Vettori e scalari. Scalari: sono completamente definite quando se ne conosce la sola misura (es. tempo, massa, temperatura, GRANDEZZE FISICHE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Vettori e scalari. Scalari: sono completamente definite quando se ne conosce la sola misura (es. tempo, massa, temperatura, GRANDEZZE FISICHE"

Transcript

1 Vettoi e scli GRNDEZZE FISICHE Scli: sono completmente definite qundo se ne conosce l sol misu (es. tempo, mss, tempetu, volume ) Vettoili: ichiedono un mggio contenuto infomtivo (es. velocità, cceleione, fo ) Domenic sono ndto in iciclett pe due oe L infomione sul tempo è complet? Il tempo è un esempio di quntità scle: sono sufficienti un numeo e l ispettiv unità di misu pe ctteilo completmente. Quindi infomione sul tempo è complet. Romeo Fisic I - Vettoi 1

2 Vettoi e scli Domenic ho ftto venti chilometi in iciclett L infomione sullo spostmento è complet? No, ne conosco solo l entità. Domenic ho ftto venti chilometi in iciclett lungo l Vl d dige ho ggiunto infomione sull mi dieione. Domenic ho ftto venti chilometi in iciclett lungo l Vl d dige veso Tento questo dto complet l infomione sul veso del mio spostmento. Un gnde fisic è un vettoe qundo pe definil completmente è necessio fonie un modulo ( l entità), un dieione e un veso. VETTORE modulo dieione veso. Romeo Fisic I - Vettoi

3 Rppesentione gfic Un vettoe può essee ppesentto gficmente d un segmento oientto. L punt dell fecci indic il veso. si chim modulo L lunghe dell fecci indic il modulo. L ett su cui gice l fecci indic l dieione. CD. Romeo Fisic I - Vettoi 3

4 Rppesentione gfic Definiione: Un vettoe nel pino o nello spio è definito come l insieme di tutti i segmenti oientti venti uguli dieione, veso e modulo. () () Segmenti oientti ppesenttivi di uno stesso vettoe. Segmenti oientti plleli concodi () ed opposti ().. Romeo Fisic I - Vettoi 4

5 Somm di vettoi c c. Romeo Fisic I - Vettoi 5

6 Somm di vettoi Definiione: L somm di due vettoi e è un vettoe c l cui dieione e veso si ottengono nel modo seguente: si fiss il vettoe e, ptie dl suo punto estemo, si tcci il vettoe. Il vettoe che unisce l'oigine di con l'estemo di fonisce l somm c. L somm di due vettoi può essee clcolt nche utilindo l egol del pllelogmm: L somm di due vettoi non collinei è dt dl vettoe ppesentto dll digonle del pllelogmm costuito pe meo dei segmenti oientti ppesenttivi dei due vettoi e disposti in modo d vee l oigine in comune. Popietà commuttiv: Popietà ssocitiv: ( ) c ( c). Romeo Fisic I - Vettoi 6

7 Diffeen di vettoi - c - (-) - c c - (-). Romeo Fisic I - Vettoi 7

8 Diffeen di vettoi Definiione: Il vettoe opposto d è. I moduli di e sono uguli, l dieione è l medesim e i vesi sono opposti. O Definiione: L diffeen di due vettoi è l somm del vettoe con l opposto del vettoe, ossi: ( ) - C Notimo che se, sull se di e di disposti con l medesim oigine O, si costuisce un pllelogmm, llo l lunghe dell digonle uscente d O espime l lunghe di mente l lunghe dell'lt digonle è pi ll lunghe del vettoe.. Romeo Fisic I - Vettoi 8

9 Moltiplicione scle-vettoe Definiione: L moltiplicione α (o α) di un vettoe con il numeo ele α è un vettoe α, collinee d, di modulo α e veso coincidente con quello di se α > 0, opposto quello di se α < 0. Nel cso che si α 0 o 0, il vettoe 0. Popietà: 1. α(β) (αβ αβ). (α β) α β 3. α( ) α α -3. Romeo Fisic I - Vettoi 9

10 Componenti ctesine Il vettoe può essee individuto nche tmite le sue componenti lungo un sistem di ssi ctesini. Il modulo del vettoe può essee espesso in funione delle componenti θ (teoem di Pitgo): Le componenti, loo volt, sono legte l modulo dlle elioni (tigonometi): cos θ nche l ngolo θ può essee espesso in funione delle componenti: tn θ L somm dei vettoi e dà il vettoe, di cui e sono i vettoi componenti.. Romeo Fisic I - Vettoi 10 sen θ

11 Vesoi e componenti ctesine Esistono dei vettoi specili, detti vesoi, che possono essee utiliti pe ctteie tutti gli lti vettoi. I vesoi hnno queste ctteistiche: hnno modulo 1; sono dietti lungo gli ssi ctesini; indicno il veso positivo degli ssi ctesini i k j Un qulunque vettoe può essee espesso pe meo delle sue componenti (che chimeemo, e ) e dei vesoi i, j e k (indicili nche con l notione î, ĵ, kˆ i j k î ˆj kˆ o θ ϕ P(,,) con: sin θcos ϕ sin θsin ϕ cos θ. Romeo Fisic I - Vettoi 11

12 Vesoi e componenti ctesine (, ), ϕ θ (,, ) î ĵ Le componenti di un vettoe qulsisi si ottengono nche dll diffeen delle coispondenti coodinte dell'estemo finle con quelle del estemo iniile, ossi: kˆ ( ) î ( ) ĵ ( )kˆ Il modulo espesso tmite le sue componenti sà dunque dto d: ( ) ( ) ( ). Romeo Fisic I - Vettoi 1

13 . Romeo Fisic I - Vettoi 13 In te dimensioni: Le opeioni fino intodotte possono essee scitte in un nuov fom: Componenti ctesine kˆ ĵ î k j i )kˆ ( )ĵ ( )î ( )kˆ ( )ĵ ( )î ( kˆ ĵ î α α α α v kˆ ĵ î k j i

14 Esempio Qunto vlgono l somm e l diffeen di due vettoi di componenti -, 1 e 5,? Clcole il modulo dei vettoi somm e diffeen. î ĵ 5î ĵ c (- 5)î (1 )ĵ 3î 3ĵ c c c d (- 5)î (1 )ĵ 7î ĵ d d d Romeo Fisic I - Vettoi 14

15 Eseciio Dti i vettoi 5 i 3j e -3 i j, detemine il modulo, l dieione ed il veso di c Sol.: c (5-3) i (3)j i 5j Modulo: c c c , 4 L dieione è individut dll ngolo θ che il vettoe c fom con l sse c 5 tn θ, 5 θ ctn, 5 68, c. Romeo Fisic I - Vettoi 15 c O θ c

16 Podotto scle Si ttt di un opeione che ssoci d un coppi di vettoi uno scle. Definiione: Si dice podotto scle di due vettoi e il numeo ele dto d: cos θ dove θ è l ngolo compeso t e. Popietà 1. Vle l popietà commuttiv. α( ) (α ) (α ) cos 0 3. Il podotto scle di un vettoe pe se stesso è pi l qudto del suo modulo 4. Il podotto scle di due vettoe pependicoli è nullo cos90 Se il podotto scle di due vettoi è nullo, llo o uno dei due vettoi coincide con il vettoe nullo oppue i due vettoi sono pependicoli.. Romeo Fisic I - Vettoi 16 0 θ

17 Podotto scle in componenti Il podotto scle può nche essee espesso come l somm dei podotti delle componenti omonime (cioè eltive gli stessi ssi); in simoli: Dimostione: ( î ĵ kˆ ) ( î ĵ kˆ ) î î ĵ î kˆ î Si nnullno i temini in cui compe il podotto scle di vesoi pependicoli, e si ottiene Il podotto scle di un vettoe pe se stesso in componenti:. Romeo Fisic I - Vettoi 17 î ĵ kˆ ĵ ĵ ĵ î kˆ ĵ kˆ kˆ kˆ

18 Esecii 1. Un uomo pecoe 3 km veso Est e poi 4 km 60 Nod ispetto Est. Qul è lo spostmento isultnte?. Si tovino modulo e dieione oientt dei vettoi che hnno le seguenti componenti: () 5 m, 3 m; () 10 m/s, - 7 m/s; (c) C - m, C -3 m. 3. Qunto vlgono l somm e l diffeen di due vettoi di componenti -, 1, 3 e 5,, 0? Clcole il modulo dei vettoi somm e diffeen. 4. Dti i vettoi i 3j e 3/4 i 1/j, clcole il podotto scle. 5. Rppesente sul pino ctesino i vettoi e di componenti: - m m e m, m. Clcole il modulo e l dieione oientt dei vettoi, e C essendo C l somm di e. Romeo Fisic I - Vettoi 18

19 Eseciio Un uomo pecoe 3 km veso Est e poi 4 km 60 Nod ispetto Est. Qul è lo spostmento isultnte? Nod ( ) î ( ) ĵ Ovest Sud α 60 (C) C (C) Est C C ( C) î ( C) ( C) î ( C) ĵ ( C) ( ) ( C) ( 3 4cos60 ) km (3 ) ( C) ( ) ( C) ( 0 4sin 60 ) km 3.46 km ĵ km 5 km C ( C) ( C) 5 ( 3.46) km ( C) ( C) 3.46 tnα 0.69 α Romeo Fisic I - Vettoi 19

20 c Il podotto vettoile O θ Definiione Si consideino due vettoi e Si definisce podotto vettoile c il vettoe vente le seguenti popietà: dieione: pependicole l pino individuto di pimi due; modulo: podotto dei moduli dei due vettoi moltiplicto pe il seno dell ngolo convesso θ d questi fomto c senθ veso: quello secondo il qule si deve dispoe un ossevtoe con i piedi nel punto O d pplicione dei due vettoi ffinché poss vede uote il vettoe in senso ntioio peché si sovppong l vettoe Regol ptic pe il veso: "Regol dell mno dest": si dispone l mno dest in line col vettoe (pimo vettoe del podotto ctesino) e si f uote l mno come pe pote sop (secondo vettoe del podotto ctesino, il pollice teso punt nel veso di c.. Romeo Fisic I - Vettoi 0

21 Eseciio: podotto scle e vettoile Dti i due vettoi e di componenti ;, 3 3 ;,, 0; 0 clcole: ) il podotto scle 1) Podotto scle utilino le componenti: ) Podotto scle utilindo l fomul: cos α cosθ1 0,5 θ α cos θ θ Romeo Fisic I - Vettoi 1 Individue l ngolo compeso α θ θ 1 θ 1 θ cos

22 Eseciio: podotto scle e vettoile Dti i due vettoi e di componenti ;, 3 3 ;,, 0; 0 clcole: ) il podotto scle ) Podotto vettoile c Modulo c senθ 4 4 sen ,5 8 3 Dieione: quell dell sse, ovveo pependicole l pino - dove gicciono i due vettoi Veso: pplicndo l egol dell mno dest, isult entnte nel pino dell pgin. Romeo Fisic I - Vettoi θ 1 θ

23 Deivt di un vettoe Si dto un vettoe dipendente dl tempo: ( t) ( t) ( t) î ( t) ĵ ( t)kˆ e si suppong che in un intevllo di tempo t il vettoe suisc un incemento ( t t) -(t) ( t) con ( t) ( t) î ( t) ĵ ( t) kˆ (t) ( t) O ( t t) Se si vuole icve l velocità dell viione di (t), si può costuie il ppoto: t ( t) ( t t) t -(t) t ( t) ( t) ( t) ( t) kˆ t î t ĵ t. Romeo Fisic I - Vettoi 3

24 Deivt di un vettoe Si definisce deivt di un vettoe ispetto ll viile t, l quntità: d ( t) ( t t) -(t) lim lim dt t 0 t t 0 t NOT: l deivt di un vettoe è nco un vettoe in qunto l opeione di deivione equivle l podotto di un vettoe d pe uno scle 1/dt d dt lim t 0 t ( t) ( t) ( t) ( t) kˆ lim t 0 t In componenti: î lim t 0 t ĵ lim t 0 t d dt ( t) d ( t) d ( t) d ( t) kˆ î ĵ dt dt. Romeo Fisic I - Vettoi 4 dt

25 Deivt di un vesoe Dl momento che un vesoe è pe definiione un vettoe di modulo unitio, ciò che può cmie in funione di t è solo l dieione. In un tempo t il vesoe può compiee solo un otione di un ceto ngolo θ. u ( t t) -u(t) u( t) u ( t) u (t) θ u ( t t ) Pe t 0, u tende d infinitesimo du, pependicole d u(t), il cui modulo si confonde con l co: modulo: Vettoe: du Rdθ u(t) dθ du dθ u N con Si definisce deivt di un vesoe u(t) u. Romeo Fisic I - Vettoi 5 N R u(t) 1 : vesoe pependicole u(t) du dt dθ dt u N

Vettori e scalari. Scalari: sono completamente definite quando se ne conosce la sola misura (es. tempo, massa, temperatura, GRANDEZZE FISICHE

Vettori e scalari. Scalari: sono completamente definite quando se ne conosce la sola misura (es. tempo, massa, temperatura, GRANDEZZE FISICHE Vettoi e scli GRNDEZZE FISICHE Scli: sono completmente definite qundo se ne conosce l sol misu (es. tempo, mss, tempetu, volume ) Vettoili: ichiedono un mggio contenuto infomtivo (es. velocità, cceleione,

Dettagli

Grandezze vettoriali.

Grandezze vettoriali. Gndee vettoili. Desciione mtemtic: l ente l mtemtico vettoe I concetti nuovi e fecondi di somm di vettoi, podotti di vettoi ecc. sono pplicti ll meccnic... Secondo [l utoe] il vntggio mggioe del [metodo]

Dettagli

Grandezze vettoriali. Descrizione matematica: l ente matematico vettore

Grandezze vettoriali. Descrizione matematica: l ente matematico vettore Gndezze vettoili. Descizione mtemtic: l ente mtemtico vettoe I concetti nuovi e fecondi di somm di vettoi, podotti di vettoi ecc. sono pplicti ll meccnic... Secondo [l utoe] il vntggio mggioe del [metodo]

Dettagli

Moto nello spazio tridimensionale. = x u y coordinate cartesiane. y x. La localizzazione spazio-temporale di un evento

Moto nello spazio tridimensionale. = x u y coordinate cartesiane. y x. La localizzazione spazio-temporale di un evento Moto nello spio tidimensionle L locliione spio-tempole di n evento - tiettoi e posiione nell tiettoi l vie del tempo -l posiione ispetto n PUNTO O DI RIFERIMENTO sistem di coodinte spili - l definiione

Dettagli

1 VETTORI. 1.1 Operazioni tra vettori

1 VETTORI. 1.1 Operazioni tra vettori 1 VETTORI Ttte le gndee pe l ci definiione non concoono lti elementi l di foi dell loo mis engono dette gndee scli; sono esempi di gndee scli l intello di tempo l mss l tempet ecc Esistono ttti delle gndee

Dettagli

Nello studio della meccanica si incontrano due principali categorie di grandezze: scalari e vettori. Cosa distingue queste quantita?

Nello studio della meccanica si incontrano due principali categorie di grandezze: scalari e vettori. Cosa distingue queste quantita? Vettori e sclri Nello studio dell meccnic si incontrno due principli ctegorie di grndezze: sclri e vettori. Cos distingue queste quntit? Domenic sono ndto in iciclett per due ore L informzione sul tempo

Dettagli

CINEMATICA DEL MOTO ROTATORIO DI UNA PARTICELLA

CINEMATICA DEL MOTO ROTATORIO DI UNA PARTICELLA CINEMAICA DEL MOO OAOIO DI UNA PAICELLA MOO CICOLAE: VELOCIA ANGOLAE ED ACCELEAZIONE ANGOLAE Si considei un pticell P in moto cicole che descive un co di ciconfeenz s. L ngolo di otzione ispetto d un sse

Dettagli

I vettori. Grandezze scalari: Grandezze vettoriali

I vettori. Grandezze scalari: Grandezze vettoriali I etto Gndee scl: engono defnte dl loo loe numeco esemp: lunghe d un segmento, e d un fgu pn, tempetu d un copo, ecc. Gndee ettol engono defnte, olte che dl loo loe numeco, d un deone e d un eso esemp:

Dettagli

Fisica II. 1 Esercitazioni

Fisica II. 1 Esercitazioni isic II Esecizi svolti Esecizio. Clcole l foz che gisce sull cic Q µc, dovut lle ciche Q - µc e Q 7 µc disposte come ipotto in figu Q Q α 5 cm 6 cm Q Soluzione: L foz che gisce sull cic Q è dt dll composizione

Dettagli

Calcolo Vettoriale. Fisica I - Lezione 01. Cristiano Guidorzi Dipartimento di Fisica Universitá di Ferrara

Calcolo Vettoriale. Fisica I - Lezione 01. Cristiano Guidorzi Dipartimento di Fisica Universitá di Ferrara Fisic I - Leione 01 Cristino Guidori Diprtimento di Fisic Universitá di Ferrr guidori@fe.infn.it http://www.fe.infn.it/ guidori/ 21 Novembre 2002 Fisic I - A.A. 2002-2003 Leione 01 Definiioni e Notioni

Dettagli

Momento di una forza rispettto ad un punto

Momento di una forza rispettto ad un punto Momento di un fo ispettto d un punto Rihimimo lune delle definiioni e popietà sui vettoi già disusse ll iniio del oso Podotto vettoile: ϑ ϑ sin sin θ Il vettoe è dietto lungo l pependiole l pino individuto

Dettagli

Vettori. Le grandezze fisiche sono: scalari; vettoriali;

Vettori. Le grandezze fisiche sono: scalari; vettoriali; Vetto 1 Le gndee fsche sono: scl; vettol; Def: Gnde scle defnt unvocmente d un numeo (postvo o negtvo) (con oppotun untà d msu) es.: tempo, mss, tempetu, cc elettc, Def: Gnde vettole (vd. pgn seguente)

Dettagli

MAPPE DI GEOMETRIA PER LA PRIMA LICEO

MAPPE DI GEOMETRIA PER LA PRIMA LICEO Enti geometici fondmentli (pgin ) Opezioni con gmenti e ngoli (pgin 3) Nomencltu dei tingoli (pgin 4 Popietà dei tingoli (pgin 5) Citei di conguenz dei tingoli (pgin 6) Le ette (pgin 7) Le ette pllele

Dettagli

Meccanica dei Solidi. Vettori

Meccanica dei Solidi. Vettori Meccnic dei Solidi Prof. Ing. Stefno Avers Università di Npoli Prthenope.. 2005-06 Lezione 2 Vettori Definizione: Un grndezz vettorile (o un vettore) è un grndezz fisic crtterizzt oltre che d un numero

Dettagli

Fisica II. 6 Esercitazioni

Fisica II. 6 Esercitazioni Esecizi svolti Esecizio 61 Un spi cicole di ggio è pecos d un coente di intensità i Detemine il cmpo B podotto dll spi in un punto P sul suo sse, distnz x dl cento dell spi un elemento infinitesimo di

Dettagli

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010)

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010) Ingegneri dei Sistemi Elettrici_2 (ultim modific 08/03/2010) Prim di definire le grndee di bse e le costnti universli del modello elettromgnetico per poter sviluppre i vri temi dell elettromgnetismo, si

Dettagli

I vettori. Grandezze scalari e grandezze vettoriali

I vettori. Grandezze scalari e grandezze vettoriali I vetto Gndee sl e gndee vettol Vettoe: ente mtemto tteto d te qunttà modulo deone veso I vetto sono pplt n un punto (esste un numeo nfnto d vetto equpollent, oé on modulo, deone e veso ugul, m pplt n

Dettagli

MACCHINE SEMPLICI e COMPOSTE

MACCHINE SEMPLICI e COMPOSTE OBIETTIVI: MCCHINE SEMLICI e COMOSTE (Distillzione veticle) conoscenz del pincipio di funzionmento delle mcchine spee svolgee ppliczioni sulle mcchine Mcchin (def.) Foz esistente (def.) Foz motice (def.)

Dettagli

1.1 Legge di trasformazione del vettore di posizione per traslazioni del sistema di riferimento

1.1 Legge di trasformazione del vettore di posizione per traslazioni del sistema di riferimento Cpitolo V Geometi delle Aee 1. L VEORE POZONE 1.1 Legge di tsfomzione del vettoe di posizione pe tslzioni del sistem di ifeimento Le coodinte e di un posto geneico del pino, nel sistem di ifeimento, sono

Dettagli

Vettori Geometrici. Corso di Metodi Numerici per il Design. 30 Settembre 2002 Vettori Geometrici. Corso di Laurea in Disegno Industriale

Vettori Geometrici. Corso di Metodi Numerici per il Design. 30 Settembre 2002 Vettori Geometrici. Corso di Laurea in Disegno Industriale Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design 0 Settemre 00 Vettori Geometrici 1 Vettori Geometrici Metodi Mtemtici per il Design Leione pg. 1 1 Segmento orientto P P 1 Direione:

Dettagli

r v E r = Quadrilatero articolato 3 β α ω 1 v r δ v r E v r E/B 1 = manovella 2 = bilanciere 3 = biella

r v E r = Quadrilatero articolato 3 β α ω 1 v r δ v r E v r E/B 1 = manovella 2 = bilanciere 3 = biella Qudilteo ticolto Si uole detemine l elocità ngole del bilnciee M V / / / / mnoell bilnciee biell N copi igidi Vincoli ceniee estene intene dl -() Si suppong di conoscee l elocità ngole dell mnoell e l

Dettagli

Elementi di Geometria. Lezione 01

Elementi di Geometria. Lezione 01 Elementi di Geometi Lezione 01 Cpitolo 1 - Entità geometiche elementi L geometi pin, pu tovndo ppliczione ptic in tnti polemi eli dell vit di ogni giono, è un mtei sttt che si ifeisce d oggetti logici

Dettagli

Classe 4 G dicembre 2010.

Classe 4 G dicembre 2010. Clsse 4 G dicembe 2010. Legge di Newton pe il ffeddmento (iscldmento). Due copi tempetu diffeente se posti in conttto temico si scmbino cloe. L'ossevzione speimentle indic che essi si potno d un tempetu

Dettagli

Il formalismo vettoriale della cinematica rotazionale

Il formalismo vettoriale della cinematica rotazionale Il fomalismo ettoiale della cinematica otaionale Le elaioni della cinematica otaionale assumono una foma semplice ed elegante, se sono iscitte in foma ettoiale. E questo l agomento dei paagafi che seguono.

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

LIBRO DI TESTO S.Melone, F.Rustichelli Introduzione alla Fisica Biomedica Libreria Scientifica Ragni Ancona, 1998

LIBRO DI TESTO S.Melone, F.Rustichelli Introduzione alla Fisica Biomedica Libreria Scientifica Ragni Ancona, 1998 LIBRO DI TESTO S.Melone, F.Rustichelli Intoduzione alla Fisica Biomedica Libeia Scientifica Ragni Ancona, 1998 TESTO DI CONSULTAZIONE E WEB F.Bosa, D.Scannicchio Fisica con Applicazioni in Biologia e Medicina

Dettagli

Unità Didattica N 10 : I momenti delle forze

Unità Didattica N 10 : I momenti delle forze Unità didattica N 10 I momenti delle foze 1 Unità Didattica N 10 : I momenti delle foze 01) omento di una foza ispetto ad un punto 02) omento isultante di un sistema di foze 03) omento di una coppia di

Dettagli

Esercizi di riepilogo di elettrostatica e magnetostatica

Esercizi di riepilogo di elettrostatica e magnetostatica secii di iepilogo di eleosic e mgneosic SRCIZIO Do il poenile eleosico: V,, ) 3e ) ) ln 5 [V] clcole l fo gene su un eleone poso nel puno 3,,5). Si icod che l cic dell eleone è pi q -.6-9 C.. Soluione

Dettagli

CENTRO DI ISTANTANEA ROTAZIONE

CENTRO DI ISTANTANEA ROTAZIONE CENTRO DI ISTNTNE ROTZIONE Dunte il moto pino geneico di un copo igido, in ogni istnte esiste un punto C del copo (o solidle d esso) ctteizzto d elocità null. Tle punto è detto cento di istntne otzione

Dettagli

MATRICI SIMILI E MATRICI DIAGONALIZZABILI

MATRICI SIMILI E MATRICI DIAGONALIZZABILI MATRICI SIMILI E MATRICI DIAGONALIZZABILI DEFINIZIONE: Due mtici qudte A e B, dello stesso odine n, si dicono simili se esiste un mtice non singole S, tle che isulti: B S A S L mtice S si chim nche mtice

Dettagli

Note di trigonometria.

Note di trigonometria. Note di tigonometi. Muo Sit e-mil: muosit@tisclinet.it Novembe 2014. 1 Indice 1 Seno, coseno e tngente di un ngolo. 2 1.1 Gfici delle funzioni seno e coseno......................... 3 1.2 Gfico dell funzione

Dettagli

2. Teoremi per eseguire operazioni con i limiti in forma determinata

2. Teoremi per eseguire operazioni con i limiti in forma determinata . Teoremi per eseguire operzioni con i iti in form determint Vedimo dunque i teoremi che consentono il clcolo dei iti, ttrverso i quli si riconducono le situzioni rticolte semplici operzioni lgebriche

Dettagli

Campo magnetico e potenziale vettore

Campo magnetico e potenziale vettore ppunti di Fisic Cmpo mgnetico e potenile vettoe Popietà diffeenili del cmpo mgnetico...1 nlogie con l'elettosttic...3 l potenile vettoe pe il cmpo mgnetico...3 Potenile vettoe geneto d un cicuito filifome...7

Dettagli

In generale i piani possono essere tra loro

In generale i piani possono essere tra loro Leione 7 - Alge e Geometi - Anno emio 9/ In genele i pini possono essee t loo Pini istinti inienti in un ett ppesentt l sistem sop sitto se. Pini plleli se istinti se, oinienti se. Eseiio tem esme) Si

Dettagli

Operatori divergenza e rotore in coordinate cilindriche

Operatori divergenza e rotore in coordinate cilindriche Opeatoi divegena e otoe Univesità di Roma To Vegata Pof. Ing. Paolo Sammaco Opeatoi divegena e otoe in coodinate cilindiche Dott. Ing. Macello Di Risio 1 Sistema di ifeimento Si assume il sistema di ifeimento

Dettagli

Richiami sui vettori. A.1 Segmenti orientati e vettori

Richiami sui vettori. A.1 Segmenti orientati e vettori A Richimi sui vettori Richimimo lcune definizioni e proprietà dei vettori, senz ssolutmente pretendere di drne un trttzione mtemticmente complet. Lvoreremo sempre in uno spzio crtesino (euclideo) tre dimensioni,

Dettagli

P r. N r R r. T r. R r ATTRITO STATICO

P r. N r R r. T r. R r ATTRITO STATICO ATTRITO STATICO P N Si considei un copo igido su un pino, inizilmente cicto con un foz P nomle l pino di ppoggio (es. foz peso) Il copo è in quiete: ll intefcci di conttto si oigin un foz N che gntisce

Dettagli

dr Valerio Curcio Le affinità omologiche Le affinità omologiche

dr Valerio Curcio Le affinità omologiche Le affinità omologiche 1 Le ffinità omologiche 2 Tringoli omologici: Due tringoli si dicono omologici se le rette congiungenti i punti omologhi dei due tringoli si incontrno in un medesimo punto. Principio dei tringoli omologici

Dettagli

Note su esperienza con il volano

Note su esperienza con il volano Note su espeienz con il olno 1 Cos è un olno? un mss più o meno "gnde" collegt solidlmente ll'lbeo motoe di un mcchin. A cos see un olno nelle mcchine? see d ccumule enegi cinetic nelle fsi di eccesso

Dettagli

INTRODUZIONE ALL ANALISI DI MISSIONI SPAZIALI TRASF. COPLANARI

INTRODUZIONE ALL ANALISI DI MISSIONI SPAZIALI TRASF. COPLANARI INTRODUZIONE ALL ANALISI DI MISSIONI SPAZIALI TRASF. COPLANARI Tsfeimenti Colni Int. Anlisi di Missioni Szili T. Colni Mnoe Obitli Int. Anlisi di Missioni Szili T. Colni 3 Obiettio: contolle il moto del

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

I vettori. Grandezze scalari: Grandezze vettoriali

I vettori. Grandezze scalari: Grandezze vettoriali Grndee sclr: I ettor engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee ettorl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

Cinematica del punto. 3D

Cinematica del punto. 3D Cinemic del puno. 3D z O () () P() z() () in fom eoile OP( ) ( ) Veoe posizione oeo eoe sposmeno dll oigine L ppesenzione eoile pemee un descizione sineic del moo. z P() Nei clcoli pici in genee si usno

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

Vettori - Definizione

Vettori - Definizione Vettori - Definizione z Verso Origine Modulo Direzione V y Form geometri x Form nliti Un vettore è un ente geometrio definito d: - Direzione: rett sull qule gie il vettore, he ne indi l orientmento nello

Dettagli

operazioni con vettori

operazioni con vettori omposizione e somposizione + = operzioni on vettori = + = + Se un vettore può essere dto dll omposizione di due o più vettori, questi vettori omponenti possono essere selti lungo direzioni ortogonli fr

Dettagli

APPLICAZIONI DI CINEMATICA

APPLICAZIONI DI CINEMATICA EZINE ICZINI DI CINEMTIC In quest seione si pesentno lcuni esempi di pplicioni dell teoi cinemtic sviluppt nei due cpitoli pecedenti dispositivi meccnici pticoli. e pote considee di ve elmente ppeso i

Dettagli

MATEMATICA Classe Prima

MATEMATICA Classe Prima Liceo Clssico di Treiscce Esercizi per le vcnze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri nturli Primi ogni pgin del cpitolo Cpitolo Numeri nturli Primi ogni pgin del cpitolo Per gli llievi promossi

Dettagli

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss 1 Appunti su agomenti monogafici pe il coso di FM1 Pof. Pieluigi Contucci Gavità e Teoema di Gauss Vogliamo dimostae, a patie dalla legge di gavitazione univesale che il campo gavitazionale geneato da

Dettagli

Le grandezze vettoriali nella cinematica. del punto materiale

Le grandezze vettoriali nella cinematica. del punto materiale 26 U.D. N 3 Le gndezze veoili nell cinemic del puno meile U.D. N 3 Le gndezze veoili nell cinemic del puno meile 01) L nozione di segmeno oieno 02) L nozione di veoe 03) Gndezze scli e gndezze veoili.

Dettagli

r r ω t r Pr r r r r r CINEMATICA DEI MOTI RELATIVI velocità del punto P

r r ω t r Pr r r r r r CINEMATICA DEI MOTI RELATIVI velocità del punto P CINEMTIC DEI MOTI RELTIVI elocità del punto P P Pt P elocità di tscinmento (elocità del punto consideto solidle l SDR mobile) elocità elti (elocità di P ist dl sistem mobile) Pt P P/ (xi & yj) & t ccelezione

Dettagli

NELLO SPAZIO EUCLIDEO

NELLO SPAZIO EUCLIDEO N. DODERO -. RONINI - R. MNFREDI LINEMENTI DI GEOMETRI RZIONLE NELLO SZIO EULIDEO 2 ER IL TRIENNIO DELL SUOL SEONDRI DI SEONDO GRDO GHISETTI E ORVI EDITORI N. Dodeo -. oncini - R. Mnfedi LINEMENTI DI GEOMETRI

Dettagli

LE GRANDEZZE FISICHE. estensive. Grandezze. intensive non dipendono dalla quantità di materia temperatura, peso specifico

LE GRANDEZZE FISICHE. estensive. Grandezze. intensive non dipendono dalla quantità di materia temperatura, peso specifico LE GRANDEZZE FISICHE estensive dipendono dll quntità di mteri mss, volume, lunghezz Grndezze intensive non dipendono dll quntità di mteri tempertur, peso specifico LA MISURA DI UNA GRANDEZZA FISICA Per

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione

Esercizi Scheda N Fisica II. Esercizi con soluzione Esecizio 9.1 Esecizi con soluzione Te divese onde sonoe hanno fequenza ν ispettivamente 1 Hz, 1 Hz e 5 Mhz. Deteminae le lunghezze d onda coispondenti ed i peiodi di oscillazione, sapendo che la velocità

Dettagli

I PROBLEMI DI MASSIMO E DI MINIMO

I PROBLEMI DI MASSIMO E DI MINIMO I PROBLEMI DI MASSIMO E DI MINIMO Souzioni di pobemi ttti d ibo: Coso Bse Bu di Mtemti, vo. 5 [1] (Pobem n. pg. 1 ) Individu i punto de ett xy5 pe i que è minim distnz d oigine degi ssi oodinti. Consideimo

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ ALTRI SOLIDI GEOMETRICI Test di utovlutzione 0 0 0 0 0 50 60 70 80 90 00 n Il mio punteggio, in centesimi, è n Rispondi ogni quesito segnndo un sol delle 5 ltentive. n Confont le tue isposte con

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLAI.M. DA CONEGNARE IL PRIMO GIORNO DI ATTIVITA DI PORTELLO DEVI RIOLVERE PRIMA DI TUTTO I PROBLEMI E GLI EERCIZI QUI ELENCATI. TERMINATI QUETI, RIOLVI ALCUNI

Dettagli

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, }

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, } Lezione 01 Aritmetic Pgin 1 di 1 I numeri nturli I numeri nturli sono: 0,1,,,4,5,6,7,8,,10,11,1, L insieme dei numeri nturli viene indicto col simbolo. } { 0,1,,, 4,5,6,7,8,,10,11,1, } L insieme dei numeri

Dettagli

v 0 = 2,4 m/s T = 1,8 s v = 0 =?

v 0 = 2,4 m/s T = 1,8 s v = 0 =? Esercitzione n 4 FISICA SPERIMENTALE I (C.L. Ing. Edi.) (Prof. Gbriele Fv) A.A. 00/0 Dinic del punto terile. Un corpo viene lncito lungo un pino liscio inclinto di rispetto ll orizzontle con velocità v

Dettagli

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo Lure triennle in Scienze dell Ntur.. 2009/200 Regole di Clcolo In queste note esminimo lcune conseguenze degli ssiomi reltivi lle operzioni e ll ordinmento nell insieme R dei numeri reli. L obiettivo principle

Dettagli

I equazione cardinale della dinamica

I equazione cardinale della dinamica I equzione cdinle dell dinic I Sistei di pticelle Un siste di pticelle è un insiee di punti teili, definito dll ss e dll posizione di ciscun pticell. Il più seplice siste di pticelle è foto d due soli

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

Facoltà di Ingegneria Compito scritto di Fisica II Compito B

Facoltà di Ingegneria Compito scritto di Fisica II Compito B ε = 8.85 1 1 C N ; Fcoltà i Ingegnei Copito scitto i Fisic II 17.7.6 Copito B = 1 7 T A Esecizio n.1 α Un filo ettilineo inefinito è pecoso un coente I(t)= t (l coente e iett veso l lto, con α positivo).

Dettagli

2 Grandezze vettoriali

2 Grandezze vettoriali 2 Grndee vettorili 2 Grndee vettorili... 32 2.1 Vettore spostmento.... 32 2.2 Regol dell somm degli spostmenti.... 33 2.3 Proprietà dell somm tr vettori.... 35 2.4 Componenti crtesine di un vettore....

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI

RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI PROPRIETÀ DEI NUMERI INTERI, SCOMPOSIZIONI, ECC.. Se A è ugule e B è ugule, qunto vlgono m.c.m. ed M.C.D. dei numeri A e B? 0 e. Se si moltiplicno due numeri

Dettagli

3) Il campo elettrostatico nella regione di spazio compresa tra il filo ed il cilindro (cioè per 0<r<R 1 ) è

3) Il campo elettrostatico nella regione di spazio compresa tra il filo ed il cilindro (cioè per 0<r<R 1 ) è Fcoltà i Ingegnei Pov Scitt i Fisic II - 3 Febbio 4 uesito n. Un lungo cilino metllico cvo i ggio inteno e ggio esteno viene cicto con un ensità i cic linee pi. Lungo il suo sse viene inseito un lungo

Dettagli

MATEMATICA FINANZIARIA CAP. 14 20

MATEMATICA FINANZIARIA CAP. 14 20 MTEMTIC FINNZIRI CP. 42 pputi di estimo INTERESSE SEMPLICE Iteesse semplice I C M C ( ) = fzioe di o [] C M G F M M G L S O N D Motte semplice di te costti 2 3 M R R R... R [2] 2 2 2 2 Poiché l fomul è

Dettagli

Nome..Cognome.classe 4C 7 Maggio Verifica di Matematica

Nome..Cognome.classe 4C 7 Maggio Verifica di Matematica Noe..Cognoe.clsse 4C 7 Mggio Verific di Mtetic PROBLEMA ( punti In un tringolo ABC il lto BC isur e l ngolo opposto è di. Deterinre in funzione dell piezz di ABC ˆ CH l ndento di f ( essendo CH e bisettrici

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anlitic Domnde, Risposte & Esercizi. Dre l definizione di iperole come luogo di punti. L iperole è un luogo di punti, è cioè un insieme di punti del pino le cui distnze d due punti fissi F e F

Dettagli

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y Differenzile Considerimo l vrizione finit, dell vriile indipendente cui corrisponde un vrizione finit dell funzione f, f y Δf 1 Δ 2 L vrizione dell vriile dipendente puo' essere molto piccol, infinitesim

Dettagli

FENOMENI INTERFERENZIALI e DIFFRATTIVI

FENOMENI INTERFERENZIALI e DIFFRATTIVI FNOMNI INTRFRNZIALI e DIFFRATTIVI Intefeenz t onde e.m. podotte d sogenti coeenti sincone; Metodo dei fsoi o dei vettoi otnti; Intefeenz in lmine sottili; nelli di Newton, pellicoli sottili su veto Il

Dettagli

ipotenusa cateto adiacente ad α cateto opposto ad α ipotenusa cateto adiacente ad α ipotenusa cateto adiacente ad α

ipotenusa cateto adiacente ad α cateto opposto ad α ipotenusa cateto adiacente ad α ipotenusa cateto adiacente ad α Trigonometri I In quest prim prte dell trigonometri denimo le funzioni trigonometriche seno, coseno e tngente e le loro funzioni inverse. Vedremo nche come utilizzrle nell risoluzione dei tringoli. Comincimo

Dettagli

11. Geometria piana ( ) ( ) 1. Formule fondamentali. Rettangolo. A = b = h = = b h. b = base h = altezza. Quadrato

11. Geometria piana ( ) ( ) 1. Formule fondamentali. Rettangolo. A = b = h = = b h. b = base h = altezza. Quadrato 11. Geometi pin 1. Fomule fonmentli Rettngolo = h = h = h p= + h p= + h h= p = p h + ( ) = h = h h = = se = igonle p = peimeto h = ltezz = e p = semipeimeto Quto = l l = = l l = l = lto = igonle = e p

Dettagli

GLOSSARIO GLOSSARIO. Addendo Termine dell operazione di addizione. è un angolo giro. Angoli supplementari Due angoli la cui somma

GLOSSARIO GLOSSARIO. Addendo Termine dell operazione di addizione. è un angolo giro. Angoli supplementari Due angoli la cui somma GLSSRI ddendo Temine dell opezione di ddizione. ngoli esplementi ue ngoli l cui somm è un ngolo gio. ddizione lgeic Successione di ddizioni e sottzioni t numei eltivi. ffinità Tsfomzione geometic che mntiene

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

MACCHINA ELEMENTARE A RILUTTANZA

MACCHINA ELEMENTARE A RILUTTANZA Sistemi magnetici con moto meccanico MACCHINA ELEMENTARE A RILUTTANZA Consiste in un nucleo magnetico con un avvolgimento a N spie e una pate mobile che uota con spostamento angolae θ e velocità angolae

Dettagli

Area del Trapezoide. f(x) A f(a) f(b) f(x)

Area del Trapezoide. f(x) A f(a) f(b) f(x) Are del Trpezoide y o A f() trpezoide h B f() f() L're del trpezoide S puo' essere pprossimt dll're del trpezio AB. Per vere un migliore pprossimzione possimo suddividere il trpezio in trpezi piu' piccoli.

Dettagli

Campi scalari e vettoriali (1)

Campi scalari e vettoriali (1) ampi scalai e vettoiali (1) 3 e ad ogni punto P = (x, y, z) di una egione di spazio Ω R è associato uno ed uno solo scalae φ diemo che un campo scalae è stato definito in Ω. In alti temini: φ 3 : P R φ(p)

Dettagli

8. Prodotto scalare, Spazi Euclidei.

8. Prodotto scalare, Spazi Euclidei. 8. Prodotto sclre, Spzi Euclidei. Ricordimo l definizione di prodotto sclre di due vettori del pino VO 2 (vle in modo del tutto nlogo nche in VO 3 ). Definizione: Sino v, w VO 2 e si θ l ngolo convesso

Dettagli

Università degli Studi di Teramo Facoltà di Scienze Politiche

Università degli Studi di Teramo Facoltà di Scienze Politiche Uivesità degli Studi di Temo Foltà di Sieze Politihe Coso di Lue i Sttisti Lezioi del Coso di Mtemti u di D. Todii.. 00/004 CAPITOLO I GLI INTEGRALI. GENERALITÀ Defiizioe di itegle defiito pe u fuzioe

Dettagli

Cap. 4 - Algebra vettoriale

Cap. 4 - Algebra vettoriale Mssimo Bnfi Cp. 4 - Algebr vettorile Cpitolo 4 Algebr vettorile 4.1. Grndezze sclri Si definiscono sclri quelle grndezze fisiche che sono descritte in modo completo d un numero con l reltiv unità di misur.

Dettagli

Campo elettrico in un conduttore

Campo elettrico in un conduttore Cmpo elettico in un conduttoe In entmbi i csi se il conduttoe è isolto e possiede un cic totle, dett cic si dispone sull supeficie esten del conduttoe; se così non fosse inftti ci sebbe un foz sulle ciche

Dettagli

Ellisse riferita al centro degli assi

Ellisse riferita al centro degli assi Appunti delle lezioni tenute in clsse: ellisse e iperole Ellisse riferit l centro degli ssi Dti due punti F ed F detti fuochi, l ellisse è il luogo geometrico dei punti P del pino per cui è costnte l somm

Dettagli

tx P ty P 1 + t(z P 1)

tx P ty P 1 + t(z P 1) Esrcizi dll dcim sttimn - Soluzioni Indichimo con S R 3 l sfr unitri nll mtric Euclid di R 3, oro S {x, y, z R 3 x + y + z 1}. Indichimo con N S il polo nord il polo sud di S, rispttimnt, oro N,, 1 S,,

Dettagli

Cinematica ed equilibrio del corpo rigido

Cinematica ed equilibrio del corpo rigido omportmento meccnico dei mterili rtteristiche di sollecitione inemtic ed equilirio del corpo rigido rtteristiche di sollecitione efiniione delle crtteristiche Esempio 1: trve rettiline Esempio : struttur

Dettagli

capacità si può partire dalla sua definizione: C = e dalla relazione fra la differenza di potenziale ed il campo elettrico: V

capacità si può partire dalla sua definizione: C = e dalla relazione fra la differenza di potenziale ed il campo elettrico: V secizio (ll ppello 6/7/4) n conenstoe pino è costituito ue mtue qute i lto b septe un istnz. Il conenstoe viene completmente cicto ll tensione e poi scollegto ll bttei ust pe ciclo, così est isolto ll

Dettagli

x = x(t) y = y(t) t [a, b]

x = x(t) y = y(t) t [a, b] Dt un curv continu. Curve ed integrli di line : t [, b] i punti () = (x(), y()) e (b) = (x(b), y(b)) si chimno primo e secondo estremo dell curv, rispettivmente. L curv si dice chius se () = (b). L curv

Dettagli

Determinanti. Prodotto vettoriale. Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Determinanti. Prodotto vettoriale. Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milno Corso di Anlisi e Geometri 1 Federico Lstri federico.lstri@polimi.it I erminnti. Il prodotto vettorile. 11 Gennio 2016 Indice 1 Determinnti di mtrici 2 2 2 1.1 Clcolo del erminnte.

Dettagli

Determinare la posizione del centro di taglio della seguente sezione aperta di spessore sottile b << a

Determinare la posizione del centro di taglio della seguente sezione aperta di spessore sottile b << a Determinre l posizione del centro di tglio dell seguente sezione pert di spessore sottile

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

Si considerino le rette:

Si considerino le rette: Si consideino le ette: Eseciio (tipo tema d esame) : s : + () ) Si dica pe quali valoi del paameto eale le ette e s isultano sghembe, paallele o incidenti. ) Nel caso paallele si emino i paameti diettoi

Dettagli

Definiamo ora alcuni vettori particolarmente importanti detti versori.

Definiamo ora alcuni vettori particolarmente importanti detti versori. Prof. A. Di Mro I versori Definimo or lcni vettori prticolrmente importnti detti versori. Un versore è semplicemente n vettore di modlo nitrio. Normlmente gli ssi, e z vengono ssociti i versori i ˆ, ˆj,

Dettagli

FUNZIONI IPERBOLICHE

FUNZIONI IPERBOLICHE FUNZIONI IPERBOLICHE Umberto Mrconi Diprtimento di Mtemtic Pur e Applict Pdov Premess Si [, [, fissto. Voglimo cpire cos signific: w dw perché l funzione integrnd è illimitt. Se considerimo, per b [, [,

Dettagli

Cinematica ed equilibrio del corpo rigido

Cinematica ed equilibrio del corpo rigido inemtic ed equilirio del corpo rigido Spostmenti virtuli Lvori virtuli ed equilirio Determinzione sttic Numero dei vincoli e determinzione pprofondimenti: lvoro virtule pprofondimenti: forze e momenti

Dettagli

La magnetostatica. Le conoscenze sul magnetismo fino al 1820.

La magnetostatica. Le conoscenze sul magnetismo fino al 1820. Le conoscenze sul magnetismo fino al 1820. La magnetostatica Le nozioni appese acquisite nel coso dei secoli sui fenomeni magnetici fuono schematizzate elativamente tadi ispetto alle pime ossevazioni,

Dettagli

LE INCERTEZZE E LA LORO PROPAGAZIONE NELLE MISURE INDIRETTE

LE INCERTEZZE E LA LORO PROPAGAZIONE NELLE MISURE INDIRETTE LE INCERTEZZE E LA LORO PROPAGAZIONE NELLE MISURE INDIRETTE Pof. Agelo Ageletti -.s. 006/007 1) COME SI SCRIVE IL RISULTATO DI UNA MISURA Il modo miglioe pe espimee il isultto di u misu è quello di de,

Dettagli

Superfici di Riferimento (1/4)

Superfici di Riferimento (1/4) Superfici di Riferimento (1/4) L definizione di un superficie di riferimento nsce dll necessità di vere un supporto mtemtico su cui sviluppre il rilievo eseguito sull superficie terrestre. Tle superficie

Dettagli

Linguaggi di Programmazione Corso C. Parte n.5 Automi a Stati Finiti. Nicola Fanizzi

Linguaggi di Programmazione Corso C. Parte n.5 Automi a Stati Finiti. Nicola Fanizzi Linguggi di Progrmmzione Corso C Prte n.5 Automi Stti Finiti Nicol Fnizzi (fnizzi@di.uni.it) Diprtimento di Informtic Università degli Studi di Bri Automi Stti Finiti Dto un lfeto X, un utom stti finiti

Dettagli