Equilibrio Economico Generale in Economia aperta (2x2x2) Sanna-Randaccio Lezione 5

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Equilibrio Economico Generale in Economia aperta (2x2x2) Sanna-Randaccio Lezione 5"

Transcript

1 Equilibrio Eonomio Generle in Eonomi ert (222) Snn-Rndio Lezione 5 --Il modello in eonomi ert --Condizione di equilibrio er il merto del bene () in eonomi ert --Vinolo di bilnio er il ese H (ottenimo l trde blne ondition) --Signifito dell trde blne ondition --Signifito di isoreddito --Curve di eesso di domnd er i due esi --Struttur e volume del ommerio internzionle --Come si determin il livello dei rezzi reltivi di libero smbio --Legge di Wlrs in eonomi ert

2

3

4 CONDIZIONI DI EQUILIBRIO PER I MERCAI DEI BENI IN ECONOMIA APERA I merti dei beni hnno dimensione internzionle Domnd mondile = Offert mondile = = d ui E E = 0 E E = 0 Notre l differenz on il so di eonomi hius

5 Vinolo di bilnio er il ese H i rezzi di eonomi ert = reddito del ese dto dl vlore dell roduzione i ottenimo l trde blne ondition ( ) ( ) = 0 d ui --Il ese non è ostretto onsumre di () qunto rodue. --se > 0 imort < 0 (esort ) --il vlore i rezzi internzionli di quello he omr è ugule l vlore i rezzi internzionli di quello he vende. L bilni ommerile è in reggio. Brtto.

6 EQUILIBRIO ECONOMICO GENERALE IN ECONOMIA APERA < A N Mrkusen et l. (MMKM,. 55)

7 SRUURA E VOLUME DEL COMMERCIO INERNAZIONALE Se = E = 0 ( E = 0 ) Se = 1 < Il rezzo reltivo del bene in libero smbio diminuise Q 1 Il ese rodue in (le imrese sostno risorse d ) Il ese onsum in C 1 I onsumtori sostituisono on ( se effetto sostituzione revle su effetto reddito) Si viene rere un eesso di domnd ositivo er (e quindi un eesso di domnd negtivo er nel so di un effetto reddito non troo forte)

8 Quindi se = 1 < E = > 0 H: imort esort Se = 2 > E = < 0 H: esort imort

9 LA FUNZIONE DI ECCESSO DI DOMANDA Mrkusen et l. (MMKM,. 55)

10 DEERMINAZIONE DEI PREZZI RELAIVI INERNAZIONALI

11 PREZZI RELAIVI DI EQUILIBRIO Mrkusen et l. (MMKM,. 58)

12 LEGGE DI WALRAS ESESA ALL ECONOMIA INERNAZIONALE In ogni ese il vlore dell ses omlessiv è ugule l vlore del reddito (= vlore dell roduzione) d ui = = ) ( ) ( ) ( ) ( = 0 )] ( ) [( )] ( ) [( = Il he ort in equilibrio il merto del bene neessrimente ort in equilibrio nhe il merto er il bene

13 BENEFICI DEL COMMERCIO INERNAZIONALE Benefii ggregti dello smbio internzionle er un ese I benefii del ommerio internzionle non diendono d qule bene viene esortto (imortto) Benefii del ommerio internzionle e effetti sull distribuzione del reddito (neessità di misure redistributive) Benefii derivnti dllo smbio e dll seilizzzione utti i esi rteinti trggono benefiio dgli smbi internzionli (gioo somm ositiv)

14 BENEFICI DEL COMMERCIO INERNAZIONALE Mrkusen et l. (MMKM,. 62)

15 BENEFICI DEL COMMERCIO INERNAZIONALE Il ommerio internzionle è vntggioso in qunto onsente l ese di ottenere un ombinzioni di beni non rggiungibili in utrhi. vlore dell roduzione in eonomi ert = vlore reddito del ese. Si h he, onsidert l trde blne ondition e l ondizione di equilibrio dei merti dei beni in utrhi Se C onv verso l origine > L ombinzione di beni onsumt in eonomi ert è referit ll ombinzione di beni onsumt in utrhi

16 BENEFICI DEL COMMERCIO INERNAZIONALE Mrkusen et l. (MMKM,. 64)

17 I benefii del ommerio internzionle non diendono dl tio di bene esortto. I benefii del ommerio non diendono dl ftto he < (il ese H esort il bene ). Se d esemio > (e quindi il ese H esort il bene ) ugulmente ossimo dimostrre he il ommerio è vntggioso er H I benefii del ommerio internzionle diendono dl ftto he

18 BENEFICI DEL COMMERCIO INERNAZIONALE DERIVANI DALLO SCAMBIO E DALLA SPECIALIZZAZIONE Mrkusen et l. (MMKM,. 70)

19 IL COMMERCIO È MUUAMENE BENEFICO Ad esemio onimo he < Si vrà llor he < < H : esort F : esort imort imort Abbimo visto he i benefii dello smbio diendono dl ftto he il rorto tr i rezzi dei beni in eonomi ert è diverso d quello in eonomi hius, e questo è verifito er mbedue i esi (somosizione dei benefii in benefii derivnti dllo smbio e benefii derivnti dll seilizzzione vedi Gndolfo 2014 Citolo 3 (3.6))

Lezione n. 5 Sanna-Randaccio: Benefici del Commercio Internazionale

Lezione n. 5 Sanna-Randaccio: Benefici del Commercio Internazionale Lezione n. 5 Snn-Rndio: onomi ert (222) Benefii del Commerio Internzionle I grfii li trovte in MMK 1 onomi ert (222) Il modello in eonomi ert Condizione di equilibrio er il merto del bene () in eonomi

Dettagli

Lezione n. 5 Sanna-Randaccio: Equilibrio Economico Generale in Economia aperta (2x2x2) Benefici del Commercio Internazionale

Lezione n. 5 Sanna-Randaccio: Equilibrio Economico Generale in Economia aperta (2x2x2) Benefici del Commercio Internazionale Lezione n. 5 Snn-Rndio: quilibrio onomio Generle in onomi ert (222) Benefii del Commerio Internzionle I grfii li trovte in MMK 1 onomi ert (222) Il modello in eonomi ert Condizione di equilibrio er il

Dettagli

Pesca 1 1/3 Raccolta frutta

Pesca 1 1/3 Raccolta frutta Vntggi Comrti rendimo due esi e dove si roducno 2 beni utilizzndo un solo fttore roduttivo il Lvoro ese Attività esc /3 Rccolt frutt /6 /3 Ore di lvoro (20 ) necessrie er escre un kg di esce in 3 kg Quntità

Dettagli

Il modello ricardiano

Il modello ricardiano Risultati l modello riardiano l ommerio internazionale segue i VC Vi è seializzazione omleta L integrazione ommeriale è vantaggiosa er entrambi i Paesi Confermato emiriamente NON Confermato emiriamente

Dettagli

L offerta della singola impresa: l impresa e la massimizzazione del profitto

L offerta della singola impresa: l impresa e la massimizzazione del profitto L offert dell singol imres: l imres e l mssimizzzione del rofitto Qundo un imres ot er un ino di roduzione sceglie un certo livello di inut che le grntisc un dto outut L scelt del ino di roduzione h l

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologie informtihe per l himi Dr. Sergio Brutti Mtrii Prodotto tr mtrii d Dte mtrii x Il prodotto delle due mtrii produe un nuov mtrie on un numero di righe pri l numero di righe dell mtrie e numero

Dettagli

8. Calcolo integrale.

8. Calcolo integrale. Politenio di Milno - Foltà di Arhitettur Corso di Lure in Edilizi Istituzioni di Mtemtihe - Appunti per le lezioni - Anno Ademio 200/20 26 8 Clolo integrle 8 Signifito geometrio dell integrle definito

Dettagli

UNA CILIEGIA TIRA L ALTRA

UNA CILIEGIA TIRA L ALTRA UNA CILIEGIA TIRA L ALTRA» M. L prim sorst di irr "E' l'uni he ont. Le ltre, sempre più lunghe, sempre più insignifinti, dnno solo un ppesntimento tiepido, un'ondnz spret. L'ultim, forse, riquist, on l

Dettagli

Pesca 1 1/3 Raccolta frutta

Pesca 1 1/3 Raccolta frutta Vntggi Comprti rendimo due esi e dove si producno 2 beni utilizzndo un solo fttore produttivo il Lvoro ese Attività esc /3 Rccolt frutt /6 /3 Ore di lvoro (20 ) necessrie per pescre un kg di pesce in 3

Dettagli

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni j Verso l suol superiore +l lolo letterle Monomi Polinomi e prodotti notevoli Equzioni Monomi Il monomio x 4 y è simile : x 4 y 5 +x 4 y x y Due monomi sono simili se hnno l prte letterle ugule e, siome

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita 86 Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di seondo

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo Lure triennle in Scienze dell Ntur.. 2009/200 Regole di Clcolo In queste note esminimo lcune conseguenze degli ssiomi reltivi lle operzioni e ll ordinmento nell insieme R dei numeri reli. L obiettivo principle

Dettagli

Le equazioni di secondo grado. Appunti delle lezioni di Armando Pisani A.S Liceo Classico Dante Alighieri (GO)

Le equazioni di secondo grado. Appunti delle lezioni di Armando Pisani A.S Liceo Classico Dante Alighieri (GO) Le equzioni di seondo grdo Appunti delle lezioni di Armndo Pisni A.S. 3- Lieo Clssio Dnte Alighieri (GO) Not Questi ppunti sono d intendere ome guid llo studio e ome rissunto di qunto illustrto durnte

Dettagli

Unità Didattica N 08 I sistemi di primo grado a due incognite U.D. N 08 I sistemi di primo grado a due incognite

Unità Didattica N 08 I sistemi di primo grado a due incognite U.D. N 08 I sistemi di primo grado a due incognite 66 Unità idtti N 08 I sistemi di primo grdo due inognite U.. N 08 I sistemi di primo grdo due inognite 01) Coordinte rtesine 0) I sistemi di primo grdo due inognite 0) Metodo di sostituzione 04) Metodo

Dettagli

Vettori - Definizione

Vettori - Definizione Vettori - Definizione z Verso Origine Modulo Direzione V y Form geometri x Form nliti Un vettore è un ente geometrio definito d: - Direzione: rett sull qule gie il vettore, he ne indi l orientmento nello

Dettagli

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi.

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi. I PRODOTTI NOTEVOLI Nel lolo letterle pit spesso di inontrre moltiplizioni tr prtiolri polinomi. I reltivi sviluppi si ottengono pplindo le regole fin qui viste, m i risultti, opportunmente semplifiti,

Dettagli

I mercati e l aggiustamento nel tempo

I mercati e l aggiustamento nel tempo I merti e l ggiustmento nel tempo Aggiustmento di reve e lungo periodo urve di offert di reve e lungo periodo urve di domnd di reve e lungo periodo Speulzione speulzione stilizznte speulzione destilizznte

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

Andrea Scozzari a.a Analisi di sensibilità

Andrea Scozzari a.a Analisi di sensibilità Andrea Sozzari a.a. 2012-2013 Analisi di sensibilità 1 Problema di Massimo in forma generale ma 130 100 1,5 0,3 0,5, 27 21 15 16 0 regione ammissibile 2 Problema di Massimo in forma generale ma 130 100

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemti lsse terz Prol ed ellisse Quest oper è distriuit on: Lienz Cretive Commons Attriuzione - Non ommerile - Non opere derivte 3.0 Itli Ing. Alessndro Pohì ( Appunti di lezione svolti ll

Dettagli

LEZIONE 13 MINIMIZZAZIONE DEI COSTI. Condizione per la minimizzazione dei costi. Efficienza tecnica ed efficienza economica

LEZIONE 13 MINIMIZZAZIONE DEI COSTI. Condizione per la minimizzazione dei costi. Efficienza tecnica ed efficienza economica LEZIONE 3 MINIMIZZAZIONE DEI COSTI Lungo periodo Soluzione nlitic Condizione per l minimizzzione dei costi Efficienz tecnic ed efficienz economic Rppresentzione grfic Isocosto ed isoqunto Sentiero di espnsione

Dettagli

MODELLI DI OLIGOPOLIO

MODELLI DI OLIGOPOLIO MODELLI DI OLIGOOLIO di Christin Grvgli e Alessndro Grffi MODELLO DI COURNOT. IOTESI. SUL MERCATO OERANO DUE IMRESE: l impres e l impres DUOOLIO. RODUCONO LO STESSO IDENTICO BENE BENE OMOGENEO. LE IMRESE

Dettagli

j Verso la scuola superiore Verso l algebra astratta

j Verso la scuola superiore Verso l algebra astratta j erso l suol superiore erso l lger strtt +nsiemi unzioni Operzioni inrie e strutture lgerihe Relzioni Logi Proilità +nsiemi ndividu l rispost estt. Un insieme è finito se: è formto d pohi elementi. è

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit 0) L definizione di equzione di seondo grdo d un inognit 0) L risoluzione delle equzioni di

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

COGNOME..NOME CLASSE.DATA

COGNOME..NOME CLASSE.DATA COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione

Dettagli

Anno 2. Triangoli rettangoli e teorema delle corde

Anno 2. Triangoli rettangoli e teorema delle corde Anno Tringoli rettngoli e teorem delle orde 1 Introduzione In quest lezione impreri d pplire i teoremi di Eulide e di Pitgor e sopriri quli prtiolrità nsondono i tringoli rettngoli on ngoli prtiolri. Infine,

Dettagli

Principi di economia Microeconomia. Esercitazione 3. Teoria del Consumatore

Principi di economia Microeconomia. Esercitazione 3. Teoria del Consumatore Principi di economi Microeconomi Esercitzione 3 Teori del Consumtore Novembre 1 1. Considerimo uno studente indifferente tr il consumo di penne nere (x n ) e blu (x b ), e che cquist ogni nno un pniere

Dettagli

1 Espressioni polinomiali

1 Espressioni polinomiali 1 Espressioni polinomili Un monomio è un espressione letterle in un vribile x che contiene un potenz inter (non negtiv, cioè mggiori o uguli zero) di x moltiplict per un numero rele: x n AD ESEMPIO: sono

Dettagli

01 Matematica Liceo \ Unità Didattica N 6 La retta 1

01 Matematica Liceo \ Unità Didattica N 6 La retta 1 Mtemti Lieo \ Unità Didtti N 6 L rett Unità didtti N 6 L rett rtesin ) Equzione vettorile dell rett 2) Equzioni prmetrihe dell rett 3) Equzione dell rett pssnte per due punti 4) Equzione dell rett pssnte

Dettagli

quattro trasformazioni

quattro trasformazioni ilo di rnot e un ilo termio ostituito d quttro trsformzioni p() reversibili di un gs perfetto : un espnsione isoterm d tempertur un espnsione dibti d un ompressione isoterm d tempertur un ompressione dibti

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

operazioni con vettori

operazioni con vettori omposizione e somposizione + = operzioni on vettori = + = + Se un vettore può essere dto dll omposizione di due o più vettori, questi vettori omponenti possono essere selti lungo direzioni ortogonli fr

Dettagli

Erasmo Modica. : K K K

Erasmo Modica.  : K K K L insieme dei numeri reli L INSIEME DEI NUMERI REALI Ersmo Modic helthinsurnce@tin.it www.glois.it Per introdurre l insieme dei numeri reli si hnno disposizione diversi modi. Generlmente l iennio si preferisce

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

DOMANDE E RISPOSTE DI MATEMATICA APPLICATA ALL ECONOMIA

DOMANDE E RISPOSTE DI MATEMATICA APPLICATA ALL ECONOMIA DMANDE E RISPSTE DI MATEMATICA APPLICATA ALL ECNMIA Ques.36 - Cit il nome di qulche vribile incontrt in economi. Cos si uò dire circ il loro segno? Ris. 36 Sono vribili economiche: l quntità rodott e oert,

Dettagli

ipotenusa cateto adiacente ad α cateto opposto ad α ipotenusa cateto adiacente ad α ipotenusa cateto adiacente ad α

ipotenusa cateto adiacente ad α cateto opposto ad α ipotenusa cateto adiacente ad α ipotenusa cateto adiacente ad α Trigonometri I In quest prim prte dell trigonometri denimo le funzioni trigonometriche seno, coseno e tngente e le loro funzioni inverse. Vedremo nche come utilizzrle nell risoluzione dei tringoli. Comincimo

Dettagli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli Ellisse ed iperole Ellisse Definizione: si definise ellisse il luogo geometrio dei punti del pino per i quli è ostnte l somm delle distnze d due punti fissi F e F detti fuohi. L equzione noni dell ellisse

Dettagli

Argomento 10 Integrali impropri

Argomento 10 Integrali impropri Premess Argomento Integrli impropri Nell Arg. 9 è stt introdott l nozione di integrle definito f() d per funzioni ontinue f : [, b] R. Un derog ll ontinuità di f è nhe stt introdott, m solo per onsiderre

Dettagli

Programma delle Lezioni 5 Marzo - 13 Marzo 2019

Programma delle Lezioni 5 Marzo - 13 Marzo 2019 Università degli Studi di Bologn orso di Lure in Scienze Politiche, Socili e Internzionli Microeconomi (A-E) Mtteo Alvisi Prte 2() LA SELTA OTTIMALE EL ONSUMATORE 1 Progrmm delle Lezioni 5 Mrzo - 13 Mrzo

Dettagli

Cinematica rotazionale. 28 febbraio 2009 PIACENTINO - PREITE (Fisica per Scienze Motorie)

Cinematica rotazionale. 28 febbraio 2009 PIACENTINO - PREITE (Fisica per Scienze Motorie) Cinemti rotzionle 8 febbrio 009 PIACENTINO - PEITE (Fisi per Sienze Motorie) 1 Moto Cirolre Uniforme Un oggetto he si muove su un ironferenz on un veloità ostntev, ompie unmotoirolreuniforme. Il modulo

Dettagli

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi.

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi. Corso di Anlisi: Algebr di Bse ^ Lezione Rdicli. Proprietà dei rdicli. Equzioni irrzionli. Disequzioni irrzionli. Allegto Esercizi. RADICALI : Considerto un numero rele ed un numero intero positivo n,

Dettagli

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi.

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. prof.ss Cterin Vespi 1 Appunti di geometri nliti L IPERBOLE L iperole è il luogo geometrio dei punti del pino per i quli è ostnte l differenz delle distnze d due punti fissi detti fuohi. Sino F1 e F i

Dettagli

1. Integrali impropri (o generalizzati)

1. Integrali impropri (o generalizzati) Corso di Lure in Ingegneri delle Teleomunizioni - A.A.- Tri del orso di Anlisi Mtemti L-B. Integrli impropri (o generlizzti) Riferimenti. Brozzi: PCAM, pr..8; Minnj: Mtemti Due, pr.. http://eulero.ing.unibo.it/~brozzi/scam/scam-tr.pdf.

Dettagli

Unità logico-aritmetica (ALU) Architetture dei Calcolatori (Lettere. Blocchi di base per costruire l ALUl. Passi per costruire l ALUl

Unità logico-aritmetica (ALU) Architetture dei Calcolatori (Lettere. Blocchi di base per costruire l ALUl. Passi per costruire l ALUl Unità logio-ritmeti (ALU) Arhitetture dei Cloltori (Lettere A-I) Unit Logio-Aritmeti (ALU) Prof. Frneso Lo Presti E l prte del proessore he svolge le operzioni ritmetio- logihe Rete omintori Operzioni

Dettagli

Relazioni e funzioni. Relazioni

Relazioni e funzioni. Relazioni Relzioni e unzioni Relzioni Deinizione: dti due insiemi A e B, si deinise un relzione R tr A e B un orrispondenz stilit d un proposizione tr un elemento A e B, in tl so si die he è in relzione on e si

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

n! A = lim ; 2 2n (n!) 2 (2n)! n = a2 n a 2n a 2 n a 2n 2 2 = A, n n n+ 1 2

n! A = lim ; 2 2n (n!) 2 (2n)! n = a2 n a 2n a 2 n a 2n 2 2 = A, n n n+ 1 2 Il 3 o psso è provto. 4 o psso Conludimo l dimostrzione: Dl o psso bbimo n! ( e n A = lim ; n n n) d ltronde risult, ome è file verifire, e pertnto di pssi 3 e segue 2 2n (n!) 2 (2n)! n = 2 n 2n 2, 2 π

Dettagli

a è detta PARTE LETTERALE

a è detta PARTE LETTERALE I MONOMI Si die MONOMIO un espressione letterle in ui le unihe operzioni presenti sino il prodotto e l divisione. Esempio è detto COEFFICIENTE del monomio e è dett PARTE LETTERALE Un monomio si die ridotto

Dettagli

Unità logico-aritmetica (ALU) Unità logico-aritmetica. Passi per costruire l ALU. Blocchi di base per costruire l ALU

Unità logico-aritmetica (ALU) Unità logico-aritmetica. Passi per costruire l ALU. Blocchi di base per costruire l ALU Unità logio-ritmeti (ALU) Unità logio-ritmeti Arhitetture dei Cloltori (lettere A-I) E l prte del proessore he svolge le operzioni ritmetio-logihe Potenz di lolo del proessore Insieme di iruiti omintori

Dettagli

Appunti di calcolo integrale

Appunti di calcolo integrale prte II Integrle definito Liceo Scientifico A. Volt - Milno 23 mrzo 2017 Integrle definito Si y = f (x) un funzione continu in I = [, b]. Si chim trpezoide l figur curviline pin delimitt: dl grfico dell

Dettagli

EQUAZIONE ALGEBRICA DI SECONDO GRADO o QUADRATICA in una incognita

EQUAZIONE ALGEBRICA DI SECONDO GRADO o QUADRATICA in una incognita EQUAZONE ALGEBRCA D SECONDO GRADO o QUADRATCA in un inognit 1 form omplet oeffiienti b 4 (disriminnte) formule risolutive b se > due rdii reli e distinte (se e hnno segni disordi è positivo) b b (form

Dettagli

Esercizi. Prima parte Soluzioni e risoluzioni

Esercizi. Prima parte Soluzioni e risoluzioni Eserizi. Prim rte Soluzioni e risoluzioni Soluzioni. ) ;. ) ; 3. 4) ; 4. ) ;. ) ; 6. ) ; 7. 3) ; 8. 4) Risoluzioni. Avete visto uli sono le risoste estte. Vi onviene, rim i veere ome si rriv ll soluzione,

Dettagli

Barriere all entrata e modello del Prezzo Limite Economia industriale Università Bicocca

Barriere all entrata e modello del Prezzo Limite Economia industriale Università Bicocca Brriere ll entrt e modello del Prezzo imite onomi industrile Università Bio Christin Grvgli - Giugno 006 Brriere ll entrt definizioni Condizioni he permettono lle imprese opernti in un industri di elevre

Dettagli

VOLUMI, MASSE, DENSITÀ

VOLUMI, MASSE, DENSITÀ VOLUMI, MASSE, DENSITÀ In clsse è già stt ftt un'esperienz di misur dell densità prtire d misure di mss e di volume. In quel cso è stt misurt l mss in mnier dirett con un bilnci, e il volume in mnier indirett.

Dettagli

Formule di Gauss Green

Formule di Gauss Green Formule di Guss Green In queste lezioni voglimo studire il legme esistente tr integrli in domini bidimensionli ed integrli urvilinei sull frontier di questi. In seguito i ouperemo del problem nlogo nello

Dettagli

Parabola Materia: Matematica Autore: Mario De Leo

Parabola Materia: Matematica Autore: Mario De Leo Prol Definizioni Prol on sse prllelo ll sse Prol on sse prllelo ll sse Prole prtiolri Rppresentzione grfi Esepi di eserizi Rett tngente d un prol Eserizi Mteri: Mteti Autore: Mrio De Leo Definizioni Luogo

Dettagli

INSIEMI, RETTA REALE E PIANO CARTESIANO

INSIEMI, RETTA REALE E PIANO CARTESIANO INSIEMI, ETTA EALE E PIANO CATESIANO ICHIAMI DI TEOIA SUGLI INSIEMI Un insieme E è definito ssegnndo i suoi elementi, tutti distinti tr loro: se x è un elemento di E scrivimo x E, mentre, se non lo è,

Dettagli

Verifica di matematica

Verifica di matematica Nome Cognome. Clsse D 7 Mrzo Verifi di mtemti ) Dt l equzione: (punti ) k ) Srivi per quli vlori di k rppresent un ellisse, preisndo per quli vlori è un ironferenz b) Srivi per quli vlori di k rppresent

Dettagli

CALCOLARE L AREA DI UNA REGIONE PIANA

CALCOLARE L AREA DI UNA REGIONE PIANA INTEGRALI Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione CALCOLARE

Dettagli

PRODOTTI NOTEVOLI. Esempi

PRODOTTI NOTEVOLI. Esempi PRODOTTI NOTEVOLI In lger ci sono delle regole per eseguire in modo più reve e più veloce l moltipliczione tr prticolri polinomi. Queste regole (o meglio formule si chimno prodotti notevoli. Anlizzimo

Dettagli

Sistemi a Radiofrequenza II. Guide Monomodali

Sistemi a Radiofrequenza II. Guide Monomodali Eserizio. Ordinre le frequenze di tglio dei modi di un guid rettngolre on b, qundo: b / < b < b / Soluzione: L ostnte riti è ugule per modi TE e TM: K Frequenz Criti: f K V f m V n f π b Tglio dei modi:

Dettagli

È bene attribuire lo stesso verso (orario o antiorario) a tutte le correnti fittizie. E 1 = 6V ; E 4 = 4V ; I o = 2mA. R 1 = R 5 = 2kΩ ; R 4 = 1kΩ

È bene attribuire lo stesso verso (orario o antiorario) a tutte le correnti fittizie. E 1 = 6V ; E 4 = 4V ; I o = 2mA. R 1 = R 5 = 2kΩ ; R 4 = 1kΩ MTODO DLL CONT CCLCH O D MAXWLL TNSON TA DU PUNT D UNA T. LGG D OHM GNALZZATA MTODO DL POTNZAL A NOD TASFOMAZON STLLA-TANGOLO TANGOLO-STLLA prinipi di Kirhhoff onsentono di risolvere un qulunque rete linere,

Dettagli

CALCOLO NUMERICO. Francesca Mazzia. Integrazione. Dipartimento Interuniversitario di Matematica. Università di Bari

CALCOLO NUMERICO. Francesca Mazzia. Integrazione. Dipartimento Interuniversitario di Matematica. Università di Bari CALCOLO NUMERICO Frncesc Mzzi Diprtimento Interuniversitrio di Mtemtic Università di Bri Integrzione 1 Integrzione Problem: pprossimre integrli definiti del tipo: f(x)dx, Sceglimo n + 1 punti nell intervllo

Dettagli

ECONOMIA URBANA. Valeria Costantini Facoltà di Architettura, Università Roma Tre. Contatti:

ECONOMIA URBANA. Valeria Costantini Facoltà di Architettura, Università Roma Tre. Contatti: ECONOMIA URBANA Valeria Costantini Faoltà di Arhitettura, Università Roma Tre Contatti: ostanti@uniroma3.it LA MICROECONOMIA LO STUDIO DEL COMPORTAMENTO DEI SINGOLI AGENTI IN UN SISTEMA ECONOMICO Eonomia

Dettagli

Le Matrici. 001 ( matrice unità)

Le Matrici. 001 ( matrice unità) Le Mtrici Un mtrice è un tbell di numeri o più in generle di elementi disposti quindi secondo righe e colonne. Le mtrici si indicno con le lettere miuscole dell lfbeto, gli elementi con quelle minuscole

Dettagli

Matematica II. Un sistema lineare è un sistema di m equazioni lineari (cioè di primo grado) in n incognite x 1,, x n :

Matematica II. Un sistema lineare è un sistema di m equazioni lineari (cioè di primo grado) in n incognite x 1,, x n : Mtemtic II. Generlità sui sistemi lineri Un sistem linere è un sistem di m equzioni lineri (cioè di primo grdo) in n incognite,, n : n n b b m mn n m (*) Un soluzione del sistem linere è un n-upl di numeri

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anliti Domnde, Risposte & Eserizi L ellisse. Dre l definizione di ellisse ome luogo di punti. L ellisse è un luogo di punti, è ioè un insieme di punti del pino le ui distnze d due punti fissi

Dettagli

ESERCIZIO DI ASD DEL 27 APRILE 2009

ESERCIZIO DI ASD DEL 27 APRILE 2009 ESERCIZIO DI ASD DEL 27 APRILE 2009 Dimetro Algoritmi. Ricordimo che un grfo non orientto, ciclico e connesso è un lero. Un lero può essere pensto come lero rdicto un volt che si si fissto un nodo come

Dettagli

Le equazioni di secondo grado

Le equazioni di secondo grado Le equzioni di seondo grdo Un equzione è di seondo grdo se, dopo ver pplito i prinipi di equivlenz, si può srivere nell form on 0,, R Not: è nhe detto termine noto. Esempio Sviluppimo l seguente equzione:

Dettagli

Verifica di Fisica 04/12/2014 Argomenti trattati durante il corso:

Verifica di Fisica 04/12/2014 Argomenti trattati durante il corso: Liceo Scientifico Augusto Righi, Cesen Corso di Fisic Generle, AS 2014/15, Clsse 1C Verific di Fisic 04/12/2014 Argomenti trttti durnte il corso: Grndezze fisiche: fondmentli e derivte Notzione scientific

Dettagli

TRASFORMAZIONI GEOMETRICHE

TRASFORMAZIONI GEOMETRICHE Affinità rte rim Pgin di 7 esy mtemtic di Adolfo Scimone TRASFORMAZIONI GEOMETRICHE Generlità sulle ffinità Chimsi ffinità o trsformzione linere un corrisondenz biunivoc tr due ini o tr unti dello stesso

Dettagli

EQUAZIONI DI SECONDO GRADO

EQUAZIONI DI SECONDO GRADO Autore: Enrio Mnfui - 30/04/0 EQUAZIONI DI SECONDO GRADO Le equzioni di seondo grdo in un inognit sono uguglinze di due polinomi di ui lmeno uno è di seondo grdo e l ltro è di grdo minore o ugule due.

Dettagli

Lezione 14 Il meccanismo della domanda e dell offerta. Breve e lungo periodo

Lezione 14 Il meccanismo della domanda e dell offerta. Breve e lungo periodo Corso di Economia Politica rof. S. Paa Lezione 14 Il meccanismo della domanda e dell offerta. Breve e lungo eriodo Facoltà di Economia Università di Roma La Saienza L equilibrio tra domanda e offerta Sovraoniamo

Dettagli

L offerta della singola impresa: l impresa e la minimizzazione dei costi

L offerta della singola impresa: l impresa e la minimizzazione dei costi L offert dell singol impres: l impres e l minimizzzione dei costi ! Qundo l impres decide il livello di output d produrre per mssimizzre il profitto deve nche preoccuprsi che questo livello di output si

Dettagli

Verica di Matematica su Integrale Denito, Integrazione Numerica e calcolo di aree [1]

Verica di Matematica su Integrale Denito, Integrazione Numerica e calcolo di aree [1] Veric di Mtemtic su Integrle Denito, Integrzione Numeric e clcolo di ree []. Si consideri il seguente integrle denito: Determinre il vlore estto di I; I = 2 ( e x )dx. il vlore estto dell're A T del trpezoide

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI Esponenzili e logritmi ESPONENZIALI E LOGARITMI Potenze Fino d or si sono definite le potenze d esponenete intero e rzionle (si positivi che negtivi). Ripssimo le definizioni e i concetti che li rigurdno:

Dettagli

Commercio internazionale in concorrenza perfetta. Giuseppe De Arcangelis 2014 Economia Internazionale

Commercio internazionale in concorrenza perfetta. Giuseppe De Arcangelis 2014 Economia Internazionale Commercio internazionale in concorrenza perfetta Giuseppe De Arcangelis 2014 Economia Internazionale 1 Schema della lezione Ripasso di microeconomia: equilibrio economico generale (EEG) EEG per un economia

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

IL CONTRIBUTO DEI GRECI. A = b. h. Parallelogramma h. h b

IL CONTRIBUTO DEI GRECI. A = b. h. Parallelogramma h. h b Mtemtic per Scienze Nturli, Aree ed integrli 1 IL CONTRIBUTO DEI GRECI h Rettngolo: A =. h h Prllelogrmm A =. h h Tringolo A =!h 2 Poligono come somm di tringoli Cerchio O r A = ". r 2 Mtemtic per Scienze

Dettagli

Scheda per il recupero 2

Scheda per il recupero 2 Sched A Ripsso Sched per il recupero Numeri rzionli e introduzione i numeri reli Definizioni principli DOMANDE RISPOSTE ESEMPI Che cos è un frzione? Qundo un frzione si dice ridott i minimi termini? Un

Dettagli

Moto in due dimensioni

Moto in due dimensioni INGEGNERIA GESTIONALE corso di Fisic Generle Prof. E. Puddu LEZIONE DEL 24 SETTEMBRE 2008 Moto in due dimensioni Spostmento e velocità Posizione e spostmento L posizione di un punto mterile nel pino è

Dettagli

DISEQUAZIONI RAZIONALI

DISEQUAZIONI RAZIONALI DISEQUAZIONI RAZIONALI Un disequzione è un disuulinz r due espressioni letterli per l qule si rierno i vlori delle lettere he rendono l disuulinz ver. Primo prinipio di equivlenz: A B A ± M B ± M dove

Dettagli

LEZIONE 24. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 24. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 24 24.1. Prodotti sclri. Definizione 24.1.1. Si V uno spzio vettorile su R. un ppliczione Un prodotto sclre su V è tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

Algebra. c d. 1. Operazioni con le potenze. 2. Operazioni con le frazioni. 3. Identità notevoli. (somma algebrica tra frazioni)

Algebra. c d. 1. Operazioni con le potenze. 2. Operazioni con le frazioni. 3. Identità notevoli. (somma algebrica tra frazioni) ler. Oerzioi o le oteze m m m m : m / m m m, m / m. Oerzioi o le rzioi d d somm leri tr rzioi d rodotto tr rzioi d d d : rorto tr rzioi d otez di u rzioe 3. Idetità otevoli. 3 3, 3 3 3, 3 3 3 3,, 4 4 3

Dettagli

Numeri nello spazio n dimensionale

Numeri nello spazio n dimensionale Numeri nello spzio n dimensionle Niol D Alfonso Riertore indipendente niol.dlfonso@hotmil.om Sommrio Questo pper introdue i numeri nello spzio n dimensionle. Vle dire, se nell prim dimensione bbimo i numeri

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

8. Prodotto scalare, Spazi Euclidei.

8. Prodotto scalare, Spazi Euclidei. 8. Prodotto sclre, Spzi Euclidei. Ricordimo l definizione di prodotto sclre di due vettori del pino VO 2 (vle in modo del tutto nlogo nche in VO 3 ). Definizione: Sino v, w VO 2 e si θ l ngolo convesso

Dettagli

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi SUGLI INSIEMI 1.Insiemi e operzioni su di essi Il concetto di insieme è primitivo ed è sinonimo di clsse, totlità. Si A un insieme di elementi qulunque. Per indicre che è un elemento di A scriveremo A.

Dettagli

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013 Appunti di Algebr Linere Mppe Lineri 0 mggio 203 Indie Ripsso di Teori 2. Cos è un mpp linere.................................. 2.2 Aluni ftti importnti................................... 3 2 Eserizi 4

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi :

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi : Are di un superficie pin o go Are di un superficie pin L're dell superficie del trpezoide si B ottiene pplicndo l seguente formul: f d [] A T e risult 0 [, ] è f f d 0 e quindi : [] f d f d f d f d c Nel

Dettagli

1 Integrali Doppi e Cambiamento nell Ordine di Integrazione

1 Integrali Doppi e Cambiamento nell Ordine di Integrazione 1 Integrli Doppi e Cmbimento nell Ordine di Integrzione Introduimo il onetto di Integrle Doppio in modo ssolutmente non rigoroso. Considerimo il seguente gr o y d b x Supponimo di dividere il rettngolo

Dettagli

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto.

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto. Trigonometri prte esy mtemti Elin pgin TRIANGOLO RETTANGOLO Considerimo i tringoli rettngoli OPQ e OP ' Q A γ C Essi sono simili per ui Q P : QP OP : OP Essendo Q ' P ' QP sin OP OP ottenimo : sen : e

Dettagli

Es1 Es2 Es3 Es4 Es5 tot

Es1 Es2 Es3 Es4 Es5 tot Ottore lsse E Verifi sommtiv Cognome Nome rgomenti: onihe, funzione esponenzile e grfii derivti Tempo disposizione: ore Voto Es Es Es Es Es tot.... Considert l ellisse vente ome sse fole l sse, eentriità

Dettagli

Volume di un solido di rotazione

Volume di un solido di rotazione Volume di un solido di rotione Si un rco di curv vente equione f. Se f() è un funione continu e non negtiv nell'intervllo limitto e chiuso,, si dimostr che il volume del solido generto dl trpeoide CD in

Dettagli

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici Equzioni Prerequisiti Scomposizioni polinomili Clcolo del M.C.D. e del m.c.m. tr polinomi P(X) = 0, con P(X) polinomio di grdo qulsisi Definizioni e concetti generli Incognit: Letter (di solito X) ll qule

Dettagli

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano Geometri nliti +l pino rtesino Le funzioni rett, prol, iperole Le trsformzioni sul pino rtesino SEZ. P +l pino rtesino Osserv le oorinte ei seguenti punti: (, 0), (, ), C(, +), D + +, E(+, 9)., Che os

Dettagli