Il modello di Black-Scholes. Il modello di Black-Scholes/2

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Il modello di Black-Scholes. Il modello di Black-Scholes/2"

Transcript

1 Il modello di Black-Scholes Si raa sosanzialmene del modello in empo coninuo che si oiene facendo endere a 0 nel modello binomiale. Come vedremo, è un modello di fondamenale imporanza, e per esso a Myron Scholes e Rober Meron è sao assegnao il premio Nobel per l Economia nel 996. Le assunzioni fondamenali possono essere riassune in queso modo: i logrendimeni relaivi a inervalli di empo disini sono indipendeni i logrendimeni hanno una disribuzione normale la loro deviazione sandard (volailià sorica σ) è cosane nel empo è possibile ribilanciare i porafogli isane per isane Alre assunzioni minori sono: l assenza di cosi di ransazione la possibilià di invesire o prendere a presio allo sesso asso privo di rischio r Il modello di Black-Scholes/ Soo quese ipoesi, non così irrealisiche in prima approssimazione, è possibile cosruire un porafoglio ribilanciao isane per isane che a scadenza replica il payoff della opzione call. La maemaica è più complessa ma l idea è la sessa della replicazione dei conrai forward o dei payoff del modello binomiale. Il risulao è la famosa formula di Black-Scholes: C = Se d d ln( = = d N ( x) = q ( T ) S K σ N ( d ) Ke T r ( T ) σ ) + ( r q + )( T ) σ T π x e d N ( d ) C = prezzo della call S = prezzo del soosane K = srike price σ = volailià annua r = asso privo di rischio q = asso di dividendo T- = via residua N(x) = funzione di disribuzione di una normale sandard (disrib.norm.s in Excel)

2 Il modello di Black-Scholes/3 Nonosane l apparene complessià, si raa di una formula semplice, facilmene implemenabile anche in Excel (l unica funzione non elemenare è N(x)). La sruura è la solia: valore auale del valore aeso neurale al rischio del payoff. Il caso della pu può essere facilmene ricavao da quello della call araverso la pu/call pariy Il ermine ln(s/k) viene spesso usao come misura del grado di moneyness della opzione Il ermine N(d ) è pari alla probabilià neurale al rischio di esercizio della opzione call Il dividend yield q può essere uilizzao per applicare il modello a opzioni su assi di cambio, commodiies, fuures (con q=r). Il prezzo della call dipende da 6 parameri, ui osservabili ad eccezione di σ (volailià sorica). Le greeks Il vanaggio principale di una formula analiica (in conrapposizione ad esempio a una procedura di simulazione) è la possibilià di fare una analisi di sensiivià, cioè nel nosro caso di valuare la variazione del prezzo della call rispeo alle variazioni dei singoli parameri. Colleivamene le diverse derivae parziali vengono indicae con leere greche; le più imporani sono il dela, l elasicià, il gamma e il hea. Sebbene come vedremo il modello di Black-Scholes non riesca a caurare alcune proprieà dei prezzi delle opzioni, è in grado di cogliere almeno qualiaivamene diverse proprieà delle greeks, che rimangono comunque le principali variabili arge che il rader di opzione conrolla sempre prima di aprire una posizione.

3 Classificazione delle posizioni Molo schemaicamene, possiamo classificare una generica posizione in opzioni araverso dela, gamma e hea di porafoglio. (Cox-Rubinsein, Opion Markes ) Fabio Bellini Verifiche empiriche del modello di BS When judged by is abiliy o explain he empirical daa, opion pricing heory is he mos successful heory no only in finance, bu in all of economics Ross, Sephen A Finance. pp in The New Palgrave Dicionary of Economics, vol....l ideologia dei mercai prevedibili e razionali non è saa accanonaa e l equazione maledea è riapparsa nel crac dei subprime del 008. Anche in queso caso la folle formulea promeeva di simare il valore dei prodoi derivai (i vari Abs, Cdo, ) N.N. Processo agli economisi maggio 009 3

4 Il premio Nobel del 997 Fabio Bellini Il premio Nobel del 997 / Fabio Bellini 4

5 Il premio Nobel del 997 /3 Fabio Bellini Le ipoesi sul soosane Iniziamo valuando quano le ipoesi base del modello di BS siano verificae in praica, ad esempio sul FTSEMIB dal //005: 4.5 x

6 Indipendenza dei logrendimeni Il modello di BS ipoizza che il soosane segua un moo browniano geomerico, a cui discreizzando corrispondono logrendimeni indipendeni e idenicamene disribuii, con una disribuzione normale. L indipendenza dei logrendimeni corrisponde alla cosiddea forma debole della ipoesi dei mercai efficieni (Fama 965). Una prima idea ce la possiamo fare araverso la funzione di auocorrelazione dei logrendimeni: 0.5 Sample auocorrelaion coefficiens sacf values k-values Volailiy clusering Sebbene in queso esempio per alcuni lag si rigea la ipoesi nulla di assenza di correlazione, si riiene che ipicamene la auocorrelazione delle serie finanziarie non sia significaivamene sabilmene diversa da zero. Tuavia la indipendenza è una proprieà molo più fore della assenza di correlazione; se considero la funzione di auocorrelazione dei quadrai dei logrendimeni, che soo l ipoesi nulla dovrebbero essere indipendeni, oengo una rilevane dipendenza seriale (fenomeno noo come volailiy clusering) : 0.4 Sample auocorrelaion coefficiens sacf values k-values 6

7 Normalià dei logrendimeni E evidene la presenza di picchi sia posiivi che negaivi (nel nosro esempio anche dell ordine del 0%) che corrispondono al ben noo fenomeno delle code pesani (fa ails). E anche evidene che c e una alernanza ra fasi di ala volailià e fasi di bassa volailià, che quindi solo in prima approssimazione può essere consideraa cosane QQ Plo of Sample Daa versus Sandard Normal Quaniles of Inpu Sample Sandard Normal Quaniles Normalià dei logrendimeni / Fone: Bloomberg 7

8 Il cigno nero La curva a campana la grande frode inelleuale La curva a campana soddisfa il riduzionismo degli illusi. Taleb, N. Il cigno nero (008) Le ipoesi saisiche sul soosane sono verificae solo in una cera misura, per la presenza di code pesani e di dipendenza seriale (nella volailià). E anche da dire che modelli più realisici devono necessariamene richiedere una maggior numero di parameri e sono quindi inrinsecamene meno robusi rispeo alla normale, che è quindi da considerare un modello ragionevole in prima approssimazione. E da capire che non esisono modelli giusi o sbagliai in assoluo, ma ipicamene la bonà di un modello si misura lungo diverse dimensioni, per esempio la semplicià, la disponibilià di formule analiiche, la robusezza, la difficolà di implemenazione, ec ec. I prezzi delle opzioni La domanda ineressane è però: il modello di BS riesce a riprodurre bene i prezzi delle opzioni osservai? Se applico la formula, rovo effeivamene prezzi vicini a quelli che i rader generano sul mercao delle opzioni? La risposa non è semplice in quano la formula di BS include un paramero non osservabile, la volailià σ, (e abbiamo viso che il suo valore può cambiare di molo cambiando la base di calcolo). Quindi l approccio direo, di sosiuire i 6 parameri nella formula e vedere se i prezzi calcolai delle opzioni sono vicini a quelli osservai, richiede una specificazione precisa della modalià di calcolo della volailià sorica. 8

9 La volailià sorica / La volailià di cui siamo parlando prende il nome di volailià sorica (per disinguerla da quella implicia che inrodurremo in seguio per mezzo del modello di Black-Scholes) ed è pari alla deviazione sandard dei logrendimeni giornalieri, riporaa su base annua. Il logrendimeno giornaliero è definio da X S = S + S = + + = ln S ln S ln dove R è l usuale rendimeno semplice. ( + R ) R I logrendimeni hanno però il vanaggio di essere quanià addiive (ad esempio, il logrendimeno su un anno è la somma dei logrendimeni giornalieri, menre nooriamene non si possono sommare i rendimeni semplici). La volailià sorica / I logrendimeni e i rendimeni semplici si esprimono comunemene in percenuale. La volailià giornaliera è la deviazione sandard dei logrendimeni giornalieri: n g σ = ( X i µ ) n µ = n n i = X i = i Essa varia nel empo e dipende dalla base n (numero di giorni su cui calcolo la media e la deviazione sandard). La volailià annua è daa da σ a = σ g N dove convenzionalmene si prende N=60 (approssimaivamene i giorni di borsa apera). Sono a vole uilizzai indici alernaivi che engono anche cono di massimo, minimo, aperura, chiusura, o anche della inera serie delle quoazioni della giornaa (volailià inraday). 9

10 La volailià sorica /3 Fone: Bloomberg La volailià sorica /4 0,00% 00,00% 80,00% 60,00% 40,00% 0,00% 0,00% 5/05/005 5/05/006 5/05/007 5/05/008 5/05/009 vol 0g vol 50g vol 00g Fone: Bloomberg 0

11 La volailià implicia Osserviamo che l unico paramero della formula di BS che non è osservabile è proprio la volailià; d alro cano il prezzo delle opzioni (sia call che pu) è una funzione monoona crescene della volailià (in alri ermini, il vega di una call o di una pu è posiivo). Dao un prezzo di mercao, esise sempre quindi una unica volailià che inseria nella formula di BS lo produce; è la soluzione della equazione C BS (σ)=p mercao Da un puno di visa maemaico, è un esempio di funzione implicia (nel senso del eorema del Dini). Se il modello di BS fosse correo, opzioni sullo sesso soosane e relaive alla sessa mauriy (che quindi differiscono solo per lo srike) dovrebbero avere la sessa volailià implicia. La volailià implicia / Se il modello di BS fosse correo, opzioni che differiscono solo per lo srike dovrebbero avere la sessa volailià implicia. Il grafico della volailià implicia in funzione dello srike (o della moneyness) viene chiamao lo smile (o lo skew) della opzione. Tipicamene si ha una cera curvaura, ad indicare una cera diparia dal modello di BS per le opzioni molo OTM.

12 Volailià sorica e implicia Fone: Bloomberg

Strumenti derivati: aspetti introduttivi. Outline. Il contratto forward. Generalità sugli strumenti derivati. Payoff del contratto forward

Strumenti derivati: aspetti introduttivi. Outline. Il contratto forward. Generalità sugli strumenti derivati. Payoff del contratto forward Srumeni derivai: aspei inroduivi Ouline Conrai forward, fuures e opzioni: descrizione degli srumeni ed esempi di sraegie operaive Prof. Fabio Bellini fabio.bellini@unimib.i Universià di Milano Bicocca

Dettagli

Struttura dei tassi per scadenza

Struttura dei tassi per scadenza Sruura dei assi per scadenza /45-Unià 7. Definizione del modello ramie gli -coupon bonds preseni sul mercao Ipoesi di parenza Sul mercao sono preseni all isane ZCB che scadono fra,2,,n periodi Periodo:

Dettagli

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo)

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo) V A = AMPIEZZA = lunghezza di V A ALTERNATA Proiezione di V X ISTANTE = velocià angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un inervallo di empo) DEVE ESSERE COSTANTE Angolo

Dettagli

Argomenti trattati. Rischio e Valutazione degli investimenti. Teoria della Finanza Aziendale. Costo del capitale

Argomenti trattati. Rischio e Valutazione degli investimenti. Teoria della Finanza Aziendale. Costo del capitale Teoria della Finanza Aziendale Rischio e Valuazione degli invesimeni 9 1-2 Argomeni raai Coso del capiale aziendale e di progeo Misura del bea Coso del capiale e imprese diversificae Rischio e flusso di

Dettagli

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice Eserciazione 7: Modelli di crescia: arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Popolazione sabile e sazionaria. Viviana Amai 03/06/200 Modelli di crescia Nella

Dettagli

I mercati dei beni e i mercati finanziari in economia aperta

I mercati dei beni e i mercati finanziari in economia aperta I mercai dei beni e i mercai finanziari in economia apera Economia apera Mercai dei beni: l opporunià per i consumaori e le imprese di scegliere ra beni nazionali e beni eseri. Mercai delle aivià finanziarie:

Dettagli

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio METODI DECISIONALI PER L'AZIENDA www.lvprojec.com Do. Loi Nevio Generalià sui sisemi dinamici. Variabili di sao, di ingresso, di uscia. Sisemi discrei. Sisemi lineari. Paper: Dynamic Modelling Do. Loi

Dettagli

Apertura nei Mercati Finanziari

Apertura nei Mercati Finanziari Lezione 20 (BAG cap. 6.2, 6.4-6.5 e 18.5-18.6) La poliica economica in economia apera Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia Aperura nei Mercai Finanziari 1) Gli invesiori possono

Dettagli

Corso di. Economia Politica

Corso di. Economia Politica Prof.ssa Blanchard, Maria Laura Macroeconomia Parisi, PhD; Una parisi@eco.unibs.i; prospeiva europea, DEM Universià Il Mulino di 2011 Brescia Capiolo I. Un Viaggio inorno al mondo Corso di Economia Poliica

Dettagli

I RENDIMENTI LE SERIE STORICHE FINANZIARIE

I RENDIMENTI LE SERIE STORICHE FINANZIARIE I EDIMETI LE SEIE STOICHE FIAZIAIE Aivià finanziarie Azioni es. Capialia, Mediase,... Tioli di sao BOT, BT, Tassi di cambio Euro/Dollaro, Euro/Serlina, Indici di Borsa S&/MIB, CAC4, ETF Tassi di ineresse

Dettagli

UNIVERSITÀ DEGLI STUDI DI PADOVA

UNIVERSITÀ DEGLI STUDI DI PADOVA UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI SCIENZE STATISTICHE CORSO DI LAUREA IN SCIENZE STATISTICHE ED ECONOMICHE TESI DI LAUREA Valuazione di opzioni europee in presenza di eeroschedasicià condizionale

Dettagli

La previsione della domanda nella supply chain

La previsione della domanda nella supply chain La previsione della domanda nella supply chain La previsione della domanda 1 Linea guida Il ruolo della prerevisione nella supply chain Le caraerisiche della previsione Le componeni della previsione ed

Dettagli

UNIVERSITA DEGLI STUDI DI PADOVA

UNIVERSITA DEGLI STUDI DI PADOVA UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE TESI DI LAUREA IN STATISTICA ECONOMIA E FINANZA STIMA DELLA VOLATILITA NEI MERCATI FINANZIARI CON DATI INFRA-GIORNALIERI: ALCUNI CONFRONTI

Dettagli

flusso in uscita (FU) Impresa flusso in entrata (FE)

flusso in uscita (FU) Impresa flusso in entrata (FE) Analisi degli invesimeni Il bilancio è una sinesi a poseriori della siuazione di un'azienda. La valuazione degli invesimeni è un enaivo di valuare a priori la validià delle scele dell'azienda. L'invesimeno

Dettagli

Lezione n.7. Variabili di stato

Lezione n.7. Variabili di stato Lezione n.7 Variabili di sao 1. Variabili di sao 2. Funzione impulsiva di Dirac 3. Generaori impulsivi per variabili di sao disconinue 3.1 ondizioni iniziali e generaori impulsivi In quesa lezione inrodurremo

Dettagli

Scuola dottorale di Economia e metodi quantitativi. Dottorato in Metodi statistici per l economia e l impresa TESI DI DOTTORATO DI RICERCA

Scuola dottorale di Economia e metodi quantitativi. Dottorato in Metodi statistici per l economia e l impresa TESI DI DOTTORATO DI RICERCA Scuola doorale di Economia e meodi quaniaivi Doorao in Meodi saisici per l economia e l impresa ESI DI DOORAO DI RICERCA Meodi numerici e calcolo socasico per la valuazione di conrai derivai: un modello

Dettagli

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova dell 8 febbraio 2008. Esercizio 1 (6 punti)

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova dell 8 febbraio 2008. Esercizio 1 (6 punti) MATEMATICA FINANZIARIA A.A. 007 008 Prova dell 8 febbraio 008 Nome Cognome Maricola Esercizio (6 puni) La vendia raeale di un bene di valore 000 prevede il pagameno di rae mensili posicipae cosani calcolae

Dettagli

4 La riserva matematica

4 La riserva matematica 4 La riserva maemaica 4.1 Inroduzione La polizza, come si è viso, viene cosruia in modo da essere in equilibrio auariale alla daa di sipula = 0 e rispeo alla base ecnica del I ordine: se X è il flusso

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Universià di Napoli Parenope Facolà di Ingegneria Corso di Comunicazioni Elerice docene: Prof. Vio Pascazio a Lezione: 7/04/003 Sommario Caraerizzazione energeica di processi aleaori Processi aleaori nel

Dettagli

MODELLI PER LA STRUTTURA A TERMINE DEI TASSI

MODELLI PER LA STRUTTURA A TERMINE DEI TASSI Alma Maer Sudiorum Universià di Bologna FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Maemaica Maeria di Tesi: Maemaica per le applicazioni economiche e finanziarie MODELLI PER

Dettagli

Domanda 1: Valutazione e Analisi di Obbligazioni

Domanda 1: Valutazione e Analisi di Obbligazioni Domanda 1: Valuazione e Analisi di Obbligazioni (31 puni) Lei lavora per il diparimeno Invesimeni Obbligazionari di una compagnia di assicurazioni sulla via e ha preparao la Tabella 1 dei rendimeni obbligazionari

Dettagli

A.A. 2013/14 Esercitazione - IRPEF TESTO E SOLUZIONI

A.A. 2013/14 Esercitazione - IRPEF TESTO E SOLUZIONI A.A. 2013/14 Eserciazione - IRPEF TESTO E SOLUZIONI Esercizio 1 - IRPEF Il signor X, che vive solo e non ha figli, ha percepio, nel corso dell anno correne, i segueni reddii: - Reddii da lavoro dipendene

Dettagli

V AK. Fig.1 Caratteristica del Diodo

V AK. Fig.1 Caratteristica del Diodo 1 Raddrizzaore - Generalià I circuii raddrizzaori uilizzano componeni come i Diodi che presenano la caraerisica di unidirezionalià, cioè permeono il passaggio della correne solo in un verso. In figura

Dettagli

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo Media Mobile di ampiezza k (k pari) Esempio: Vendie mensili di shampoo Mese y 1 266,0 2 145,9 3 183,1 4 119,3 5 180,3 6 168,5 7 231,8 8 224,5 9 192,8 10 122,9 11 336,5 12 185,9 1 194,3 2 149,5 3 210,1

Dettagli

Lezione 11. Inflazione, produzione e crescita della moneta

Lezione 11. Inflazione, produzione e crescita della moneta Lezione 11 (BAG cap. 10) Inflazione, produzione e crescia della monea Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia Tre relazioni ra produzione, disoccupazione e inflazione Legge di Okun

Dettagli

Lezione 6. Anno accademico 2005-06. Titolare corso: Prof. Costanza Torricelli Docente a contratto: Dott. Marianna Brunetti

Lezione 6. Anno accademico 2005-06. Titolare corso: Prof. Costanza Torricelli Docente a contratto: Dott. Marianna Brunetti Inrouzione alla Programmazione e Applicazioni per la Finanza M (Prooi Derivai Lezione 6 Anno accaemico 005-06 Tiolare corso: Prof. Cosanza Torricelli Docene a conrao: Do. Marianna Brunei L'immunizzazione

Dettagli

L'UTILIZZO DI TRADING RULES IN MODELLI A CAMBIAMENTO DI REGIME (SWITCHING REGIMES)

L'UTILIZZO DI TRADING RULES IN MODELLI A CAMBIAMENTO DI REGIME (SWITCHING REGIMES) L'UTILIZZO DI TRADING RULES IN MODELLI A CAMBIAMENTO DI REGIME (SWITCHING REGIMES) Monica Billio Universià Ca Foscari e GRETA, Venezia Michele Paron GRETA, Venezia Inroduzione. Moli meodi di analisi ecnica

Dettagli

Anche sugli impianti in esercizio è possibile intervenire attuando una serie di soluzioni in grado di ridurre sensibilmente il consumo di energia.

Anche sugli impianti in esercizio è possibile intervenire attuando una serie di soluzioni in grado di ridurre sensibilmente il consumo di energia. Risparmio Energeico Risparmio Energeico per Scale e Tappei Mobili La riduzione dei consumi di energia proveniene dalle foni fossili non rinnovabili (perolio, carbone) è una delle priorià assolue, insieme

Dettagli

In questi ultimi tre anni le società di assicurazione europee hanno. Polizze vita l Approfondimenti

In questi ultimi tre anni le società di assicurazione europee hanno. Polizze vita l Approfondimenti Polizze via l Approfondimeni Incorporare le aese dell assicurao nell ALM In quesi ulimi anni le socieà di assicurazione europee hanno affinao l uilizzo dell ALM nel ramo via. I loro sforzi, uavia, si sono

Dettagli

RISPOSTA NEL DOMINIO DEL TEMPO

RISPOSTA NEL DOMINIO DEL TEMPO RISPOSTA NEL DOMINIO DEL TEMPO Nel dominio del empo le variabili sono esaminae secondo la loro evoluzione emporale. Normalmene si esamina la risposa del sisema a un segnale di prova canonico, cioè si sollecia

Dettagli

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI TEPUS PECUNIA EST COLLANA DI ATEATICA PER LE SCIENZE ECONOICHE FINANZIARIE E AZIENDALI 3 Direore Bearice VENTURI Universià degli Sudi di Cagliari Comiao scienifico Umbero NERI Universiy of aryland Russel

Dettagli

Cenni di Matematica Finanziaria

Cenni di Matematica Finanziaria Cenni di Maemaica Finanziaria M.Leizia Guerra Facolà di Economia Universià di Urbino Carlo Bo Leggi e regimi finanziari Operazioni finanziarie elemenari Un conrao finanziario ra due soggei Alfa e Bea prevede

Dettagli

COME RISOLVERE GLI ESERCIZI DI ANALISI MATEMATICA 2

COME RISOLVERE GLI ESERCIZI DI ANALISI MATEMATICA 2 COME RISOLVERE GLI ESERCIZI DI ANALISI MATEMATICA Ecco una piccola e semplice guida che illusra come risolvere, a grandi linee gli esercii proposi agli esami di Analisi Maemaica (del DM 509/99, cioè successione

Dettagli

Lezione 10. (BAG cap. 9) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia

Lezione 10. (BAG cap. 9) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Lezione 10 (BAG cap. 9) Il asso naurale di disoccupazione e la curva di Phillips Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia In queso capiolo Inrodurremo uno degli oggei più conosciui

Dettagli

Introduzione all analisi delle serie storiche e dei metodi di previsione

Introduzione all analisi delle serie storiche e dei metodi di previsione Inroduzione all analisi delle serie soriche e dei meodi di previsione Indice. Capiolo inroduivo,. Inroduzione.2 Fasi di un analisi di previsione e sruura delle dispense 2. Meodi e srumeni di base, 5 2.

Dettagli

COMPORTAMENTO SISMICO DELLE STRUTTURE

COMPORTAMENTO SISMICO DELLE STRUTTURE COMPORTAMENTO SISMICO DELLE STRUTTURE Durane un erreoo, le oscillazioni del erreno di fondazione provocano nelle sovrasani sruure delle oscillazioni forzae. Quando il erreoo si arresa, i ovieni della sruura

Dettagli

In questo caso entrambi i gruppi chiedono copertura completa: q = d = 100.

In questo caso entrambi i gruppi chiedono copertura completa: q = d = 100. Soluzione dell Esercizio 1: Assicurazioni a) In un mercao perfeamene concorrenziale, deve valere la condizione di profii aesi nulli: E(P)=0. E possibile mosrare che ale condizione implica che l impresa

Dettagli

Il condensatore. Carica del condensatore: tempo caratteristico

Il condensatore. Carica del condensatore: tempo caratteristico Il condensaore IASSUNTO: apacia ondensaori a geomeria piana, cilindrica, sferica La cosane dielerica ε r ondensaore ceramico, a cara, eleroliico Il condensaore come elemeno di circuio: ondensaori in serie

Dettagli

Strumenti derivati: corso base

Strumenti derivati: corso base Strumenti derivati: corso base Prof. Fabio Bellini fabio.bellini@unimib.it Università di Milano Bicocca Dipartimento di Metodi Quantitativi www.dimequant.unimib.it/fabiobellini Outline Contratti forward,

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Esercizi di Maemaica Finanziaria Copyrigh SDA Bocconi Faori nanziari Classi care e rappresenare gra camene i segueni faori nanziari per : (a) = + ; 8 (b) = ( + ; ) (c) = (d) () = ; (e) () = ( + ; ) (f)

Dettagli

TECNICA DELLE ASSICURAZIONI

TECNICA DELLE ASSICURAZIONI TECNICA DELLE ASSICURAZIONI E DELLE FORME PENSIONISTICHE Prof. Annamaria Olivieri a.a. 25/26 Esercizi: eso. Una socieà di calcio si impegna a risarcire con 5 euro il proprio allenaore, in caso di licenziameno

Dettagli

Il valore delle. Argomenti. Domande chiave. Teoria della Finanza Aziendale Prof. Arturo Capasso A.A. 2005-2006

Il valore delle. Argomenti. Domande chiave. Teoria della Finanza Aziendale Prof. Arturo Capasso A.A. 2005-2006 - 4 Teoria della Finanza Aziendale rof. Aruro Capasso A.A. 5-6 Il valore delle A. azioni ordinarie - Argomeni Rendimeni richiesi rezzi delle azioni e ES Cash Flows e valore economico d impresa - 3 Domande

Dettagli

Teoria delle leggi finanziarie. S. Corsaro Matematica Finanziaria a.a. 2007/08

Teoria delle leggi finanziarie. S. Corsaro Matematica Finanziaria a.a. 2007/08 Teoria delle leggi finanziarie Inensià di ineresse L inensià di ineresse relaiva al periodo da x ad y è definia come adimensionale I( xy, ) 1 ixy (, ) γ ( xy, ) = = C y x ( dimensione di empo -1 ) L inensià

Dettagli

I possibili schemi di Partenariato Pubblico Privato

I possibili schemi di Partenariato Pubblico Privato OSSERVATORIO collegameno ferroviario Torino-Lione Collegameno ferroviario Torino-Lione I possibili schemi di Parenariao Pubblico Privao Torino, 30 Oobre 2007 Unià Tecnica Finanza di Progeo 1 PPP: analisi

Dettagli

1.7. Il modello completo e le sue proprietà

1.7. Il modello completo e le sue proprietà La Teoria Generale 1 1.7. Il modello compleo e le sue proprieà Il ragionameno svolo fino a queso puno è valido per un livello dao del salario nominale e dei prezzi. Le grandezze preseni nel modello, per

Dettagli

VALORE EFFICACE DEL VOLTAGGIO

VALORE EFFICACE DEL VOLTAGGIO Fisica generale, a.a. /4 TUTOATO 8: ALO EFFC &CCUT N A.C. ALOE EFFCE DEL OLTAGGO 8.. La leura con un mulimero digiale del volaggio ai morsei di un generaore fornisce + in coninua e 5.5 in alernaa. Tra

Dettagli

2. Politiche di gestione delle scorte

2. Politiche di gestione delle scorte deerminisica variabile nel empo Quando la domanda viaria nel empo, il problema della gesione dell invenario divena preamene dinamico. e viene deo di lo-sizing. Consideriamo il caso in cui la domanda pur

Dettagli

Il modello di Black-Scholes- Merton. Giampaolo Gabbi

Il modello di Black-Scholes- Merton. Giampaolo Gabbi Il modello di Black-Scholes- Merton Giampaolo Gabbi Premessa Fra le equazioni utilizzate in finanza ne esiste una estremamente semplice. Il contributo di Black e Scholes allo sviluppo della teoria e della

Dettagli

Appunti di Matematica e tecnica finanziaria. Ettore Cuni, Luca Ghezzi

Appunti di Matematica e tecnica finanziaria. Ettore Cuni, Luca Ghezzi Appuni di Maemaica e ecnica finanziaria Eore Cuni, Luca Ghezzi Universià Carlo Caaneo LIUC Casellanza 2010 Universià Carlo Caaneo LIUC C.so Maeoi, 22-21053 Casellanza (VA) Tel. +39-0331-572.1 www.liuc.i

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI

FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI CAPITOLO FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI Sono le funzioni aveni come dominio e codominio dei sooinsiemi dei numeri reali; esse sono alla base dei modelli maemaici preseni in ogni campo

Dettagli

RELAZIONE FINALE: MODELLAZIONE DEI PREZZI DELL ENERGIA ELETTRICA: UN ESEMPIO

RELAZIONE FINALE: MODELLAZIONE DEI PREZZI DELL ENERGIA ELETTRICA: UN ESEMPIO RELAZIONE FINALE: MODELLAZIONE DEI PREZZI DELL ENERGIA ELETTRICA: UN ESEMPIO RELATORE: CH.MO PROF. LISI FRANCESCO LAUREANDO: CANELLA FRANCESCO MATRICOLA: 45835 ANNO ACCADEMICO: 003-004 4 Alla mia famiglia

Dettagli

4 Il Canale Radiomobile

4 Il Canale Radiomobile Pare IV G. Reali: Il canale radiomobile 4 Il Canale Radiomobile 4.1 INTRODUZIONE L evoluzione fondamenale nella filisofia di progeo delle rei di comunicazione indoor è il passaggio dalla modalià di rasmissione

Dettagli

6 Le polizze rivalutabili

6 Le polizze rivalutabili 6 Le polizze rivaluabili 6.1 Inroduzione Le polizze via rivaluabili sono sae inrodoe nel mercao ialiano negli anni di ala inflazione e oggi ui i conrai dei rami via proposi dalla compagnie ialiane, con

Dettagli

Metodi stocastici per l individuazione di casi di Manipolazione e di insider trading

Metodi stocastici per l individuazione di casi di Manipolazione e di insider trading Approfondimeni l Regulaion Meodi socasici per l individuazione di casi di Manipolazione e di insider rading Marcello Minenna presena un modello probabilisico per l individuazione di possibili fenomeni

Dettagli

LEZIONE 3 INDICATORI DELLE PRINCIPALI VARIABILI MACROECONOMICHE. Argomenti trattati: definizione e misurazione delle seguenti variabili macroecomiche

LEZIONE 3 INDICATORI DELLE PRINCIPALI VARIABILI MACROECONOMICHE. Argomenti trattati: definizione e misurazione delle seguenti variabili macroecomiche LEZIONE 3 INDICATORI DELLE RINCIALI VARIABILI MACROECONOMICHE Argomeni raai: definizione e misurazione delle segueni variabili macroecomiche Livello generale dei prezzi, Tasso d inflazione, π IL nominale,

Dettagli

Ottobre 2009. ING ClearFuture

Ottobre 2009. ING ClearFuture Oobre 2009 ING ClearFuure Una crescia cosane. Con una solida proezione nel empo. ING ClearFuure è la soluzione assicuraiva Uni Linked di dirio lussemburghese, realizzaa apposiamene da ING Life Luxembourg

Dettagli

LA GESTIONE COORDINATA DEGLI ATTIVI E DEI PASSIVI NEI FONDI PENSIONE

LA GESTIONE COORDINATA DEGLI ATTIVI E DEI PASSIVI NEI FONDI PENSIONE LA GESTIONE COORDINATA DEGLI ATTIVI E DEI PASSIVI NEI FONDI PENSIONE Prof. PAOLO DE ANGELIS Auario - Sudio ACRA Do. STEFANO VISINTIN Auario - Sudio Auariale Visinin & Associai Roma 19 giugno 2012 ASPETTI

Dettagli

Opportunità di arbitraggio nel mercato del BTP Futures: una verifica empirica.

Opportunità di arbitraggio nel mercato del BTP Futures: una verifica empirica. Opporunià di arbiraggio nel mercao del BTP Fuures: una verifica empirica. Andrea Giacomelli Grea, Venezia Domenico Sarore Universià Ca' Foscari e Grea, Venezia Michele Trova Inesa Asse Managemen Come è

Dettagli

LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Però offre una diversa spiegazione delle fluttuazioni economiche:

LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Però offre una diversa spiegazione delle fluttuazioni economiche: LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Edward Presco, Finn Kydland, Rober King, ecc. Si inserisce nel filone della NMC: - Equilibrio generale walrasiano; - incerezza e dinamica:

Dettagli

Le polizze rivalutabili

Le polizze rivalutabili Capiolo 6 Le polizze rivaluabili 6.1 Inroduzione Le polizze via rivaluabili sono sae inrodoe nel mercao ialiano negli anni di ala inflazione e oggi, con l eccezione delle polizze TCM, hanno compleamene

Dettagli

I): informazione perfetta: lavoratori e imprese conoscono P e W:

I): informazione perfetta: lavoratori e imprese conoscono P e W: Il Monearismo Il mercao del lavoro secondo i monearisi Conrai a breve ermine si aggiusano velocemene I): informazione perfea: lavoraori e imprese conoscono e W: W i prezzi : da a = 2 W - domanda: da a

Dettagli

Facoltà di Agraria - Università di Sassari Anno Accademico 2004-2005. Analisi Costi e Benefici

Facoltà di Agraria - Università di Sassari Anno Accademico 2004-2005. Analisi Costi e Benefici Facolà di Agraria - Universià di Sassari Anno Accademico 004-005 Dispense Corso di Pianificazione e Difesa del erriorio Docene: Luciano Guierrez Analisi Cosi e Benefici. Inroduzione. Decisioni individuali

Dettagli

Analisi e valutazione degli investimenti

Analisi e valutazione degli investimenti Analisi e valuazione degli invesimeni Indice del modulo L analisi degli invesimeni e conceo di invesimeno Il valore finanziario del empo e aualizzazione Capializzazione e aualizzazione Il coso opporunià

Dettagli

Gestione della produzione MRP e MRPII

Gestione della produzione MRP e MRPII Sommario Gesione della produzione e Inroduzione Classificazione Misure di presazione La Disina Base Logica Lo Sizing in II Inroduzione Inroduzione Def: Gesire la produzione significa generare e sfruare

Dettagli

LEZIONE 10. Il finanziamento dell istruzione. Economia del Settore Pubblico. Modalità dell intervento pubblico. Il finanziamento dell istruzione

LEZIONE 10. Il finanziamento dell istruzione. Economia del Settore Pubblico. Modalità dell intervento pubblico. Il finanziamento dell istruzione Economia del Seore Pubblico Laura Vici laura.vici@unibo.i www2.dse.unibo.i/lvici/edsp_ii.hm Modalià dell inerveno pubblico Regolamenazione Finanziameno: parziale o inegrale? Produzione: pubblica o privaa?

Dettagli

Distribuzione Weibull

Distribuzione Weibull Disribuzione Weibull f() 6.6.4...8.6.4. 5 5 5 3 Disribuzione di Weibull Una variabile T ha disribuzione di Weibull di parameri α> β> se la sua densià di probabilià è scria nella forma: f ( ) exp da cui

Dettagli

FORECASTING...61 RIASSUNTO E CONCLUSIONI...71 BIBLIOGRAFIA...73 APPENDICE TECNICA...75

FORECASTING...61 RIASSUNTO E CONCLUSIONI...71 BIBLIOGRAFIA...73 APPENDICE TECNICA...75 INDICE INDICE... 1 INTRODUZIONE... 3 STRUTTURA A TERMINE DEI TASSI D INTERESSE... 5 1.1 NOZIONI GENERALI... 5 LE FORME DELLA CURVA DEI RENDIMENTI... 7 CASISTICA E METODOLOGIA... 11 2.1 LETTERATURA... 11

Dettagli

l M DA 03/09/07 Termonovela in 17 puntate

l M DA 03/09/07 Termonovela in 17 puntate a e i a d l a c e n e l o i a z a M s n? e o d n n a o s c n e d n o c e s ì S 1 ermonovela in 17 puntate DAI ERMODINAMICI RELAIVI ALLA CONDENSAZIONE BRUCIANDO 1 m3 DI GAS SI OIENE: 8127 Kcal + 1,55 Kg

Dettagli

SELEZIONE DI UN PORTAFOGLIO MEDIANTE LA FORZA RELATIVA

SELEZIONE DI UN PORTAFOGLIO MEDIANTE LA FORZA RELATIVA UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI SCIENZE STATISTICHE CORSO DI LAUREA IN STATISTICA, ECONOMIA E FINANZA SELEZIONE DI UN PORTAFOGLIO MEDIANTE LA FORZA RELATIVA RELATORE: Ch.mo Prof. Francesco

Dettagli

INDICATORI PER IL MERCATO AZIONARIO (aggiornato il 2-2-2007)

INDICATORI PER IL MERCATO AZIONARIO (aggiornato il 2-2-2007) INDICATORI PER IL MERCATO AZIONARIO (aggiornao il 2-2-2007). Obievi della rilevazione Negli anni 60 Mediobanca avviò la rilevazione sisemaca dei corsi delle azioni quoae in Borsa, ideando un indice con

Dettagli

Corso di Comunicazioni Elettriche. 2 RICHIAMI DI TEORIA DEI SEGNALI Prof. Giovanni Schembra TEORIA DEI SEGNALI DETERMINATI

Corso di Comunicazioni Elettriche. 2 RICHIAMI DI TEORIA DEI SEGNALI Prof. Giovanni Schembra TEORIA DEI SEGNALI DETERMINATI Corso di Comunicazioni Eleriche RICHIAMI DI TEORIA DEI SEGNALI Pro. Giovanni Schembra Richiami di Teoria dei segnali TEORIA DEI SEGNALI DETERMINATI Richiami di Teoria dei segnali Valori caraerisici di

Dettagli

IL FENOMENO DELLA LONGEVITA ED IL RISCHIO DI MODELLO: ANALISI E MISURA

IL FENOMENO DELLA LONGEVITA ED IL RISCHIO DI MODELLO: ANALISI E MISURA IL FENOMENO DELLA LONGEVITA ED IL RISCHIO DI MODELLO: ANALISI E MISURA Valeria D Amao Doorao in Maemaica per l Analisi economica e la Finanza XX Ciclo Coordinaore: Prof. Emilia Di Lorenzo Tuor: Prof. Emilia

Dettagli

Regime dinamico nel dominio del tempo

Regime dinamico nel dominio del tempo egime dinamico nel dominio del empo Appuni a cura dell Ingg. Basoccu Gian Piero e Marras Luca Tuors del corso di A. A 3/4 e 4/5 Ulimo aggiornameno 4//9 Premessa egime sazionario Un sisema elerico è in

Dettagli

Analisi Frequenziale di Segnali a Tempo Discreto

Analisi Frequenziale di Segnali a Tempo Discreto Capiolo 3 Analisi Frequenziale di Segnali a Tempo Discreo Nei capioli precedeni sono sae inrodoe le nozioni basilari di segnali analogici e a empo discreo, le operazioni fondamenali ra segnali, e, infine,

Dettagli

NOTA METODOLOGICA SUL MODELLO PREVISIVO EXCELSIOR PER GLI ANNI 2013-2017

NOTA METODOLOGICA SUL MODELLO PREVISIVO EXCELSIOR PER GLI ANNI 2013-2017 NOTA METODOLOGICA SUL MODELLO PREVISIVO EXCELSIOR PER GLI ANNI 2013-2017 1 SOMMARIO PREMESSA... 3 1. IL MODELLO ECONOMETRICO PER LA STIMA DEGLI STOCK SETTORIALI... 3 Foni... 3 Meodologia... 3 La formulazione

Dettagli

Regime dinamico nel dominio del tempo

Regime dinamico nel dominio del tempo egime dinamico nel dominio del empo Appuni a cura dell Ingg. Basoccu Gian Piero e Marras Luca Tuors del corso di LTTOTNIA per meccanici e chimici A. A 3/4 e 4/5 Ulimo aggiornameno // Appuni a cura degli

Dettagli

Automazione Industriale AA 2002-2003 Prof. Luca Ferrarini

Automazione Industriale AA 2002-2003 Prof. Luca Ferrarini Auomazione Indusriale AA 2002-2003 Prof. Luca Ferrarini Laboraorio 1 Obieivi dell eserciazione Sviluppare modelli per la realizzazione di funzioni di auomazione Comprensione e uilizzo di Ladder Diagrams

Dettagli

La matrice di contabilità sociale (SAM): uno strumento per la valutazione IPI, 2009

La matrice di contabilità sociale (SAM): uno strumento per la valutazione IPI, 2009 La marice di conabilià sociale (SAM): uno srumeno per la valuazione IPI, 2009 Sono vieae le riproduzioni del eso, dei dai e dei conenui informaici dei CD allegai non auorizzai dall IPI con qualsiasi mezzo

Dettagli

La programmazione aggregata nella supply chain. La programmazione aggregata nella supply chain 1

La programmazione aggregata nella supply chain. La programmazione aggregata nella supply chain 1 La programmazione aggregaa nella supply chain La programmazione aggregaa nella supply chain 1 Linea guida Il ruolo della programmazione aggregaa nella supply chain Il problema della programmazione aggregaa

Dettagli

2. Duration. Stefano Di Colli

2. Duration. Stefano Di Colli 2. Duraio Meodi Saisici per il Credio e la Fiaza Sefao Di Colli Tassi di ieresse e redimei La reddiivià di u obbligazioe è misuraa dal asso di redimeo o dal asso di ieresse U idicaore del redimeo deve

Dettagli

REGIMI FINANZIARI USUALI: Interessi semplici Interessi composti Interessi anticipati. Giulio Diale

REGIMI FINANZIARI USUALI: Interessi semplici Interessi composti Interessi anticipati. Giulio Diale REGIMI FINANZIARI USUALI: Ineressi seplici Ineressi coposi Ineressi anicipai Giulio Diale INTERESSI SEMPLICI I C L ineresse è proporzionale al capiale e alla duraa dell ipiego I = C i Denoinazioni di i:

Dettagli

Direzione Sistemi informativi Servizio statistica e toponomastica. Bollettino mensile di Statistica

Direzione Sistemi informativi Servizio statistica e toponomastica. Bollettino mensile di Statistica Direzione Sisemi informaivi Servizio saisica e oponomasica Bolleino mensile di Saisica Seembre 2013 Sisema Saisico Nazionale Comune di Firenze Ufficio Comunale di Saisica Direzione Sisemi informaivi Servizio

Dettagli

La Finanza di Progetto per la realizzazione e gestione di un parco Eolico

La Finanza di Progetto per la realizzazione e gestione di un parco Eolico SUSTAINABLE ENERGY FORUM - Le nuove froniere della produzione di energia pulia La Finanza di Progeo per la realizzazione e gesione di un parco Eolico Roma, 6 Giugno 2007 Gabriele FERRANTE Unià ecnica Finanza

Dettagli

Appunti delle lezioni di istituzioni di matematica attuariale per le assicurazioni sulla vita

Appunti delle lezioni di istituzioni di matematica attuariale per le assicurazioni sulla vita Appuni delle lezioni di isiuzioni di maemaica auariale per le assicurazioni sulla via Claudio Pacai anno accademico 2005 06 Indice 1 Le operazioni di assicurazione e la eoria dell uilià 1 1.1 L operazione

Dettagli

Introduzione all analisi quantitativa dei beni pubblici. Italo M. Scrocchia

Introduzione all analisi quantitativa dei beni pubblici. Italo M. Scrocchia Diparimeno di Scienze Economiche, Maemaiche e Saisiche Universià degli Sudi di Foggia Inroduzione all analisi quaniaiva dei beni pubblici Ialo M. Scrocchia Quaderno n. 27/2008 Esemplare fuori commercio

Dettagli

La Riassicurazione. Prof. Cerchiara Rocco Roberto. email: rocco.cerchiara@unical.it. Materiale e Riferimenti

La Riassicurazione. Prof. Cerchiara Rocco Roberto. email: rocco.cerchiara@unical.it. Materiale e Riferimenti Prof. R.R. Cerciara La Riassicurazione Prof. Cerciara Rocco Robero email: rocco.cerciara@unical.i Maeriale e Riferimeni 1. Lucidi disribuii in aula. Daboni, pagg. 13-17 e 137-148 (Leggere Riassicurazione

Dettagli

SISTEMI DINAMICI DISCRETI

SISTEMI DINAMICI DISCRETI SISTEMI DINAMICI DISCRETI 1 Michele Impedovo Universià Bocconi di Milano michele.impedovo@uni-bocconi.i Le cerezze della fisica e di alre scienze della naura vengono oggi messe in forse da una nuova serie

Dettagli

Appunti e Domande di Affidabilità e Controllo della Qualità

Appunti e Domande di Affidabilità e Controllo della Qualità Appuni e Domande di Affidabilià e Conrollo della Qualià Auori: eagleone - eagleone2 (a) in.i lubo23 lubo23 (a) infinio.i Ulima revisione: 14/11/24 by eagleone 1 Inroduzione...4 Disclaimer...4 Dirii e permessi

Dettagli

Procedimenti ricorsivi per valutazioni su sistemi

Procedimenti ricorsivi per valutazioni su sistemi UIVERSITÀ DEGLI STUDI DI TRIESTE FACOLTÀ DI ECOOMIA Corso di Laurea in Scienze Saisice ed Auariali Tesi di Laurea in Saisica Assicuraiva Procedieni ricorsivi per valuazioni su sisei Bonus-Malus con francigia

Dettagli

Esposizioni e grado di leva degli hedge fund: un analisi temporale 1

Esposizioni e grado di leva degli hedge fund: un analisi temporale 1 Parick McGuire +41 61 28 8921 parick.mcguire@bis.org Eli Remolona +852 2878 715 eli.remolona@bis.org Kosas Tsasaronis +41 61 28 882 ksasaronis@bis.org Esposizioni e grado di leva degli hedge fund: un analisi

Dettagli

Problema 1: Una collisione tra meteoriti

Problema 1: Una collisione tra meteoriti Problema : Una colliione ra meeorii Problemi di imulazione della econda prova di maemaica Eami di ao liceo cienifico 5 febbraio 05 Lo udene deve volgere un olo problema a ua cela Tempo maimo aegnao alla

Dettagli

APPUNTI DI ANALISI DEI SEGNALI DAVIDE BASSI

APPUNTI DI ANALISI DEI SEGNALI DAVIDE BASSI UNIVERIÀ DEGLI UDI DI RENO FACOLÀ DI CIENZE MAEMAICHE, FIICHE E NAURALI CORO DI LAUREA IN FIICA APPLICAA DAVIDE BAI APPUNI DI ANALII DEI EGNALI Indice Risposa impulsionale dei sisemi lineari -. isemi lineari

Dettagli

Il modello Neo-Keynesiano, politica monetaria e dinamica dell inflazione. Perché l inflazione è persistente?

Il modello Neo-Keynesiano, politica monetaria e dinamica dell inflazione. Perché l inflazione è persistente? SAGGIO AD INVITO Il modello Neo-Keynesiano, poliica monearia e dinamica dell inflazione. Perché l inflazione è persisene? Guido Ascari* Universià degli Sudi di Pavia Quesa rassegna, dopo aver brevemene

Dettagli

derivatives Prof. Massimiliano Menzietti Università della Calabria Università Cattolica - Milano, 12 maggio 2011

derivatives Prof. Massimiliano Menzietti Università della Calabria Università Cattolica - Milano, 12 maggio 2011 Rischio di longevià e longeviy derivaives Prof. Massimiliano Menziei Universià della Calabria Universià Caolica - Milano, 12 maggio 2011 Agenda Il longeviy risk Definizione e caraerisiche I rend demografici

Dettagli

UNIVERSITÀ DEGLI STUDI DI ROMA "TOR VERGATA"

UNIVERSITÀ DEGLI STUDI DI ROMA TOR VERGATA UNIVERSITÀ DEGLI STUDI DI ROMA "TOR VERGATA" FACOLTA' DI ECONOMIA DOTTORATO DI RICERCA IN BANCA E FINANZA CICLO DEL CORSO DI DOTTORATO XXII LA CRISI DEI MUTUI SUBPRIME: ANALISI DEGLI EFFETTI SUI RENDIMENTI

Dettagli

LA DINAMICA DEL DEBITO PUBBLICO. UN ANALISI DEL CASO ITALIANO, 1980-1996

LA DINAMICA DEL DEBITO PUBBLICO. UN ANALISI DEL CASO ITALIANO, 1980-1996 Liuc Papers n. 33, Serie Economia e Impresa 8, seembre 1996 LA DINAMICA DEL DEBITO PUBBLICO. UN ANALISI DEL CASO ITALIANO, 1980-1996 Angelo Marano Inroduzione Le dimensioni anomale che il debio pubblico

Dettagli

Buono Fruttifero Postale P70

Buono Fruttifero Postale P70 Foglio Informaivo delle principali caraerisiche dei Buoni Fruiferi Posali e Regolameno del presio Pare I - Informazioni sull'emiene e sul Collocaore Emiene: Cassa deposii e presii socieà per azioni (di

Dettagli

Processi stocastici. Corso Segnale e Rumore Giorgio Brida Giugno/luglio 2007 Pagina 1 di 33

Processi stocastici. Corso Segnale e Rumore Giorgio Brida Giugno/luglio 2007 Pagina 1 di 33 Processi socasici Inroduzione isemi lineari e sazionari; luuazioni casuali, derive e disurbi; processi socasici sazionari in senso lao, unzione di auocorrelazione e spero di poenza; risposa di un sisema

Dettagli

Manuale Operativo sui DERIVATI

Manuale Operativo sui DERIVATI Manuale Operaivo sui DERIVATI Xin Kong Fabio Reale Abid Rizavi Simone Rodoli 1 IL PREZZO FORWARD - GENERALITÀ... 3 2 IL PREZZO SPOT E FORWARD DEL CAMBIO... 5 2.1 Generalià... 5 2.2 Relazione ra assi del

Dettagli

273 CAPITOLO 18: PALI DI FONDAZIONE IN CONDIZIONI DI ESERCIZIO

273 CAPITOLO 18: PALI DI FONDAZIONE IN CONDIZIONI DI ESERCIZIO 27 nrouzione Per i pali si può fare un iscorso analogo a quello viso per le fonazioni superficiali. Si è viso che nel caso elle fonazioni superficiali l analisi ella eformabilià ella sruura non poeva essere

Dettagli