ree reida indoa da f in G e ia f il flo in G f. Allora la fnzione F(,)=f(,)+ f (,) è n flo in G con alore F = f + f rre dai 31 rre dai 32 Proa Lemma 2 Vincolo immeria (f+f')(,)= f(,)+f'(,) = -(f(,)+f'(,) = -(f+f')(,) Vincolo capacià (f+f')(,)= f(,)+f'(,) <=f(,)+c(,)-f(,) = c(,) Vincolo conerazione del flo Σ (f+f')(,)= Σ f(,) + Σ f'(,) = 0 rre dai 33 Proa Lemma 2 (con.) Valore del flo f+f' = Σ (f+f')(,) = Σ f(,) + Σ f'(,) = f + f' rre dai 3 Agmenig pah Daa na ree di flo G=(V,E) ed n flo f, n agmening pah p è n cammino emplice da a nella ree reida G f Daa na agmening pah p definiamo la capacià reida di p come c f (p) = min{c f (,) : (,) è n arco in p} La capacià reida rappreena la maima qanià di flo che i pò raporare lngo gli archi di p rre dai 3 Eempio di agmenig pah p=(, 1 )( 1, 3 )( 3, 2 )( 2,) 7 1 rre dai 36 c(p)= 6

7 Lemma 3 Sia G=(V,E) na ree di flo e ia f n flo in G. Sia p na agmenig pah nella ree reida G f. Definiamo la fnzione f p :VxV R come c f (p) e (,) p f p (,) = -c f (p) e (,) p 0 alrimeni La fnzione f p è n flo in G f con alore f p = c f (p) >0 Corollario 1 Sia G=(V,E) na ree di flo e ia f n flo in G. Sia p na agmenig pah nella ree reida G f. Sia f p definia come nel Lemma 3. Definiamo la fnzione f :VxV R come f =f+f p. Allora f è n flo in G con alore f = f + f p > f rre dai 37 rre dai 38 Taglio di na ree di flo Un aglio (c) di na ree di flo G=(V,E), indicao con c(s,t), è na parizione dei erici V in S e T=V-S con S e T Il flo lngo il aglio è definio come f(s,t)= S T f(,) La capacià del aglio è definia come c(s,t)= S T c(,) rre dai 39 Eempio di aglio /16 8/13 S={, 1, 3 } T={, 2, } 12/ / 0/10 3 /9 /1 7/7 1/20 / f(s,t)=12+(-)+=19 c(s,t)=12+1=26 rre dai 0 Oerazioni Noiamo che il flo araero n aglio pò incldere alori di flo negaii, menre la capacià di n aglio è compoa olo da alori poiii Il proimo lemma mora che il alore del flo in na ree di flo è pari al flo lngo n qaliai aglio della ree rre dai 1 Lemma Sia f n flo in na ree di flo G con orgene e deinazione e ia (S,T) n aglio di G. Allora il flo lngo il aglio (S,T) è f(s,t)= f. rre dai 2 7

8 Corollario 2 Teorema (max-flow min-c) Il alore di n qaliai flo f in na ree di flo G è limiao periormene dalla capacià di n qaliai aglio di G f <= c(s,t) per ogni aglio (S,T) Se f è n flo in na ree di flo G con orgene e deinazione, allora le egeni condizioni ono eqialeni: 1. f è n maimo flo in G 2. G f non coniene agmening pah 3. f = c(s,t) per n aglio (S,T) rre dai 3 rre dai Deerminare il aglio minimo Se non eie na agmening pah in G f, definendo S={ V:eie n percoro da a } e T=V-S abbiamo oeno il aglio di coo minimo rre dai Ford-Flkeron(G,,) foreach (,) E(G) do f(,)=f(,)=0 endfor while (eie p da a in G f ) do c f (p) = min{c f (,) : (,) p} foreach (,) p do f(,)=f(,)+ c f (p) f(,)=-f(,) endfor endwhile rre dai 6 Analii di Ford-Flkeron Il rnning-ime dell algorimo di FF dipende da come i deermina l AP Qando la capacià ame alori reali, e l AP non è cela con cra FF porebbe non conergere mai Se l AP è cela ando la BFS, l algorimo ha n rnning-ime polinomiale Speo il problema del maimo flo i preena con capacià inere rre dai 7 Max-flow con capacià inere Un implemenazione banale ha empo di eeczione O(E f * ), doe f * è il alore del maimo flo Il primo foreach prende empo Θ(E) Il while è eegio al più f * ole dao che il flo amena di almeno na nià ad ogni ierazione Il laoro all inerno del while pò eere reo efficiene, O(E), a econda della rra dai ilizzaa (edi pp. 9 e 96 del libro di eo) rre dai 8 8

9 Eempio Algorimo di Edmond-Karp f * = RT= O(E f* ) RT=O( ) Ua come bae l algorimo di FF La AP è elezionaa ando la BFS Il percoro da a è qello minimo coniderando ogni arco con peo no Il rnning-ime è O(VE 2 ) AP 1 =(,)(,)(,) AP 2 =(,)(,)(,) rre dai 9 rre dai 0 Maimo-maching G=(V,E) è n grafo non direzionao Un inieme M V è n maching e Per ogni V al più n arco in M è incidene, in al cao è mached M V è n maimo-maching e M è di cardinalià maima, cioè per ogni maching M i ha M >= M MM in grafi biparii Un grafo non direzionao G=(V,E) è bipario e V pò eere parizionao in de iniemi L ed R ali che e (,) E, allora o L e R oppre R e L V=L R L R= gli archi ono olo ra L ed R rre dai 1 rre dai 2 Eempio A coa ere MM? maching maimo maching rre dai 3 Ha mole applicazioni praiche L rappreena n inieme di proceori R rappreena n inieme di ak che deono eere eegii imlaneamene Ogni proceore eege n ak per ola Un arco indica che n proceore è in grado di eegire n deerminao ak Si ole maimizzare il nmero di ak eegii conemporaneamene rre dai 9

10 Troare MM con FF A parire da n grafo bipario non direzionao G=(V,E), doe V=L R, definiamo la ree di flo G =(V,E ) doe V =V {,} E ={(,) : L} {(,) : L, R e (,) E} {(,) : R} Ogni arco lla ree di flo G arà capacià niaria rre dai Teorema del MM Sia G=(V,E) n grafo bipario con parizione dei erici V=L R, e ia G =(V,E ) la corripondene ree di flo. Se M è n maching in G, allora eie n flo a alori ineri in G con alore f = M. D alra pare, e f è n flo a alori ineri in G, allora eie n maching in G con cardinalià M = f. rre dai 6 Eempio Ti gli archi da L ad R con flo poiio fanno pare del MM flo = 1 flo = 0 rre dai 7 10

Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis

Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis Maimo fluo Progeazione di Algorimi a.a. 2016-17 Maricole congrue a 1 Docene: Annalia De Boni 1 Maimizzare il # di PC prodoi 2 Decrizione del problema Una fabbrica (orgene) di PC deve abilire il numero

Dettagli

Applicazioni del Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis

Applicazioni del Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis Applicazioni del Maimo fluo Progeazione di Algorimi a.a. 0-6 Maricole congrue a Docene: Annalia De Boni Maching bipario Problema del max maching. Inpu: grafo non direzionao G = (V, E). M E e` un maching

Dettagli

2.4 Flussi di valore massimo

2.4 Flussi di valore massimo .4 Flui di valore maimo I modelli di fluo hanno variae applicazioni in eori come elecomunicazioni informaica (muliproceori, proocolli inerne) rapori (aereo, radale, ferroviario, merci) Si raa di diribuire

Dettagli

Ulteriori Esercizi su Grafi. Ugo Vaccaro

Ulteriori Esercizi su Grafi. Ugo Vaccaro Progeazione di Algorimi Anno Accademico 0 0 Uleriori Eercizi u Grafi. Ugo Vaccaro N.B. Si ricorda che ogni algorimo và accompagnao da una argomenazione ul perchè calcola correamene l oupu e da un analii

Dettagli

Problema del flusso massimo

Problema del flusso massimo Rei di fluo Problema del fluo maimo Moivazione iniziale: problemi di raffico u rei di raporo Trapori ferroviari, auoradali, Traporo di liquidi in rei idriche Traporo di pacchei di dai in una ree di comunicazione.

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboraorio di Algorimi e Sruure Dai Aniello Murano hp://people.na.infn.i people.na.infn.i/~murano/ 1 Algorimi per il calcolo di percori minimi u un grafo 1 Un emplice problema Problema: Supponiamo che

Dettagli

Tema 3. Insiemi, elementi di logica, calcolo combinatorio, relazioni e funzioni

Tema 3. Insiemi, elementi di logica, calcolo combinatorio, relazioni e funzioni Tema 3 Iniemi, elemeni di logica, calcolo combinaorio, relazioni e funzioni 3.1 Queii di livello bae 3.1.1 Si coniderino i egueni enunciai: n è un muliplo di 3 o è un numero pari, e inolre è minore di

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboraorio di Algorimi e Sruure Dai Aniello Murano hp://people.na.infn.i people.na.infn.i/ ~murano/ 1 Algorimi per il calcolo di percori minimi u un grafo 1 Un emplice problema Pr oblema: Supponiamo che

Dettagli

Ricerca Operativa. Facoltà di Ingegneria dell Informazione, Informatica e Statistica. (Massimo Flusso) Giovanni Fasano.

Ricerca Operativa. Facoltà di Ingegneria dell Informazione, Informatica e Statistica. (Massimo Flusso) Giovanni Fasano. Facolà di Ingegneria dell Informazione, Informaica e Saiica Appuni dalle lezioni di Ricerca Operaiva (Maimo Fluo) ede di Laina Giovanni Faano faano@unive.i hp://venu.unive.i/ faano anno accademico 2013-2014

Dettagli

Cammini Minimi. Un problema molto comune. Formalizziamo. Peso di un cammino. Esempio. Ritorniamo all esempio iniziale. Input:

Cammini Minimi. Un problema molto comune. Formalizziamo. Peso di un cammino. Esempio. Ritorniamo all esempio iniziale. Input: Cammini Minimi Un problema molto comune i uole andare da alerno a Milano in auto percorrendo il minor numero di chilometri oluzione inefficiente: i coniderano TUTTI i percori poibili e e ne calcola la

Dettagli

Grafi e reti di flusso

Grafi e reti di flusso Grafi e reti di flusso Molti problemi di ottimizzazione sono caratterizzati da una struttura di grafo: in molti casi questa struttura emerge in modo naturale, in altri nasce dal particolare modo in cui

Dettagli

INTRODUZIONE ALLE LEGGI FINANZIARIE

INTRODUZIONE ALLE LEGGI FINANZIARIE Inroduzione alle leggi finanziarie Operazione finanziaria u due dae: S - S + I INTRODUZIONE ALLE LEGGI FINANZIARIE 0 1 anni Legge di equivalenza ineremporale inrodoa dal conrao finanziario: 0 S 1 S + I

Dettagli

Progetto e Ottimizzazione di Reti A. A

Progetto e Ottimizzazione di Reti A. A Progeo e Oimizzazione di Rei A. A. 006-007 Docene Fabrizio Roi roi@di.univaq.i Orario Maredi 15-17 aula.5 Mercoledi 11.30-13.30 aula.5 Giovedi 11.30-13.30 aula.5 Orario di ricevimeno Mercoledi 17-19 Progeo

Dettagli

Problemi di flusso. Reti. Problemi di flusso. Problemi di flusso. Problemi di percorso. minσ (i,j) E c ij x ij. i N (i,j) E.

Problemi di flusso. Reti. Problemi di flusso. Problemi di flusso. Problemi di percorso. minσ (i,j) E c ij x ij. i N (i,j) E. Problemi di fluo Rei Problemi di percoro Fluo a coo minimo MinoFlow(G(V,E),b,l,u,c,min) Ianza: una ree G(V,E) per cui è dao un valore inero b i (fluo prodoo dal nodo) per ogni nodo v i un coo c ij per

Dettagli

Dato un cammino P indichiamo con c(p ) il costo dell insieme di archi A(P ) del cammino, ovvero c(p )=c(a(p )) = uv P c uv. c 1

Dato un cammino P indichiamo con c(p ) il costo dell insieme di archi A(P ) del cammino, ovvero c(p )=c(a(p )) = uv P c uv. c 1 Capiolo 7 Cammini minimi 7. Definizioni fondamenali Sia dao un grafo non orienao G(N,A) conneo, con coi aociai agli archi c uv R per ogni uv A. Siano anche dai due nodi peciali, N. Faremo la eguene: Aunzione

Dettagli

= 20 m/s in una guida verticale circolare. v A A

= 20 m/s in una guida verticale circolare. v A A Eercizio (tratto dal Problema 4.39 del Mazzoldi Un corpo di maa m = 00 Kg entra con elocità A licia di raggio = 5 m. Calcolare: = 0 m/ in una guida erticale circolare. la elocità nei punti B e C;. la reazione

Dettagli

PREMESSA In questa lezione verranno esposte le regole per l analisi dei sistemi continui con il metodo della Trasformata di Laplace.

PREMESSA In questa lezione verranno esposte le regole per l analisi dei sistemi continui con il metodo della Trasformata di Laplace. ITIS G CARDANO PREMESSA In quea lezione verranno epoe le regole per l analii dei iemi coninui con il meodo della Traormaa di Laplace ANALISI DEI SISTEMI CONTINUI Per analizzare un iema di conrollo è neceario

Dettagli

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Schedulazione intervalli. Schedulazione intervalli: Algoritmi Greedy. Schedulazione intervalli.

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Schedulazione intervalli. Schedulazione intervalli: Algoritmi Greedy. Schedulazione intervalli. Chaper.1 Inerval Scheduling Greedy Algorihm 1 Schedulazione inervalli Schedulazione inervalli: Algorimi Greedy Schedulazione inervalli.! Job j inizia a j e finice a f j.! Due job ono compaibili e non hanno

Dettagli

Lezione 5. Calcolo dell antitrasformata di Laplace. F. Previdi - Automatica - Lez. 5 1

Lezione 5. Calcolo dell antitrasformata di Laplace. F. Previdi - Automatica - Lez. 5 1 Lezione 5. Calcolo dell aniraormaa di Laplace. Previdi - Auomaica - Lez. 5 Schema della lezione. Inroduzione. Aniraormazione di Laplace. Srumeni per l aniraormazione 4. Teorema del valore iniziale 5. Teorema

Dettagli

Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine

Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine Lezione 4 Ripoe canoniche dei iemi del primo e del econdo ordine Parameri caraeriici della ripoa allo calino Per ripoe canoniche i inendono le ripoe dei iemi dinamici ai egnali coiddei canonici (impulo,

Dettagli

Basi di Elettronica (1 parte)

Basi di Elettronica (1 parte) Bai di Eleronica ( pare) A TRASFORMATA DI APACE 2 Traformaa invera di aplace 2 Tabella: raformae di aplace di funzioni elemenari 2 Alcune proprieà noevoli della raformaa di aplace 3 Idenià di Pareval 5

Dettagli

REGISTRAZIONE DEL MOTO. Lo scopo è riempire una tabella t/s (istante di tempo/posizione occupata)

REGISTRAZIONE DEL MOTO. Lo scopo è riempire una tabella t/s (istante di tempo/posizione occupata) REGISTRAZIONE DEL MOTO Lo copo è riempire una abella / (iane di empo/poizione occupaa) (ec) (meri) Ciò i può fare in due modi: 1) Prefiare le poizioni e miurare a quale empo vengano raggiune. Si compila

Dettagli

Esercitazione 16 Novembre 2012 Circuiti dinamici del secondo ordine. t come riportato in figura.

Esercitazione 16 Novembre 2012 Circuiti dinamici del secondo ordine.  t come riportato in figura. Eercitazione Noembre ircuiti dinamici del econdo ordine ircuito L- erie Per quanto riguarda queto circuito, l eercizio egue la traccia della oluzione del compito d eame numero, reperibile in rete al olito

Dettagli

Rappresentazione del sistema. Classificazione dei sistemi di controllo

Rappresentazione del sistema. Classificazione dei sistemi di controllo Rappreenazione del iema ẋ= f x,u, (equazione differenziale) y =g x,u, (equazione algebrica) Nomi delle variabili u: ingreo x: ao y: ucia Claificazione dei iemi di conrollo Ordine Il numero n delle variabili

Dettagli

Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33

Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33 Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33 Ottimizzazione su grafi:massimo flusso (parte 1) p. 2/33 Reti di flusso Una rete di flusso è una

Dettagli

Introduzione allo studio delle reti elettriche

Introduzione allo studio delle reti elettriche Marco Panareo Inrodzione allo dio delle rei eleriche Unierià deli Sdi di Lecce - Facolà di Ineneria II Indice Rei eleriche lineari Lee di Kirchho per le correni Lee di Kirchho per le enioni Solzione di

Dettagli

Metodo della Trasformata di Laplace (mtl)

Metodo della Trasformata di Laplace (mtl) Lezione 7 Meodo della raformaa di Laplace Lezione n.7 Meodo della raformaa di Laplace (ml). Inroduzione. Richiami ulla raformaa di Laplace. Proprieà della raformaa. Regola di derivazione.3 abella di raformae

Dettagli

Problema 1: Una collisione tra meteoriti

Problema 1: Una collisione tra meteoriti Problema : Una colliione ra meeorii Problemi di imulazione della econda prova di maemaica Eami di ao liceo cienifico 5 febbraio 05 Lo udene deve volgere un olo problema a ua cela Tempo maimo aegnao alla

Dettagli

Teoria dei grafi: ricerca di percorsi a minimo costo Ing. Valerio Lacagnina

Teoria dei grafi: ricerca di percorsi a minimo costo Ing. Valerio Lacagnina Metodi diide-et-impera, programmazione dinamica e algoritmi greed La programmazione dinamica, come il metodo diide-et-impera, risole n problema mettendo insieme le solzioni di n certo nmero di sottoproblemi.

Dettagli

Visite in Grafi BFS e DFS

Visite in Grafi BFS e DFS Visite in Grafi BFS e DFS Visita di un Grafo Obiettivo: Visitare una sola volta tutti i nodi del grafo. Es.: visitare un porzione del grafo del Web Difficoltà: Presenza di cicli: Marcare i nodi visitati

Dettagli

la velocità con cui il bombardiere viaggia alla quota costante di H = 1200m

la velocità con cui il bombardiere viaggia alla quota costante di H = 1200m Problema n. : Un bombardiere ola a 43 km/h alla quoa coane di m ero un puno poo ulla ericale di una nae ormeiaa in mare apero. Soo quale anolo iuale (ripeo alla direzione orizzonale) il piloa dorebbe lanciare

Dettagli

Trasformazione di Laplace

Trasformazione di Laplace Traformazione di Laplace Gabriele Sicuro. Definizioni fondamentali Sia data una funzione f : C; ea i dice originale e ono oddifatte le eguenti condizioni: () f (t) per t

Dettagli

Problema n. 2. Soluzione

Problema n. 2. Soluzione Problema n. Un auto da cora A iaia u un piano orizzontale con elocità cotante = 69 km/ i 11 km/ j ripetto ad un oeratore olidale al uolo Ox. Qual è la elocità dell auto A miurata da un oeratore olidale

Dettagli

L induzione elettromagnetica - Legge di Faraday-Lentz

L induzione elettromagnetica - Legge di Faraday-Lentz L induzione elettromagnetica - Legge di Faraday-Lentz Si oerano alcuni fatti perimentali. 1 ) Conideriamo un filo metallico chiuo u e teo (pira) tramite un miuratore di corrente poto in icinanza di un

Dettagli

MATEMATICA E STATISTICA CORSO A I COMPITINO (Tema 1) 28 Novembre 2008

MATEMATICA E STATISTICA CORSO A I COMPITINO (Tema 1) 28 Novembre 2008 MATEMATICA E STATISTICA CORSO A I COMPITINO (Tema 1) 28 Novembre 2008 SOLUZIONI 1. (4 punti) L indice di maa corporea (IMC) è ottenuto dal rapporto tra maa, eprea in Kg, e l altezza, eprea in m, al quadrato.

Dettagli

Minimi Quadrati Ricorsivi

Minimi Quadrati Ricorsivi Minimi Quadrai Ricorsivi Minimi Quadrai Ricorsivi Fino ad ora abbiamo sudiao due diversi meodi per l idenificazione dei modelli: - Minimi quadrai, uilizzao per l idenificazione dei modelli ARX, in cui

Dettagli

MODELLISTICA DI SISTEMI ELETTRICI

MODELLISTICA DI SISTEMI ELETTRICI III. MODEISTIA DI SISTEMI EETTII In analogia a qano fao per i sisemi meccanici, in qeso capiolo considereremo sisemi elerici discrei o, come sono più freqenemene dei, a parameri concenrai. Tali sisemi

Dettagli

Dispense del corso di Analisi II

Dispense del corso di Analisi II Dipene del coro di Analii II verione preliminare Paolo Tilli Diparimeno di Maemaica Poliecnico di Torino email: paolo.illi@polio.i gennaio 25 Capiolo 5 Traformaa di Laplace 5. Inroduzione Sia x() una funzione

Dettagli

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo.

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo. 1. Serie di Fourier I problemi al bordo associai ad equazioni differenziali si sanno risolvere con il meodo di separazione delle variabili solano se il dao iniziale si rappresena nella forma fx = a cosx

Dettagli

Due turbine (o due turbomacchine in genere) si dicono geometricamente simili se (fig. 8.1):

Due turbine (o due turbomacchine in genere) si dicono geometricamente simili se (fig. 8.1): 8.) - LA SIMILITUINE Si è deo, al paragrafo preedene, dell'uilià dello udio delle urbine in imiliudine. Si aenna in queo paragrafo al ignifiao di imiliudine, e i forniono alune definizioni di araere generale.

Dettagli

Dispositivi e Sistemi Meccanici. 11 Esercizi. Politecnico di Torino CeTeM. Esercizio 11

Dispositivi e Sistemi Meccanici. 11 Esercizi. Politecnico di Torino CeTeM. Esercizio 11 Poliecnico i Torino ete Dipoiivi e Siemi eccanici Eercizi Eercizio Un moore o è collegao a un argano A i ollevameno econo lo chema in figura. Sull albero moore è ineria una frizione conica Fr, che ramee

Dettagli

LA PUNTA ELICOIDALE. ϕ angolo dei taglienti; è l angolo formato dai due taglienti principali. γ angolo di spoglia superiore. β angolo di taglio

LA PUNTA ELICOIDALE. ϕ angolo dei taglienti; è l angolo formato dai due taglienti principali. γ angolo di spoglia superiore. β angolo di taglio 1 LA PUNTA ELICOIDALE È l uenile più emplice per l eecuzione di fori cilindrici, generalmene dal pieno. La puna elicoidale è coiuia: da un codolo cilindrico o conico per il cenraggio ul mandrino della

Dettagli

Processi di cost management - Programmazione multiperiodale

Processi di cost management - Programmazione multiperiodale Processi di cost management - Programmazione multiperiodale Queste slide (scrte da Carlo Mannino) riguardano il problema di gestione delle attivà di un progetto allorché i costi di esecuzione sono legati

Dettagli

Nel caso di molte misure e statistica gaussiana

Nel caso di molte misure e statistica gaussiana Dicrepanza Nella tragrande maggioranza dei cai le concluioni perimentali implicano il confronto tra due o più valori. Queti valori poono eere delle miure (e quindi con un incertezza), delle time teoriche

Dettagli

MODELLI DI SCELTA DEL PERCORSO PER RETI DI TRASPORTO COLLETTIVO

MODELLI DI SCELTA DEL PERCORSO PER RETI DI TRASPORTO COLLETTIVO IPARTIMENTO INENERIA CIVILE UNIVERSITÀ I ROMA TOR VERATA coo di Pianificazione dei tapoti 2 MOELLI I SCELTA EL PERCORSO PER RETI I TRASPORTO COLLETTIVO 1 CLASSIFICAZIONE EI COMPORTAMENTI I SCELTA celta

Dettagli

Circuiti dinamici. Circuiti del primo ordine. (versione del ) Circuiti del primo ordine

Circuiti dinamici. Circuiti del primo ordine.  (versione del ) Circuiti del primo ordine ircuii dinamici ircuii del primo ordine www.die.ing.unibo.i/pers/masri/didaica.hm (versione del 4-5- ircuii del primo ordine ircuii del primo ordine: circuii il cui sao è definio da una sola variabile

Dettagli

2. Grafi e proprietà topologiche

2. Grafi e proprietà topologiche . Grafi e proprieà opologiche Grafo. Marice di incidenza complea. Soografo. Ordine di un nodo. Percorso, maglia, veore opologico di maglia. Taglio, veore opologico di aglio. Orogonalià ra agli e maglie.

Dettagli

Metodo della trasformata di Laplace

Metodo della trasformata di Laplace Meodo della raformaa di aplace Il meodo imbolico conene di affronare l analii di rei coneneni componeni reaivi (condenaori e induori) in regime inuoidale, aggirando la compleià maemaica inrodoa dalle relazioni

Dettagli

L equazione che descrive il moto del corpo è la seconda legge della dinamica

L equazione che descrive il moto del corpo è la seconda legge della dinamica Eercizio ul piano inclinato La forza peo è data dalla formula p mg Allora e grandezze geometriche: poono eere critte utilizzando l angolo di inclinazione del piano oppure le Angolo di inclinazione orza

Dettagli

2. METODO DEGLI SPOSTAMENTI O EQUAZIONE DELLA LINEA ELASTICA, PER LA SOLUZIONE DI TRAVI IPERSTATICHE

2. METODO DEGLI SPOSTAMENTI O EQUAZIONE DELLA LINEA ELASTICA, PER LA SOLUZIONE DI TRAVI IPERSTATICHE METODO DEGLI SPOSTAMENTI CORSO DI PROGETTAZIONE STRUTTURALE B a.a. 00/0 Prof. G. Salerno Appunti elaborati da Arch. C. Provenzano. STRUTTURE IPERSTATICHE Una truttura i dice ipertatica o taticamente indeterminata

Dettagli

SOLUZIONE ESERCIZI: CONCORRENZA PERFETTA E OLIGOPOLIO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: CONCORRENZA PERFETTA E OLIGOPOLIO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: CONCORRENZA PERFETTA E OLIGOPOLIO ECONOMIA INDUSTRIALE Universià degli Sudi di Milano-Bicocca Chrisian Garavaglia Soluzione 4 a) Indicando con θˆ la sima di θ, il profio aeso dell impresa

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento Geomeria analiica del piano pag 7 Adolfo Scimone Ree in posizioni paricolari rispeo al sisema di riferimeno L'equazione affine di una rea a + + c = 0 può assumere forme paricolari in relazione alla posizione

Dettagli

27 DERIVATE DI ORDINI SUCCESSIVI

27 DERIVATE DI ORDINI SUCCESSIVI 27 DERIVATE DI ORDINI SUCCESSIVI Definizione Sia f derivabile sull inervallo I. Se esise la derivaa della funzione x f (x) in x, allora (f ) (x) si dice la derivaa seconda di f in x, e si denoa con f (x)

Dettagli

Appunti lezione Capitolo 15 Ricerca locale

Appunti lezione Capitolo 15 Ricerca locale Appunti lezione Capitolo 15 Ricerca locale Alberto Montresor 03 Giugno, 016 1 Introduzione alla ricerca locale Un approccio miope, ma talvolta efficace è quello della ricerca locale. L idea è la seguente:

Dettagli

Amplificatore a BJT in configurazione CE e CC

Amplificatore a BJT in configurazione CE e CC Amplificatore a JT in configurazione e Traccia per lo olgimento dell eercitazione del 7 maggio 008 1 ircuito da realizzare 100k 1V 4k7 10u Vo 100k 4k7 1V Rif. Vi Gen. 100n N Vi Gen. 100n N 10u Vo 18k 1k

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Lecture 11: 13-14 Maggio 2010. Meccanismi per la Condivisione dei Costi

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Lecture 11: 13-14 Maggio 2010. Meccanismi per la Condivisione dei Costi Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/0 Lecture : 3-4 Maggio 200 Meccanimi per la Condiviione dei Coti Docente Paolo Penna Note redatte da: Paolo Penna Primo Eempio Vogliamo vendere

Dettagli

A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 13 giugno 2011

A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 13 giugno 2011 A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Stdi in Ingegneria Informatica Ricerca Operativa Seconda prova intermedia gigno Nome: Cognome: Matricola: voglio sostenere la prova orale il giorno venerdì //

Dettagli

Cammini minimi in grafi:

Cammini minimi in grafi: Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Cammini minimi in grafi: una trilogia Cammini minimi in grafi: Episodio III: la fine della trilogia Input: nelle puntate

Dettagli

2. Politiche di gestione delle scorte

2. Politiche di gestione delle scorte deerminisica variabile nel empo Quando la domanda viaria nel empo, il problema della gesione dell invenario divena preamene dinamico. e viene deo di lo-sizing. Consideriamo il caso in cui la domanda pur

Dettagli

MOTORI PER AEROMOBILI

MOTORI PER AEROMOBILI MOTORI PER AEROMOBILI Cap. 7 TURBINA ASSIALE 1.1 Inrodzione Come per i compressori, ci sono sosanzialmene de ipi di rbine: qelle a flsso radiale e le più diffse a flsso assiale. Le rbine radiali sono impiegae

Dettagli

Lezione 2. Campionamento e Aliasing. F. Previdi - Controlli Automatici - Lez. 2 1

Lezione 2. Campionamento e Aliasing. F. Previdi - Controlli Automatici - Lez. 2 1 Lezione 2. Campionamento e Aliaing F. Previdi - Controlli Automatici - Lez. 2 1 Schema della lezione 1. Introduzione 2. Il campionatore ideale 3. Traformata di un egnale campionato 4. Teorema del campionamento

Dettagli

CM89sett.tex COMPLEMENTI DI MATEMATICA a.a Laurea magistrale in Ingegneria Elettrotecnica

CM89sett.tex COMPLEMENTI DI MATEMATICA a.a Laurea magistrale in Ingegneria Elettrotecnica 1 CM89se.ex COMPLEMENTI DI MATEMATICA a.a. 28-29 Laurea magisrale in Ingegneria Eleroecnica Nona seimana 24.11.28 - lunedì (2 ore) Commeno della prova parziale (vd. file CM8IcoA-B-C-D.pdf). Definizione

Dettagli

A tal fine consideriamo un esempio come punto di partenza per le nostre considerazioni.

A tal fine consideriamo un esempio come punto di partenza per le nostre considerazioni. Moto Parabolico Sino ad ora abbiamo ito due tipi di moto: moto rettilineo uniforme moto uniformemente accelerato lo tudio che è tato condotto fino a queto punto ha preo in coniderazione un moto alla olta,

Dettagli

Bode Diagram. 1.2 Determinare il valore del guadagno del sistema. Disegnare gli zeri ed i poli nel piano complesso.

Bode Diagram. 1.2 Determinare il valore del guadagno del sistema. Disegnare gli zeri ed i poli nel piano complesso. 5 Luglio 3 econda prova Sia dato un itema dinamico con funzione di traferimento G(), i cui diagrammi di Bode, del modulo e della fae, ono di eguito rappreentati: 6 Bode Diagram Phae (deg) Magnitude (db)

Dettagli

LINEE DI TRASMISSIONE 1

LINEE DI TRASMISSIONE 1 INEE DI TRASMISSIONE ' eqazione delle onde Una lea di tramiione omogenea pò eere chematizzata coniderando egmenti di lnghezza fiteima δz ed aociando ad ogni egmento il circito eqivalente motrato figra:

Dettagli

v t v t m s lim d dt dt Accelerazione ist

v t v t m s lim d dt dt Accelerazione ist 1 Accelerazione Se la elocià non si maniene cosane il moo non è più uniforme ma prende il nome di moo accelerao. ACCELERAZIONE: ariazione della elocià rispeo al empo Disinguiamo ra ACCELERAZIONE MEDIA

Dettagli

1 Catene di Markov a stati continui

1 Catene di Markov a stati continui Caene di Markov a sai coninui In queso caso abbiamo ancora una successione di variabili casuali X 0, X, X,... ma lo spazio degli sai è un insieme più che numerabile. Nel seguio supporremo che lo spazio

Dettagli

Esempi di progetto di alimentatori

Esempi di progetto di alimentatori Alimenaori 1 Esempi di progeo di alimenaori Progeo di alimenaore senza circuio di correzione del faore di poenza (PFC) Valore del condensaore Correne di picco Scela diodi Correne RMS Progeo di alimenaore

Dettagli

BARRE. Barre in rame e alluminio

BARRE. Barre in rame e alluminio Nei quadri elettrici ono attualmente impiegati due metalli in qualità di conduttori: il rame e l alluminio. In particolare, dovendo definire una ditribuzione di potenza all interno di un quadro elettrico,

Dettagli

Tutorato Lezione 2 Gli amplificatori operazionali

Tutorato Lezione 2 Gli amplificatori operazionali Tutorato Lezione Gli ampliicatori operazionali Ideale: Gli op-amp ono circuiti elettronici di bae ideati e iluppati con la nacita delle prime macchine di calcolo analogico. In eguito con l aento dell elettronica

Dettagli

UNIVERSITA DEL SANNIO CORSO DI FISICA 1 ESERCIZI + SVOLGIMENTO CINEMATICA II

UNIVERSITA DEL SANNIO CORSO DI FISICA 1 ESERCIZI + SVOLGIMENTO CINEMATICA II UNIVERSITA DEL SANNIO CORSO DI FISICA 1 ESERCIZI + SVOLGIMENTO CINEMATICA II 1. Un oeo i muoe u una aieoia cicolae. Deeminae di quano aia la elocià quando l oeo paa da un puno della ciconfeenza al puno,

Dettagli

Cilindro a basetta a semplice effetto, con e senza richiamo a molla, pressione max. d esercizio 500 bar

Cilindro a basetta a semplice effetto, con e senza richiamo a molla, pressione max. d esercizio 500 bar Cilindro a baea a emplice effeo, con e enza richiamo a molla, preione max. d eercizio 500 bar Impiego Il cilindro a baea a emplice effeo può eere impiegao per ui i movimeni lineari azionai idraulicamene

Dettagli

Problema del cammino minimo

Problema del cammino minimo Algoritmi e Strutture di Dati II Problema del cammino minimo Un viaggiatore vuole trovare la via più corta per andare da una città ad un altra. Possiamo rappresentare ogni città con un nodo e ogni collegamento

Dettagli

Depth-first search. Visita in profondità di un grafo Algoritmo Esempio Complessità dell algoritmo Proprietà Ordinamento topologico

Depth-first search. Visita in profondità di un grafo Algoritmo Esempio Complessità dell algoritmo Proprietà Ordinamento topologico Depth-first search Visita in profondità di n grafo Algoritmo Esempio Complessità dell algoritmo Proprietà Ordinamento topologico Depth-first search Dato n grafo G=(V,E) e n specifico ertice s chiamato

Dettagli

n 1 Un esempio di sistema rappresentabile con equazioni differenziali lineari del tipo (1) è illustrato in Appendice.

n 1 Un esempio di sistema rappresentabile con equazioni differenziali lineari del tipo (1) è illustrato in Appendice. RICHIAMI SULLE FUNZIONI DI TRASFERIMENTO, TRASFORMATE DI FOURIER E LAPLACE E DIAGRAMMI DI BODE Univerià di Padova Facolà di Ingegneria Coro di Fondameni di Eleronica A.A.4/5 Padova, 4//5 Le noe egueni

Dettagli

ELETTROTECNICA - POTENZA- Ingegneria Industriale. Stefano Pastore

ELETTROTECNICA - POTENZA- Ingegneria Industriale. Stefano Pastore ELETTROTECNCA ngegneria ndsriale OTENZA Sefano asore Diparimeno di ngegneria e Archiera Corso di Eleroecnica 43N a.a. 34 Classificazione dei componeni in base alla poenza Se, per qalsiasi valore di, valgono

Dettagli

FORMULAZIONE GENERALE ELEMENTI FINITI

FORMULAZIONE GENERALE ELEMENTI FINITI FORMULAZIONE GENERALE ELEMENI FINII Finora si è affronao il problema di deerminare la marice di rigidezza di elemeni per i qali era noa na solzione analiica. Si vole ora deerminare na procedra per la deerminazione

Dettagli

Linea guida raccomandata per la valutazione della vita residua di componenti esercìti in regime di scorrimento viscoso

Linea guida raccomandata per la valutazione della vita residua di componenti esercìti in regime di scorrimento viscoso ISPESL Linea guida raccomandaa per la valuazione della via residua di componeni esercìi in regime di scorrimeno viscoso Calcolo della frazione di via consumaa per scorrimeno viscoso Sezione 2 LG v. 1 Nella

Dettagli

Trasformata di Laplace unilatera Teoria

Trasformata di Laplace unilatera Teoria Definizione Tafomaa di Laplace unilaea Teoia L[f()] = f() $ e ($) d = F() Dove: f() = funzione eale afomabile. E nulla pe

Dettagli

Flessione su 4 punti. Configurazione sperimentale. Schematizzazione di calcolo. Studio delle sollecitazioni semplici. Taglio.

Flessione su 4 punti. Configurazione sperimentale. Schematizzazione di calcolo. Studio delle sollecitazioni semplici. Taglio. Fleione u punti Configurazione imentale Scematizzazione di calcolo Taglio omento flettente Studio delle ollecitazioni emplici Tratto ollecitato da fleione pura la ua deformata è un arco di cercio Deformazioni

Dettagli

Divisori e combinatori

Divisori e combinatori Diviori e combinatori Luca Vincetti a.a. - Diviori e combinatori La combinazione lineare di egnali differenti o, all invero, la uddiviione di un unico egnale in componenti divere fa parte della normale

Dettagli

ESERCIZIO 1 L/2 C.R. D

ESERCIZIO 1 L/2 C.R. D SRIZIO Il itema di corpi rigidi in figura è oggetto ad uno potamento impreo (cedimento), in direzione verticale e vero il bao, in corripondenza del vincolo in. Si vuole determinare la nuova configurazione

Dettagli

LAVORO ED ENERGIA. 1J = 1N 1m

LAVORO ED ENERGIA. 1J = 1N 1m ppunti di fiica LVORO ED ENERGI LVORO Nel linguaggio cientifico il termine lavoro ha un ignificato ben precio e talvolta divero da quello che queto termine aume nel linguaggio quotidiano. In fiica il concetto

Dettagli

Ad ogni arco (i,j) del grafo e' associato un valore intero c(i,j) detto capacita' dell'arco

Ad ogni arco (i,j) del grafo e' associato un valore intero c(i,j) detto capacita' dell'arco 6) FLUSSI Definizione di flusso Si definisce rete di flusso un grafo orientato e connesso con i) un solo vertice con esclusivamente archi uscenti ii) un solo vertice con esclusivamente archi entranti Tradizionalmente

Dettagli

Meccanica Applicata alle Macchine Appello del 12/01/2012

Meccanica Applicata alle Macchine Appello del 12/01/2012 Meccanica Applicata alle Macchine Appello del 12/01/2012 1. Eeguire l analii tatica del meccanimo in figura 2 (cala 1:1). Si calcoli l azione reitente ul membro 5 quando F m =1N. 2. In figura 1 è rappreentato

Dettagli

Velocità. s t. m = m s. Il concetto di velocità. Abbiamo rappresentato le posizioni di un oggetto nel tempo. Come rappresentare ora le sue velocità?

Velocità. s t. m = m s. Il concetto di velocità. Abbiamo rappresentato le posizioni di un oggetto nel tempo. Come rappresentare ora le sue velocità? Pagina 1 di 12 Verione 17/02/04 Velocià Il conceo di velocià Abbiamo rappreenao le poizioni di un oggeo nel empo. Come rappreenare ora le ue velocià? Il conceo di velocià viene uao normalmene nel linguaggio

Dettagli

Appunti del corso di Informatica 1 (IN110 Fondamenti) 7 Grafi e alberi: introduzione

Appunti del corso di Informatica 1 (IN110 Fondamenti) 7 Grafi e alberi: introduzione Università di Roma Tre Dipartimento di Matematica e Fisica Corso di Laurea in Matematica Appunti del corso di Informatica (IN0 Fondamenti) Grafi e alberi: introduzione Marco Liverani (liverani@mat.uniroma.it)

Dettagli

Grafi (non orientati e connessi): minimo albero ricoprente

Grafi (non orientati e connessi): minimo albero ricoprente .. Grafi (non orientati e connessi): minimo albero ricoprente Una presentazione alternativa (con ulteriori dettagli) Problema: calcolo del minimo albero di copertura (M.S.T.) Dato un grafo pesato non orientato

Dettagli

2.3 Cammini ottimi. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

2.3 Cammini ottimi. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 . Cammini ottimi E. Amaldi Fondamenti di R.O. Politecnico di Milano .. Cammini minimi e algoritmo di Dijkstra Dato un grafo orientato G = (N, A) con una funzione di costo c : A c ij R e due nodi s e t,

Dettagli

PIL NOMINALE, PIL REALE E DEFLATORE

PIL NOMINALE, PIL REALE E DEFLATORE PIL NOMINALE, PIL REALE E DEFLATORE Il PIL nominale (o a prezzi correni) Come sappiamo il PIL è il valore di ui i beni e servizi finali prodoi in un cero periodo all inerno del paese. Se per calcolare

Dettagli

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio.

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio. . Cono e cilindro.. Definiione. Diremo superficie il luogo geomerico dei puni dello spaio le cui coordinae soddisfano un equaione del ipo F che viene dea equaione caresiana della superficie. Se F è un

Dettagli

TRASMISSIONI CON FLESSIBILI: LE CINGHIE

TRASMISSIONI CON FLESSIBILI: LE CINGHIE pro. Ing. Nazzareno Corigliano PAG. 1 TRASMISSIONI CON FLESSIBILI: LE CINGHIE GENERALITÀ Neearie per raiioni a lnga ianza; Ieali in ao i raiioni on ri e ibrazioni; Non aae per raeere poenze olo grani;

Dettagli

SCELTA DI UN INNESTO A FRIZIONE

SCELTA DI UN INNESTO A FRIZIONE SELTA DI UN INNESTO A FRIZIONE Si conideri l'impiano in Fig. 1, coiuio da un moore elerico aincrono riae, un inneo a rizione ad azionameno eleromagneico, un riduore ad ingranaggi ed una macchina operarice.

Dettagli

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k.

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k. Sudio delle vibrazioni raa ogni oscillazione di una grandezza inorno ad una posizione di equilibrio. La forma piu semplice di oscillazione e il moo armonico che puo i essere descrio da un veore roane Ae

Dettagli

ESEMPIO 1 Per portare un bicchiere d acqua (forza F=2,5 N) dal tavolo alla bocca (spostamento

ESEMPIO 1 Per portare un bicchiere d acqua (forza F=2,5 N) dal tavolo alla bocca (spostamento 8. L ENERGIA La parola energia è una parola familiare: gli elerodomesici, i macchinari hanno bisogno di energia per funzionare. Noi sessi, per manenere aive le funzioni viali e per compiere le azioni di

Dettagli

10 ESERCITAZIONE. Esercizi svolti: Capitolo 15 Curva di Phillips Esercizio 2. Capitolo 16 Disinflazione, disoccupazione e crescita Esercizio 3

10 ESERCITAZIONE. Esercizi svolti: Capitolo 15 Curva di Phillips Esercizio 2. Capitolo 16 Disinflazione, disoccupazione e crescita Esercizio 3 10 SRCITAZION sercizi svoli: Capiolo 15 Curva di Phillips sercizio 2 Capiolo 16 Disinflazione, disoccupazione e crescia sercizio 3 1 CAPITOLO 15 CURVA DI PHILLIPS Curva di Phillips Relazione che lega inflazione

Dettagli