Cognome. Nome. matricola. Matematica Finanziaria a.a Prof.ssa Ragni Ferrara 08 giugno 2017

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Cognome. Nome. matricola. Matematica Finanziaria a.a Prof.ssa Ragni Ferrara 08 giugno 2017"

Transcript

1 Matematca Fnanzara a.a Prof.ssa Ragn Ferrara 08 gugno 207 Cognome Nome matrcola Frma e posta elettronca (solo per ch non s è regstrato sul sto) NOTA BENE: s accetta una sola correzone nel gruppo d quest Un captale C vene mpegato a regme msto a tasso annuo =,2% per un certo perodo fno a crescere del 5%. Per quanto tempo é stato mpegato tale captale? (a) 3 ann e un mese (b) 4 ann e un mese (c) 2 ann e 8 mes (d) 4 ann e 3 mes 2. Il valore attuale d un credto esgble tra due ann é determnable a regme composto a tasso o nel regme dello sconto commercale a tasso d sconto d = 0,986%. Per quale tasso le due operazon sono equvalent? (a) =% (b) =,% (c) =0,9% (d) =0,8% 3. Un captale C puó essere nvestto per due ann a regme composto a tasso o a regme semplce con tasso = +0, Quanto deve essere affnché le due operazon sano equvalent? (a) =3,5% (b) =3,% (c) =3,4% (d) =3,2% 4. Volete costture un captale d 0000 tra 6 mes, a regme composto e tasso annuo =4,244%, con 6 versament postcpat mensl. Se la qunta rata é R e tutte le altre sono R/2, determnare R. (a) 2856,34 (b) 2844,56 (c) 2834,56 (d) 2845,36 5. Un prestto vene rmborsato n 0 ann a rate annue par a R = 5000 ne prm 5 ann e R 2 = 5200 ne rmanent 5 ann al tasso costante = 2, 4%. In un pano d ammortamento fnanzaramente equvalente a questo a rata costante R, quale sarebbe stata R? (a) R=5084,07 (b) R=54,07 (c) R=5094,07 (d) R=5074,07 6. S acqusta un BOT con vta resdua d 9 mes a tasso annuo d mercato par a r = 4%. Dopo 3 mes lo vendete ad un acqurente che lo porta a scadenza. In potes d assenza d tassazon e nvaranza del tasso d mercato, determnare l rendmento semplce annuo della vostra compravendta. (a) 3,92% (b) 3,98% (c) 4,2% (d) 4,52% 7. Un ttolo obblgazonaro pagato ogg 2000 garantsce 5480 tra un anno e 7280 tra 2 ann. Trovare la duraton. Rsposta: duraton =...

2 8. Un obblgazone a cedola annuale e durata d 3 ann, d prezzo 80000, ha dato una prma cedola d 0000 e zero nella seconda. Chamate R l ultma cedola ancora da ncassare. a) Determnare tra qual valor potrá oscllare R affnché l rendmento sa compreso tra l 3% e l 5%. b) Stablre l VAN d tale ttolo a costo opportuntá par a =3% nel peggore de cas vst al punto a). c) Determnare gl outstandng captals d tale nvestmento nel peggore de cas del punto a). d) Stmate l rendmento del ttolo con un approssmazone par alla prma cfra decmale (tpo: tra l 2, % e l 2,2%) se la terza cedola ammonterá a Svolgmento Teora Trovare a quale tasso annuo composto x sa ndfferente scontare un certo credto C da ncassare tra n ann rspetto al regme a sconto commercale ad un fssato tasso annuo d sconto d.

3 Soluzone prmo questo S ha che M = C(+) n (+α), ove n é l numero ntero (ncognto) d ann d durata dell mpego, mentre α é l eventuale frazone (ncognta) dell anno successvo, con =0,02. Se ponamo M =,05C, la precedente equazone dvene,05=(+) n (+α). Se ora provamo a nserre esponent n al termne(+) n, va va a salre con n=,2,3,4,5, s vede che,05>(+) 4, mentre,05<(+) 5, dunque n=4, po s trova algebrcamente che (,05 ) α= (+) 4. Se nserte dat, s trova che α = 0,089, che equvale a poco pú d un mese, percó l perodo occorrente, con leggera approssmazone per dfetto, é d 4 ann e un mese. Soluzone secondo questo L equazone da mpostare per avere l uguaglanza de due valor attual d un certo credto (l cu dato é nnfluente) esgble all epoca t = 2 ne due regm ndcat é (+) t = dt da cu, con qualche semplce passaggo algebrco, s ha che = 2d = %. Soluzone terzo questo Il montante creato dal captale C tra due ann, se calcolato a tasso d nteresse nel regme composto, é dato da M = C(+) 2, mentre nel regme semplce, a tasso = +0,00052, é dato da M 2 = C(+2(+0,00052)). Dall uguaglanza M = M 2, svolgendo l quadrato a prmo membro e operando qualche semplfcazone, s trova che da cu segue che =3,2%. 2 = 0,00024, Soluzone quarto questo S deve calcolare l montante d una rendta cu versament sono par a R/2 alle epoche t =,2,3,4,6 e R all epoca t = 5. S not come tale operazone s possa confgurare come l unone d una rendta standard, con rata costante par a R/2, perodctá mensle e durata se mes, e l versamento nel solo qunto mese d una rata par a R/2. Pertanto, l montante d tale operazone é dato dalla somma del montante d una classca rendta standard e dalla captalzzazone per un solo mese della rata R/2, ossa M = R (+ m ) 6 + R 2 m 2 (+ m), ove M = 0000 e m é la conversone mensle del tasso annuo, secondo la nota formula m = 2 +. Isolando R e adoperando la precedente formula d conversone, dopo qualche passaggo algebrco, s trova che R=2M ( ) = 2834,56. + (+) /2 +(+)/2

4 Soluzone qunto questo Tale pano puó essere vsto come l unone d due mn -pan a rata costante d cnque ann l uno, l prmo a rata R e l secondo a rata R 2 : la somma de valor attual, dett A e A 2, de due mn pan deve dare l valore attuale complessvo, detto A. Fate attenzone solo al fatto che l valore attuale del secondo mnpano deve essere portato all epoca zero, perché naturalmente esso s rferrebbe all epoca t = 5. Detto questo, s ha che e Pertanto, s ha che A = R (+) 5 A 2 = R 2 (+) 5 (+) 5. A=R (+) 5 + R 2 (+) 5 (+) 5 = (+) 5 (R + R 2 (+) 5 ). Nello stesso tempo, se avess un pano standard a rata R equvalente dal punto d vsta fnanzaro a questo, avre che A=R (+) 0. Uguaglando second membr delle ultme due equazon e solando R, s ha che R= (+) 5 (+) 0 (R + R 2 (+) 5 ) = 5094,07. Soluzone sesto questo L equazone da mpostare per l acqusto, senza per ora potzzare alcuna compravendta, è la seguente: A 0 (+3r/4)=N, ove A 0 è l prezzo cu acqustate l ttolo ed N é l nomnale. Quando, dopo 3 mes, lo vendete, la formula per l acqurente che porterá a scadenza l ttolo é A 3 (+r/2)=n, ove A 3 è l prezzo pagato dall acqurente. La vostra compravendta, qund, nel regme semplce, ha A 0 come captale nzale e A 3 come montante fnale nell arco d 3 mes, ossa, formalzzando l tutto, A 0 (+x/4)=a 3, ove x é l rendmento ncognto. Se ora sosttute A 0 e A 3 tramte le due precedent formule e rcavate l ncognta x, troverete che x= 2r 2+r. Inserendo dat, s ha che x = 3,92%. Soluzone settmo questo Il rendmento d un ttolo obblgazonaro è l T IR del DCF. Essendo l cash-flow d tale ttolo dato da s ha che (0; 2000),(;5480),(2;7280), DCF(x)= x (+x) 2, po s pone DCF(x)=0 e s trova l unca soluzone fnanzaramente sgnfcatva x = 0,04=4%. Per la duraton D, s ha che D= t a (+x ) +t 2 a 2 (+x ) 2, 2000 ossa D=,56.

5 Soluzone ottavo questo a) Abbamo che G(x)= x + R (+x) 3, qund, detto x un qualunque TIR, essendo G(x )=0, s rcava che R=80000(+x ) (+x ) 2. Ora, ponendo nella suddetta equazone prma x = 0,03 e po x = 0,05 s ottene rspettvamente R 3 = 8608,86 e R 5 = 97347,5, qund 8608,86 R 97347,5. b) Nel peggore de cas del punto precedente, la terza cedola é R 3 = 8608,86 ed l TIR é l 3%, ossa concdente con l costo opportuntá, qund non cé bsogno d fare alcun calcolo, perché, n questo caso, per le propretá del VAN n relazone al TIR, s ha mmedatamente che l VAN é zero. c) Gl outstandng captals (standard) dell nvestmento sono: w 0 = a 0 ; w k = w k (+x ) a k, per k=,...,n dove x = 3% è l TIR e a k è l mporto del cash-flow alla scadenza t = k. fnanzara s conclude all epoca n, allora w n = 0. Nel nostro caso abbamo: d) In tal caso l dscounted cash-flow é par a w 0 = 80000; w = w 0 (+x ) a = (,03) 0000=75400 w 2 = w (+x ) a 2 = (,03) 0=80662 w 3 = w 2 (+x ) a 3 = (,03) 8608,86=0. G(x)= x (+x) 3, Rcordamo che, se l operazone e c basta trovare due valor x e x 2 la cu dfferenza (n percentuale) sa la prma cfra decmale, tal che G(x )>0 e G(x 2 ) > 0. Non é dffcle vedere che x = 3,7% e x 2 = 3,8%, con G(x ) = 22,6 e G(x 2 ) = 478,5, qund l rendmento é compreso tra l 3,7% e l 3,8%. Basta mpostare l equazone da cu Soluzone questo teorco C (+x) n = C( nd), x= n nd

Cognome. Nome. matricola. Matematica Finanziaria a.a Prof. Ragni Ferrara 05 luglio 2017

Cognome. Nome. matricola. Matematica Finanziaria a.a Prof. Ragni Ferrara 05 luglio 2017 Matematca Fnanzara aa 2016-17 Prof Ragn Ferrara 05 luglo 2017 Cognome Nome matrcola Frma e posta elettronca (solo per ch non s è regstrato sul sto) NOTA BENE: s accetta una sola correzone nel gruppo d

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2018/ Esercizi: lezione 17/10/2018

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2018/ Esercizi: lezione 17/10/2018 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2018/2019 1. Esercz: lezone 17/10/2018 Rendmento d un B.O.T. Eserczo 1. Un captale C vene chesto n prestto alla banca

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE AA 2016/2017 1 Esercz 2 Regme d sconto commercale Eserczo 1 Per quale durata una somma a scadenza S garantsce lo stesso valore

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017 Esercz 3 Pan d ammortamento Eserczo 1. Un prestto d 12000e vene rmborsato n 10 ann con rate mensl e pano all

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 16: 2 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 16: 2 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 16: 2 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? CCT/CCTEu S tratta d un ttolo a cedola varable:

Dettagli

Risoluzione quesiti I esonero 2011

Risoluzione quesiti I esonero 2011 Rsoluzone quest I esonero 011 1) Compto 1 Q3 Un azenda a a dsposzone due progett d nvestmento tra d loro alternatv. Il prmo prevede l pagamento d un mporto par a 100 all epoca 0 e fluss par a 60 all epoca

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 17: 16 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 17: 16 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 17: 16 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/22? Eserczo Un Btp trennale, d valore nomnale C

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 5: 24 febbraio 2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 5: 24 febbraio 2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 5: 24 febbrao 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/24? Eserczo Trovare quale legge d captalzzazone

Dettagli

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE MATEMATICA FINANZIARIA PROVA SCRITTA DEL LUGLIO 009 ECONOMIA AZIENDALE ESERCIZIO Un ndduo ntende acqustare un motorno che ha un prezzo d 300. Volendo accedere ad un fnanzamento, gl engono proposte le seguent

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 17: 8 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 17: 8 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 17: 8 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/20? Costture n regme semplce al tasso = 0, 025 l

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 15: 24 aprile 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 15: 24 aprile 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 15: 24 aprle 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/18? enal per antcpata estnzone e tr La somma A

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 4: 28 febbraio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 4: 28 febbraio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 4: 28 febbrao 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Usando le equazon dfferenzal a varabl separabl,

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 13: 17 aprile 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 13: 17 aprile 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 13: 17 aprle 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/16? resa vsone della prma prova parzale Entro l

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3:

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3: Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 3: 21022012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/31? Captalzzazone msta S usa l regme composto per l

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 3: 27 febbraio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 3: 27 febbraio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 3: 27 febbrao 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/26? S può dmostrare che 1. se 0 < t < 1 allora

Dettagli

PROBLEMA DI SCELTA FRA DUE REGIMI DI

PROBLEMA DI SCELTA FRA DUE REGIMI DI PROBLEMA DI SCELTA FRA DUE REGIMI DI CAPITALIZZAZIONE Prerequst: legge d captalzzazone semplce legge d captalzzazone composta logartm e loro propretà dervate d una funzone pendenza d una curva n un punto

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2012-2013 Eserctazone: 4 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/41? Aula "Ranzan B" 255 post 1 2 3 4 5 6 7 8 9

Dettagli

Le obbligazioni: misure di rendimento e rischio La curva dei rendimenti per scadenze

Le obbligazioni: misure di rendimento e rischio La curva dei rendimenti per scadenze Le obblgazon: msure d rendmento e rscho La curva de rendment per scadenze Economa del Mercato Moblare A.A. 2017-2018 La curva de rendment (yeld curve) (1) Il rendmento d un ttolo obblgazonaro dpende da

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 8: 14 marzo 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 8: 14 marzo 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 8: 14 marzo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/21? Rendte nel contnuo Se s pensa alla rendta come

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 20 marzo 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 20 marzo 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 9: 20 marzo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/31? an d ammortamento La rata α k scadente al tempo

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

1 La domanda di moneta

1 La domanda di moneta La domanda d moneta Eserczo.4 (a) Keynes elenca tre motv per detenere moneta: Scopo transattvo Scopo precauzonale Scopo speculatvo Il modello d domanda d moneta a scopo speculatvo d Keynes consdera la

Dettagli

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 17 NOVEMBRE 2009 ECONOMIA AZIENDALE

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 17 NOVEMBRE 2009 ECONOMIA AZIENDALE MATEMATICA FINANZIARIA PROVA SCRITTA DEL 7 NOVEMBRE 009 ECONOMIA AZIENDALE ESERCIZIO Un ndduo contrae un prestto d.000 da rborsare edante rate annual costant postcpate al tasso annuo del,%. Dopo l pagaento

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 20: 16 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 20: 16 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 20: 16 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Errata slde 14: 8 maggo 2012 Rendta perpetua

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 21: 25 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 21: 25 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 21: 25 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/26? CCT/CCTEu S tratta d un ttolo a cedola

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 5: 28 febbraio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 5: 28 febbraio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 5: 28 febbrao 2012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/20? Costtuzone d un captale S vuole costture

Dettagli

Sommario 2. Introduzione 3. Capitalizzazione semplice 4 Esercizi sulla capitalizzazione semplice 5 Primo livello 5 Secondo livello 5

Sommario 2. Introduzione 3. Capitalizzazione semplice 4 Esercizi sulla capitalizzazione semplice 5 Primo livello 5 Secondo livello 5 Sommaro Sommaro 2 Introduzone 3 Captalzzazone semplce 4 Esercz sulla captalzzazone semplce 5 Prmo lvello 5 Secondo lvello 5 Sconto commercale 6 Esercz sullo sconto commercale 7 Sconto razonale 7 Esercz

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Informazioni sul corso Lunedì 17/2/2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Informazioni sul corso Lunedì 17/2/2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2011-2012 Informazon sul corso Lunedì 17/2/2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/17? Codce docente 030508 Codce corso

Dettagli

MATEMATICA FINANZIARIA 1 ECONOMIA AZIENDALE. Cognome... Nome Matricola..

MATEMATICA FINANZIARIA 1 ECONOMIA AZIENDALE. Cognome... Nome Matricola.. MATEMATICA FINANZIARIA PROVA SCRITTA DEL 0 FEBBRAIO 009 ECONOMIA AZIENDALE Cognome... Nome Matrcola.. ESERCIZIO Un ndduo ha ogg a dsposzone una somma S0.000 che ha accumulato negl ultm ann tramte l ersamento

Dettagli

AMMORTAMENTO A RATE POSTICIPATE CON TASSO FISSO

AMMORTAMENTO A RATE POSTICIPATE CON TASSO FISSO Aortaento a rate postcpate con tasso fsso AMMORTAMENTO A RATE POTICIPATE CON TAO FIO + R1 K 1 R R 0 1 K -1 a l tasso d nteresse rferto alla perodctà d pagaento delle rate (es. tasso annuo nel caso d rate

Dettagli

Cognome. Nome. matricola. Matematica Finanziaria a.a Prof.ssa Ragni Traccia A Ferrara 07 settembre 2017

Cognome. Nome. matricola. Matematica Finanziaria a.a Prof.ssa Ragni Traccia A Ferrara 07 settembre 2017 Cognome Matematica Finanziaria a.a. 2016-17 Prof.ssa Ragni Traccia A Ferrara 07 settembre 2017 Nome matricola Firma e posta elettronica (solo per chi non si è registrato sul sito) NOTA BENE: si accetta

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 1: Martedì 17/2/2015

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 1: Martedì 17/2/2015 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2014-2015 Lezone 1: Martedì 17/2/2015 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/40? Codce docente 030508 Codce corso 00675 Matematca

Dettagli

Indicatori di rendimento per i titoli obbligazionari

Indicatori di rendimento per i titoli obbligazionari Indcator d rendmento per ttol obblgazonar LA VALUTAZIONE DEGLI INVESTIMENTI A TASSO FISSO Per valutare la convenenza d uno strumento fnanzaro è necessaro precsare: /4 Le specfche esgenze d un nvesttore

Dettagli

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse Lezone 1. L equlbro del mercato fnanzaro: la struttura de tass d nteresse Ttol con scadenza dversa hanno prezz (e tass d nteresse) dfferent. Due ttol d durata dversa emess dallo stesso soggetto (stesso

Dettagli

Valore attuale di una rendita. Valore attuale in Excel: funzione VA

Valore attuale di una rendita. Valore attuale in Excel: funzione VA Valore attuale d una rendta Nella scorsa lezone c samo concentrat sul problema del calcolo del alore attuale d una rendta S che è dato n generale da V ( S) { R ; t, 0,,,..., n,... } n 0 R ( t ), doe (t

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 Esercitazione: 16 marzo 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 Esercitazione: 16 marzo 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 Eserctazone: 16 marzo 2012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/8? Eserczo Un prestto d d 24 350 è rmborsable

Dettagli

1. La domanda di moneta

1. La domanda di moneta 1. La domanda d moneta Esercz svolt Eserczo 1.1 (a) S consder l modello della domanda d moneta a scopo speculatvo d Keynes. Un ndvduo può sceglere d allocare la propra rcchezza sottoscrvendo un ttolo rredmble

Dettagli

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse Lezone 10. L equlbro del mercato fnanzaro: la struttura de tass d nteresse CAPITOLO 9: ttol omogene => stessa quotazone (p) e stesso rendmento ( o r); ttol eterogene per rscho => quotazone e rendmento

Dettagli

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi Allenament d matematca: Teora de numer e algebra modulare Soluzon esercz 29 novembre 2013 1. Canguro salterno. Un canguro salterno s trova a ped d una scala nfnta che ntende salre nel seguente modo: Salta

Dettagli

Esame di Statistica tema B Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011

Esame di Statistica tema B Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011 Esame d Statstca tema B Corso d Laurea n Economa Prof.ssa Gordano Appello del 15/07/011 Cognome Nome Matr. Teora Dmostrare la propretà assocatva della meda artmetca. Eserczo 1 L accesso al credto è sempre

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

B - ESERCIZI: IP e TCP:

B - ESERCIZI: IP e TCP: Unverstà d Bergamo Dpartmento d Ingegnera dell Informazone e Metod Matematc B - ESERCIZI: IP e TCP: F. Martgnon Archtetture e Protocoll per Internet Eserczo b. S consder l collegamento n fgura A C =8 kbt/s

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 lezione 22: 30 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 lezione 22: 30 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 22: 30 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/27? Eserczo Dmostrare che l equazone della frontera

Dettagli

Cenni di matematica finanziaria Unità 61

Cenni di matematica finanziaria Unità 61 Prerequst: - Rsolvere equazon algebrche d 1 grado ed equazon esponenzal Questa untà è rvolta al 2 benno del seguente ndrzzo dell Isttuto Tecnco, settore Tecnologco: Agrara, Agroalmentare e Agrondustra.

Dettagli

Corso di Economia Pubblica Lezione 4 - Neutralità IRES

Corso di Economia Pubblica Lezione 4 - Neutralità IRES (materale gentlmente concesso dalla Prof.ssa Alessandra Casarco) Corso d Economa Pubblca Lezone 4 - Neutraltà IRES Prof. Paolo Buonanno paolo.buonanno@unbg.t Investmento: no mposte P = π( I) δi I L mpresa

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Scadenze Importi a 0 = 90 a 1 = 15 a 2 = 180

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Scadenze Importi a 0 = 90 a 1 = 15 a 2 = 180 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017 1. Esercizi 4 Valutazioni di operazioni finanziarie Esercizio 1. Un investimento è descritto dal seguente cash-flow:

Dettagli

ESERCITAZIONI di ECONOMIA POLITICA ISTITUZIONI (A-K)

ESERCITAZIONI di ECONOMIA POLITICA ISTITUZIONI (A-K) ESERCITAZIONI d ECONOIA POLITICA ISTITUZIONI (A-K). Bonacna - Unverstà degl Stud d Pava monca.bonacna@unboccon.t 1 3 a ESERCITAZIONE: ONETA: Soluzon Ogn volta che s parla d domanda d, spuòdrecheèdomandadmoneta

Dettagli

Statistica descrittiva

Statistica descrittiva Statstca descrttva. Indc d poszone. Per ndc d poszone d un nseme d dat, ordnat secondo la loro randezza, s ntendono alcun valor che cadono all nterno dell nseme. Gl ndc pù usat sono: I. eda. II. edana.

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

Rappresentazione dei numeri

Rappresentazione dei numeri Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

Esame di Statistica tema A Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011

Esame di Statistica tema A Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011 Esame d Statstca tema A Corso d Laurea n Economa Prof.ssa Gordano Appello del /07/0 Cognome Nome atr. Teora Dmostrare che la somma degl scart dalla meda artmetca è zero. Eserczo L accesso al credto è sempre

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

LEZIONE 11. Argomenti trattati

LEZIONE 11. Argomenti trattati LEZIONE LE ECONOMIE PERTE (2) Il modello IS-LM n regme d camb fss e d camb flessbl rgoment trattat S esamnano gl effett delle poltche macroeconomche n economa aperta consderando tre modell Il modello IS-LM

Dettagli

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile.

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile. Geometra 1 a.a. 2011/12 Esonero del 23/01/12 Soluzon (Compto A) (1) S consder su C 2 l prodotto Hermtano, H assocato alla matrce ( ) 2 H =. 2 (a) Dmostrare che, H è defnto postvo e determnare una base

Dettagli

Imposte sulle vendite

Imposte sulle vendite Imposte sulle vendte e IVA Imposte sulle vendte Le mposte general sulle vendte (IGV) tassano la totaltà delle vendte d ben e servz e sono mposte ad valorem. Esse s artcolano secondo due modaltà: 1) Rfermento

Dettagli

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z)

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z) Le soluzon della prova scrtta d Matematca per l corso d laurea n Farmaca (raggruppamento M-Z). Data la funzone a. trova l domno d f f ( ) ln + b. scrv, esplctamente e per esteso, qual sono gl ntervall

Dettagli

VA TIR - TA - TAEG Introduzione

VA TIR - TA - TAEG Introduzione VA TIR - TA - TAEG Introduzone La presente trattazone s pone come obettvo d analzzare due prncpal crter d scelta degl nvestment e fnanzament per valutare la convenenza tra due o pù operazon fnanzare. S

Dettagli

Architetture aritmetiche. Corso di Organizzazione dei Calcolatori Mariagiovanna Sami

Architetture aritmetiche. Corso di Organizzazione dei Calcolatori Mariagiovanna Sami Archtetture artmetche Corso d Organzzazone de Calcolator Maragovanna Sam 27-8 8 Sommator: : Full Adder s = x y c + x y c + x y c + x y c Full Adder x y c s x y c = x y + x c + + y c c + Full Adder c x

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2017/2018. Esercizi 5

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2017/2018. Esercizi 5 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2017/2018 Esercizi 5 Valutazioni di operazioni finanziarie e titoli obbligazionari Esercizio 1. Un investimento è descritto

Dettagli

SOLUZIONI I PLICO DI ESERCIZI DI RAGIONERIA

SOLUZIONI I PLICO DI ESERCIZI DI RAGIONERIA SOLUZIONI I PLICO DI ESERCIZI DI RAGIONERIA ESERCIZIO N.1 PREZZO, VALORE STRATEGICO, VALORE ECONOMICO soluzone numerca VALUTAZIONE DEL CAPITALE ECONOMICO, DEL VALORE STRATEGICO CALCOLATO DALL ACQUIRENTE

Dettagli

INTRODUZIONE AL LABORATORIO PLS: LA MATEMATICA PER LE DECISIONI FINANZIARIE

INTRODUZIONE AL LABORATORIO PLS: LA MATEMATICA PER LE DECISIONI FINANZIARIE INTRODUZIONE AL LABORATORIO PLS: LA MATEMATIA PER LE DEISIONI FINANZIARIE Lvana Pcech Dpartento d Scenze econoche, azendal, ateatche e statstche Bruno de Fnett Unverstà d Treste Nel Laboratoro sono ntrodotte

Dettagli

Mauro Vettorello. Vi veneto. come Calcolare la Rata di un Finanziamento o di un Leasing senza calcolatrice STUDIO VETTORELLO

Mauro Vettorello. Vi veneto. come Calcolare la Rata di un Finanziamento o di un Leasing senza calcolatrice STUDIO VETTORELLO Mauro Vettorello V veneto come Calcolare la Rata d un Fnanzamento o d un Leasng senza calcolatrce STUDIO VETTORELLO V veneto come Calcolare la Rata d un Fnanzamento o d un Leasng senza calcolatrce Mauro

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

MATEMATICA FINANZIARIA 1 ECONOMIA AZIENDALE

MATEMATICA FINANZIARIA 1 ECONOMIA AZIENDALE MATEMATICA FINANZIARIA PROVA SCRITTA DEL 9 GENNAIO 008 ECONOMIA AZIENDALE ESERCIZIO Una socetà uole acqustare un terreno l cu costo è par a 60000 Euro. Parte del costo ene rcaato attraerso l essone sul

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico.

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico. Il logartmo dscreto n Z p Il gruppo moltplcatvo Z p delle class resto modulo un prmo p è un gruppo cclco. Defnzone (Logartmo dscreto). Sa p un numero prmo e sa ā una radce prmtva n Z p. Sa ȳ Z p. Il logartmo

Dettagli

Matematica Generale a.a. 2016/17 Teoremi dimostrati nel corso. 1 Funzioni ad una variabile

Matematica Generale a.a. 2016/17 Teoremi dimostrati nel corso. 1 Funzioni ad una variabile Matematca Generale a.a. 2016/17 Teorem dmostrat nel corso. ATTENZIONE!!!!. Nel corso d matematca generale sono stat presentat teorem per qual è rchesta la conoscenza del solo enuncato e teorem de qual

Dettagli

ESERCIZIO N. 1. b) rendimenti reali dell azienda Gesis e del portafoglio di mercato:

ESERCIZIO N. 1. b) rendimenti reali dell azienda Gesis e del portafoglio di mercato: ESERCIZIO N. 1 Il canddato proceda a calcolare l tasso d congrua remunerazone reale dell azenda Gess al 31.12.2003 applcando l CAPM e l WACC della stessa azenda; dat d cu s dspone sono seguent: a) rendmento

Dettagli

REGRESSIONE LINEARE. È caratterizzata da semplicità: i modelli utilizzati sono basati essenzialmente su funzioni lineari

REGRESSIONE LINEARE. È caratterizzata da semplicità: i modelli utilizzati sono basati essenzialmente su funzioni lineari REGRESSIONE LINEARE Ha un obettvo mportante: nvestgare sulle relazon emprche tra varabl allo scopo d analzzare le cause che possono spegare un determnato fenomeno È caratterzzata da semplctà: modell utlzzat

Dettagli

Approfondimento Capitolo 4. Definizioni esistono due tipi di grandezze in economia

Approfondimento Capitolo 4. Definizioni esistono due tipi di grandezze in economia Poltca Economca E. Marchett 1 Approfondmento Captolo 4 efnzon esstono due tp d grandezze n economa Grandezze Flusso: una quanttà che s forma n un ntervallo d tempo (es.: reddto, rsparmo, nvestmento ) Grandezze

Dettagli

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k (1) La sere bnomale è B n (z) = k=0 Con l metodo del rapporto s ottene R = lm k Soluzon 3.1 n(n 1) (n k + 1) z n k! c k c k+1 = lm k k + 1 n k lm k c k z k. k=0 1 + 1 k 1 n k = 1 (2) La multfunzone f(z)

Dettagli

Sommatori: Full Adder. Adder. Architetture aritmetiche. Ripple Carry. Sommatori: Ripple Carry [2] Ripple Carry. Ripple Carry

Sommatori: Full Adder. Adder. Architetture aritmetiche. Ripple Carry. Sommatori: Ripple Carry [2] Ripple Carry. Ripple Carry CEFRIEL Consorzo per la Formazone e la Rcerca n Ingegnera dell Informazone Poltecnco d Mlano s Sommator: x y c x y c x y c x y c x y c Archtetture artmetche s x y Sommator:, Rpple Carry Sommator: Carry

Dettagli

SOLUZIONI II PLICO DI ESERCIZI DI RAGIONERIA

SOLUZIONI II PLICO DI ESERCIZI DI RAGIONERIA anno accademco 2002-2003 Pro.ssa Pucc Sabrna SOLUZIONI II PLICO DI ESERCIZI DI RAGIONERIA ESERCIZIO N. Calcolo del Beta medante rendment dell mpresa e del mercato e calcolo d Determnazone d Rendmento nomnale

Dettagli

Propagazione degli errori

Propagazione degli errori Propagaone degl error Voglamo rcavare le ncertee nelle msure ndrette. Abbamo gà vsto leone un prma stma degl error sulle grandee dervate valda n generale. Consderamo ora l caso specco d grandee aette da

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

Propagazione delle incertezze

Propagazione delle incertezze Propagazone delle ncertezze In questa Sezone vene trattato l problema della propagazone delle ncertezze quando s msurano pù grandezze dfferent,,,z soggette a error d tpo casuale e po s utlzzano tal grandezze

Dettagli

COSTI FISSI E VARIABILI E I problemi di MAKE or BUY e IL BEP (IL PUNTO DI PAREGGIO)

COSTI FISSI E VARIABILI E I problemi di MAKE or BUY e IL BEP (IL PUNTO DI PAREGGIO) COSTI FISSI E VARIABILI E I problem d MAKE or BUY e IL BEP (IL PUNTO DI PAREGGIO) CF CV Un concetto d fondo Cost fss e cost varabl CF CV Orzzonte temporale e funzone d produzone Funzone d produzone nel

Dettagli

V n. =, e se esiste, il lim An

V n. =, e se esiste, il lim An Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT La Fg. rappresenta un parttore resstvo, formato da squadre d restor tutt ugual ad, conness n cascata, e l cu numero n s fa tendere ad nfnto.

Dettagli

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 15 SETTEMBRE 2009 C.d.L. ECONOMIA AZIENDALE

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 15 SETTEMBRE 2009 C.d.L. ECONOMIA AZIENDALE MATEMATICA FINANZIARIA PROVA SCRITTA DEL 5 SETTEMBRE 009 C.d.L. ECONOMIA AZIENDALE ESERCIZIO a) Il Sg. Ross ogg (t0) uole acqustare u furgoe del alore d 7000 per la sua atttà commercale. A tal fe egl ersa

Dettagli

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3)

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3) Esempo d soluzone d una delle verson del compto d Geometra analtca e algebra lneare del luglo 3 Stablre se la retta r, d equazon parametrche x =, y = + t, z = t (nel parametro reale t), è + y + z = sghemba

Dettagli

INDICE. Scaricabile su: Derivate TEORIA. Derivata in un punto. Significato geometrico della derivata

INDICE. Scaricabile su:   Derivate TEORIA. Derivata in un punto. Significato geometrico della derivata P r o f Gu d of r a n c n Anteprma Anteprma Anteprma www l e z o n j md o c o m Scarcable su: ttp://lezonjmdocom/ INDICE TEORIA Dervata n un punto Sgnfcato geometrco della dervata Funzone dervata e dervate

Dettagli

Esercizi di econometria: serie 1

Esercizi di econometria: serie 1 Esercz d econometra: sere Eserczo E data la popolazone dell Abruzzo classcata n se categore d reddto ed n tre class d età come segue: Reddto: () L... 4.. () L. 4.. 8.. () L. 8.... (4) L..... () L.....

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2018/ Esercizi: lezione 13/11/2018

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2018/ Esercizi: lezione 13/11/2018 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2018/2019 1. Esercizi: lezione 13/11/2018 Valutazioni di operazioni finanziarie Esercizio 1. L operazione finanziaria

Dettagli

Metodi di analisi R 1 =15Ω R 2 =40Ω R 3 =16Ω

Metodi di analisi R 1 =15Ω R 2 =40Ω R 3 =16Ω Metod d anals Eserczo Anals alle magle n presenza d sol generator ndpendent d tensone R s J R Determnare le tenson sulle resstenze sapendo che: s s 0 R R 5.Ω s J R J R R 5Ω R 0Ω R 6Ω R 5 Dsegnamo l grafo,

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

y. E' semplicemente la media calcolata mettendo

y. E' semplicemente la media calcolata mettendo COME FUNZIONA L'ANOVA A UN FATTORE: SI CONFRONTANO TANTE MEDIE SCOMPONENDO LA VARIABILITA' TOTALE Per testare l'potes nulla che la meda d una varable n k popolazon sa la stessa, s suddvde la varabltà totale

Dettagli

Principio di massima verosimiglianza

Principio di massima verosimiglianza Prncpo d massma verosmglana Sa data una grandea d cu s conosce la unone denstà d probabltà ; che dpende da un nseme de parametr ndcat con d valore sconoscuto. S vuole determnare la mglor stma de parametr.

Dettagli

3 angolo diedro 58.5" 12"

3 angolo diedro 58.5 12 Scopo del progetto Data la semnala d un velvolo monoplano, schematzzata n fgura, determnare carch ne punt,,,,, della struttura. Per l aereo da tursmo per cu s è svolta l anals de carch sulle aste d controvento

Dettagli

Compito di SISTEMI E MODELLI 25 Gennaio 2016

Compito di SISTEMI E MODELLI 25 Gennaio 2016 Compto d SISTEMI E MODELLI 5 Gennao 06 È vetato l uso d lbr o quadern. Le rsposte vanno gustfcate. Saranno rlevant per la valutazone anche l ordne e la charezza espostva. Consegnare SOLO la bella copa,

Dettagli

IL MODELLO DI MACK. Materiale didattico a cura di Domenico Giorgio Attuario Danni di Gruppo Società Cattolica di Assicurazioni

IL MODELLO DI MACK. Materiale didattico a cura di Domenico Giorgio Attuario Danni di Gruppo Società Cattolica di Assicurazioni IL MODELLO DI MACK Materale ddattco a cura d Domenco Gorgo Attuaro Dann d Gruppo Socetà Cattolca d Asscurazon CHAIN-LADDE CLASSICO Metodo pù utlzzato per la stma della rserva snstr. Semplctà. Dstrbuton-ree

Dettagli

Φ (C, t 1, t 1 ) = C Φ (C, t 1, t 2 ) < Φ (C, t 1, t 3 ) Φ (C, t 1, t 2 ) < Φ (C 2, t 1, t 2 )

Φ (C, t 1, t 1 ) = C Φ (C, t 1, t 2 ) < Φ (C, t 1, t 3 ) Φ (C, t 1, t 2 ) < Φ (C 2, t 1, t 2 ) Legg d captalzzazone C, t 1, t 2 M = Φ (C, t 1, t 2 ) I=M-C M=C+I Propretà mnme Φ (0, t 1, t 2 ) = 0 Φ (C, t 1, t 1 ) = C Φ (C, t 1, t 2 ) < Φ (C, t 1, t 3 ) Φ (C, t 1, t 2 ) < Φ (C 2, t 1, t 2 ) mpegando

Dettagli

Propagazione degli errori

Propagazione degli errori Propagazone degl error Msure drette: la grandezza sca vene msurata drettamente (ad es. Spessore d una lastrna). Per questo tpo d msure, la teora dell errore svluppata nelle lezone precedent é sucente per

Dettagli

= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X)

= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X) ESERCIZIO 3.1 Una dtta vende computer utlzzando on-lne, utlzzando sa processor Celeron che processor Intel. Dat storc mostrano che l 80% de clent preferscono acqustare un PC con processore Intel. a) Sa

Dettagli

Esercitazione 8 del corso di Statistica (parte 1)

Esercitazione 8 del corso di Statistica (parte 1) Eserctazone 8 del corso d Statstca (parte ) Dott.ssa Paola Costantn Eserczo Marzo 0 Un urna rossa contene 3 pallne banche, nere e galla. S consder l estrazone d due pallne. S calcol la probabltà d estrarre:.

Dettagli

Verifica reti con più serbatoi (II)

Verifica reti con più serbatoi (II) Verfca ret con pù serbato (I) Condzon al contorno per gl N nod della rete e corrspondent ncognte: Condzone mposta Incognta A) carco pezometrco portata concentrata B) portata concentrata carco pezometrco

Dettagli