STUDIO DELLA STABILITA' DEI SISTEMI IN RETROAZIONE CON IL METODO DEL LUOGO DELLE RADICI

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "STUDIO DELLA STABILITA' DEI SISTEMI IN RETROAZIONE CON IL METODO DEL LUOGO DELLE RADICI"

Transcript

1 STUDIO DELLA STABILITA' DEI SISTEMI IN RETROAZIONE CON IL METODO DEL LUOGO DELLE RADICI U sste d cotrollo s defsce retrozoe, o cte chus, se oper utlzzdo, oltre l segle d rfereto solo forzo che rgurdo l vrle cotrollt. U sste retrozoe è defto postvo, se l vrle cotrollt vee rportt ote dell fuzoe d trsfereto dell cte d plfczoe drett co l sego vrto, egtvo el cso cotrro. L'teresse su tl sste è ltto quell retrozoe egtv, quto l retrozoe postv cocde ell ggor prte de cs d u coporteto stle. Lo sche locch tpco cu s può orlete rcodurre u sste dco retrozoe egtv è presetto fgur. R(s) E(s) C(s) + - H(s) Fg. Il sgfcto de sol fgur è l seguete: R(s): segle d rfereto (SET POINT) C(s): vrle cotrollt E(s): segle d errore : fuzoe d trsfereto dell cte d plfczoe drett H(s): fuzoe d trsfereto del trsduttore d segle retrozoe H(s): gudgo d ello Per lo sche locch fgur, è possle scrvere: C(s) C(s) C(s) R(s) C(s) H(s) + C(s) H(s) R(s) [ + H(s) ] R(s) poedo C(s) R(s) + H(s) G 0 (s) + H(s)

2 l sste retrozoe d fgur può essere seplfcto secodo lo sche seguete (fgur ). R(s) G 0 (s) C(s) Fg. Affché u sste retrozoe s stle, l su fuzoe d trsfereto G 0 (s) dovrà coteere solo pol co prte rele egtv. I pol dell G 0 (s) possoo essere clcolt rsolvedo + H(s) 0 equzoe crtterstc del sste retrozoe. Il prodotto H(s) può essere espresso coe l rpporto tr due polo s per u costte K. S scrve qud: per cu l'equzoe crtterstc dvet H(s) K N(s) D(s) D (s) + K N(s) 0 Quest'ult espressoe dell'equzoe crtterstc, ostr coe pol dell fuzoe G 0 (s) dpedo dl vlore che s ssue per l costte K. Ipotzzdo d fr vrre K d zero d fto, è possle fre le seguet osservzo: per K 0 l'equzoe crtterstc del sste retrozoe s rduce D (s) 0, qud pol del sste retrozoe cocdoo co quell dell fuzoe H(s) ; per K l'equzoe crtterstc s rduce ll for N (s) 0, ovvero pol del sste retrozoe, cocdoo co gl zer dell fuzoe H(s). Il trcceto sul po gro dell'deto de pol dell fuzoe d trsfereto del sste retrozoe l vrre d K d zero d fto vee defto luogo delle rdc.

3 TRACCIAMENTO DEL LUOGO DELLE RADICI L fuzoe H(s), può essere rscrtt ell seguete for che rrrgt dvet ( + τs) ( + τs) ( + τ H(s) K ( + τ s) ( + τ s) ( + τ s) s) ττ τ G (s) H(s) K τ τ τ s + s + s + τ τ τ + + s s s + τ τ τ fcedo le seguet poszo ττ K K τ τ τ τ τ z τ z τ p τ p l fuzoe H(s) s può scrvere ell seguete for H(s) K (s z ) (s z ) (s z ) (s p ) (s p ) (s p ) S osserv che K è scurete postv, e qud vrle tr 0 ed. K è vece vrle tr 0 ed oppure tr 0 ed - secod del sego del rpporto ττ τ τ τ τ D questo oeto po srà qud ecessro, ello studo del luogo delle rdc, dstguere tr due cs, ovvero K >0 e K <0. Affché u geerco puto s del po gro pprteg l luogo delle rdc, dovrà essere soddsftt l'equzoe crtterstc + H(s) 0 H(s) 3

4 che, se lle poszo ftte, potzzdo K >0 e ll fgur 3, essedo r 0, ±, ±...ecc. ), può essere scrtt coe j(r+ ) π e (co s I A A (s p (s z ) A ) A e e jβ jα β α Re Fg.3 K A A A j( α +α +α ) e j(r+ ) π e j( β+β +β ) AA A e l precedete equzoe può essere scopost due uguglze AA K AA ( α + α A A + + α ) ( β + β + + β ) (r + ) π Equzoe de odul Equzoe degl rgoet I odo del tutto logo, per K <0, s ottee AA K AA ( α + α A A + + α ) ( β + β + + β ) rπ Equzoe de odul Equzoe degl rgoet I geerle qud l trcceto del luogo delle rdc dovree vvere per tettv. Nello specfco, dopo ver poszoto sul po gro pol e gl zer dell fuzoe H(s), preso u geerco puto s del po, s trcco vettor che uscoo tle puto tutte le sgolrtà (pol + zer) preset. Se, per gl gol così detert, è soddsftt l'equzoe degl 4

5 rgoet, l puto s pprtee l luogo delle rdc e, rsolvedo l'equzoe de odul, è possle deterre l corrspodete vlore d K. I reltà l trcceto del luogo delle rdc esul fortutete dll rsoluzoe dell'equzoe degl rgoet e de odul, è può essere codotto seguedo u sere d regole prtche. 5

6 PROPRIETA' DEL LUOGO DELLE RADICI S psso desso rsseg le prcpl propretà del luogo delle rdc che possoo essere pegte per l trcceto. Il luogo delle rdc h tt r qut soo pol dell fuzoe H(s). Og ro del luogo delle rdc prte d u polo e ter uo zero dell H(s) o u puto ll'fto. Il luogo delle rdc è setrco rspetto ll'sse rele. Se K >0 u puto dell'sse rele pprtee l luogo delle rdc se s lsc ll su destr u uero totle d sgolrtà (pol + zer) dspr. Se vece K <0 perché u puto dell'sse rele pprteg l luogo delle rdc dovrà lscrs ll su destr u uero totle d sgolrtà pr. U rdce ultpl d orde h geer u puto del luogo delle rdc coue d h r. Ad og ro etrte corrspoderà u ro uscete. Il trcceto del luogo delle rdc questo cso può essere ftto seguedo seguet ccorget: ) r etrt ed uscet soo ltert ) le tget d r dvdoo lo spzo settor ugul, pr d h π u esepo d quto detto è rportto fgur 4. Fg.4 Rdce dopp Rdce trpl Se l uero () de pol è ggore del uero () degl zer, llor r prtoo d u polo e tero uo zero etre ret - prtoo d u polo e tero ll'fto seguedo le drezo dvdute dgl stot del luogo delle rdc. Tutt gl stot pssero per u puto coue dell'sse rele deoto rcetro delle rdc dto dll relzoe σ p z Re(p ) Re(z ) etre le drezo degl stot sro 6

7 (r + ) π per K >0 rπ per K <0 Il luogo delle rdc prte d u polo p co u golo j γ ( r + ) π + rg(p K >0 j z rg(p p j I γ rπ + rg(p K <0 z rg(p p j I e ter uo zero z co u golo j I z j ) rg(p p j γ ( r + ) π + rg(z K >0 j I z j ) rg(p p j γ rπ + rg(z K <0 I put d drzoe σ del luogo delle rdc s detero rsolvedo l'equzoe: z σ σ p 7

8 ESERCIZI SVOLTI.Trccre l luogo delle rdc dell fuzoe: per K >0 e K <0 Soluzoe K >0 K (s) H(s) s (s + ) (s + 3) (s + 4) G I seget dell'sse rele che pprtegoo l luogo delle rdc, lscdos ll propr destr u uero dspr d sgolrtà, soo: [0,-] e [-4,-3] Il puto d'cotro degl stot rsult: σ p z Gl stot foro co l'sse rele gl gol: (r + ) π (r + ) π 4 π 4 ( 7π 4 ) r0 (r-4) 3π 4 ( 5π 4 ) r (r-3) 5π 4 ( 3π 4) r (r-) 7π 4 ( π 4 ) r3 (r-) I put d drzoe soo le rdc dell'equzoe: σ z σ p s s + s + 3 s delle tre rdc che s ottegoo σ σ σ s scrt σ - quto o pprtee l luogo delle rdc. Il luogo delle rdc per K >0 è rportto fgur 5 8

9 K <0 I seget dell'sse rele che pprtegoo l luogo delle rdc, lscdos ll propr destr u uero dspr d sgolrtà, soo: [-3,-] e [-,-4] I puto d'cotro degl stot è ovvete lo stesso del cso precedete: σ Gl stot foro co l'sse rele gl gol: rπ rπ 4 0 ( π ) r0 (r-4) π ( 3π ) r (r-3) π ( 3π 4 ) r (r-) 3π ( π ) r3 (r-) I put d drzoe soo gl stess trovt el cso precedete σ σ σ solo che questo cso l'uco, de tre put, che pprtee l luogo delle rdc è σ -. Il luogo delle rdc per K <0 è rportto fgur 6 Fg.5 Fg.6 9

10 ESERCIZI PROPOSTI ) (s) H(s) K s + G ) s + (s) H(s) K s + G 3) H(s) K ( s + ) ( s + 3) 4) H(s) K ( s + + ( s + 0

11 5) H(s) K (s +.5) ( s + 0.5) ( s +.75) 6) H(s) K (s +.5) ( s ( s ) H(s) K ( s + 0.5) ( s + ) (s + ) 8) H(s) K ( s + 0.5) ( s (s +.5

12 9) H(s) K ( s + 0.5) ( s (s ) H(s) K ( s ( s (s + 3.5) ) G ( s) H ( s) K ( s + 4) ( s + ) ( s + ) ( s + 3)

Lezione 8. Risultanti e discriminanti.

Lezione 8. Risultanti e discriminanti. Lezoe 8 Prerequst: Rdc d polo Cp d spezzeto Lezoe 5 Rsultt e dscrt I quest sezoe studo crter eettv per stlre qudo due polo coecet u cpo ho rdc cou S F u cpo Proposzoe 8 I polo o ull, ] ho u rdce coue u

Dettagli

Integrazione numerica

Integrazione numerica Cludo Esttco cludo.esttco@usur.t Itegrzoe umerc Itegrzoe Numerc Itegrzoe umerc Formule d qudrtur. Grdo d esttezz. 3 Metodo de coecet determt. 4 Formule d Newto-Cotes semplc. Formule d Newto-Cotes composte.

Dettagli

Integrazione numerica

Integrazione numerica Itegrzoe uerc (/5 Prole: Clcolre l seguete tegrle Itegrzoe uerc ( d co e costt rel e ( uzoe cotu. (cotu Itegrzoe uerc (/5 Itegrzoe uerc (/5 No sepre è possle trovre or esplct l prtv. Ache el cso cu l s

Dettagli

VALORI MEDI (continua da Lezione 5)

VALORI MEDI (continua da Lezione 5) VALORI MEDI (cotu d Lezoe 5) Dott.ss Pol Vcrd 6. L ed rtetc è lere coè è vrte per trsforzo ler de dt. S u dstrbuzoe utr d ed A. Effettuo u trsforzoe lere delle osservzo coè b c d dove c e d soo due costt

Dettagli

INFORMATICA 3 LEZIONE 10 FONDAMENTI DI MATEMATICA

INFORMATICA 3 LEZIONE 10 FONDAMENTI DI MATEMATICA INFORMATICA 3 LEZIONE FONDAMENTI DI MATEMATICA Isem e relzo Iseme: collezo d membr o elemet dstt d u tpo d bse. U membro può essere u elemeto prmtvo d u tpo d bse oppure u seme. U seme o cotee elemet duplct.

Dettagli

Appunti di Programmazione Lineare. a cura del Prof. Giuseppe Bruno

Appunti di Programmazione Lineare. a cura del Prof. Giuseppe Bruno Apput d Progrzoe Lere cur del Prof. Guseppe Bruo ozz gugo 05 Itroduzoe prole d ottzzzoe. - Sste e odell Qudo s ffrot u prole, l pr ecesstà è quello d defrlo opportuete. I prtc l pr cos d effetture è deltre

Dettagli

VARIABILI ALEATORIE (v.a.) DISCRETE

VARIABILI ALEATORIE (v.a.) DISCRETE Corso d Sttstc, Lure Ecoom Azedle, Uverstà C. Ctteo, Cstellz, 7 Ottobre 008. 008 R. D Agò VARIABILI ALEATORIE: SIMBOLOGIA, DEFINIIONI, PROPRIETA VARIABILI ALEATORIE (v.. DISCRETE pgg. -3 VARIABILI ALEATORIE

Dettagli

Formule di Integrazione Numerica

Formule di Integrazione Numerica Formule d Itegrzoe Numerc Itegrzoe umerc: geerltà Prolem: vlutre l tegrle deto: I d F F utlzzo opportue tecce umerce qudo: l prmtv d o e esprmle orm cus d esempo s/, ep- ; dcoltà el clcolre ltcmete l prmtv

Dettagli

Università della Calabria

Università della Calabria Uverstà dell Clbr FACOLTA DI INGEGNERIA Corso d Lure Igeger Cvle CORSO DI IDROLOGIA N.O. Prof. Psqule Versce SCHEDA DIDATTICA N 0 ISOIETE E TOPOIETI A.A. 200- ISOIETE Il metodo delle soete, o lee d ugule

Dettagli

Sistemi lineari di m equazioni in n incognite

Sistemi lineari di m equazioni in n incognite Sste ler d equo ogte U sste lere d equo ogte è u srttur del geere seguete: ove s tede he l-pl X* * * * è u soluoe del sste se sosttuedo l posto d rspettvete * * * s ottegoo ugugle. tre è dett tre oplet

Dettagli

Variabili Aleatorie vettoriali

Variabili Aleatorie vettoriali Vrbl letore vettorl Vrbl letore vettorl Vrbl letore vettorl: Itroduzoe Vrbl letore dpedet Idc d poszoe per V vettorl rsorzo d V vettorl Idc d dspersoe: Moet Mtrce d Covrz Propzoe dell Covrz V.. VORILI

Dettagli

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE)

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) Mggi C. & Bccesci P. Soluzioe problem V Puto 1: T Clcolre l soluzioe stziori dell (1) euivle d imporre l

Dettagli

Calcolo di autovalori

Calcolo di autovalori lcolo d utolor Dt l trce deterre l uero e ettore o ullo tl che l l utolore utoettore Esepo 9 9 b 8 b 8 b geerle o è ultplo d. Se però oero c soo due dreo lugo le qul fuo coe se fosse oltplcto per uo sclre.

Dettagli

Con una rappresentazione parametrica, una curva c è data come una funzione a valori vettoriali di un singolo parametro reale:

Con una rappresentazione parametrica, una curva c è data come una funzione a valori vettoriali di un singolo parametro reale: Co u rppresetzoe prmetrc, u curv c è dt come u fuzoe vlor vettorl d u sgolo prmetro rele: c : D R E t.c. c( u o ( x ( u... x ( u I cu o è l orge del rfermeto, D geere cocde co l tervllo [,] e x soo le

Dettagli

ma non sono uguali fra loro

ma non sono uguali fra loro Defiizioe U fuzioe f defiit i D (doiio) si dice cotiu i u puto c D se esiste i tle puto (è cioè possiile clcolre f (c)); se esiste, fiito, il ite dell fuzioe per che tede c e se il vlore del ite coicide

Dettagli

MATEMATICA FINANZIARIA 3. RENDITE

MATEMATICA FINANZIARIA 3. RENDITE MATEMATICA FINANZIAIA Prof. Adre Berrd 999 3. ENDITE Coro d Mtetc Fzr 999 d Adre Berrd Sezoe 3 ENDITA Operzoe fzr copot, crtterzzt d cdeze (,,...,,...,, rcuotere quelle cdeze,,...,,...,, t e d port d pgre

Dettagli

I numeri naturali. Cosa sono i numeri naturali? Quali sono le caratteristiche di N? Le operazioni in N. addizione = 15. moltiplicazione 3 7 = 21

I numeri naturali. Cosa sono i numeri naturali? Quali sono le caratteristiche di N? Le operazioni in N. addizione = 15. moltiplicazione 3 7 = 21 I ueri turli Cos soo i ueri turli? I ueri turli soo i ueri 0 1 4 5 6 7 8 9 10 11 1 L isiee dei ueri turli si idic co N. N { 0, 1,,, 4, 5, 6, 7, 8, 9, 10, 11, 1,..} Quli soo le crtteristiche di N? L isiee

Dettagli

EQUAZIONI ESPONENZIALI -- LOGARITMI

EQUAZIONI ESPONENZIALI -- LOGARITMI Equzioi espoezili e riti pg 1 Adolfo Sioe 1998 EQUAZIONI ESPONENZIALI -- LOGARITMI Fuzioe Espoezile Dto u uero rele positivo osiderio l fuzioe f : R R he d ogi eleeto R f orrispodere l'eleeto y =. Se =

Dettagli

Diagrammi di Bode. (versione del ) Funzioni di trasferimento

Diagrammi di Bode.  (versione del ) Funzioni di trasferimento Dgr d Bode www.de.g.uo.t/er/tr/ddtt.ht veroe del 5-- Fuo d trfereto Le fuo d trfereto f.d.t de rut ler teo vrt oo fuo rol oè rort tr due olo oeffet rel dell vrle Per evtre d trttre eltete quttà gre, trodue

Dettagli

Istogrammi e confronto con la distribuzione normale

Istogrammi e confronto con la distribuzione normale Istogramm e cofroto co la dstrbuzoe ormale Suppoamo d effettuare per volte la msurazoe della stessa gradezza elle stesse codzo (es. la massa d u oggetto, la tesoe d ua pla, la lughezza d u oggetto, ecc.):

Dettagli

Sistemi lineari: generalità

Sistemi lineari: generalità Sstem ler: geerltà Prolem: rsolvere u sstem lere d grd dmeso N, I form comptt: A B M M M M A [ ] R vettore de coeffcet B [ ] R vettore de term ot [ ] R vettore delle cogte Sstem ler: soluzoe Teorem Rouché-pell):

Dettagli

Generalmente sia l ampiezza che il valore medio della sollecitazione sono variabili nel tempo.

Generalmente sia l ampiezza che il valore medio della sollecitazione sono variabili nel tempo. È molto raro che u compoete meccaco sa sollectato a fatca da u carco cclco ad ampezza costate. Geeralmete sa l ampezza che l valore medo della sollectazoe soo varabl el tempo. max a a max m m m m Tempo

Dettagli

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0)

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0) Massm e Mm Fuzo d pù varabl Massm e Mm Dezoe: Sa z = (, ) ua uzoe deta u seme E U puto (, E s dce puto d massmo (rsp mmo) relatvo per (, ) se esste δ > tale che ((, ) B((, ), δ ) E (, ) (, ) (rsp (, )

Dettagli

Propagazione di errori

Propagazione di errori Propagazoe d error Gl error e dat possoo essere amplfcat durate calcol. Rspetto alla propagazoe degl error s può dstguere: comportameto del problema - codzoameto del problema: vedere come le perturbazo

Dettagli

La velocità massima espressa in metri al secondo e l accelerazione voluta sono: 1000

La velocità massima espressa in metri al secondo e l accelerazione voluta sono: 1000 Diesioeto di ssi di otore correte cotiu Si idividuio i pretri pricipli di u cchi correte cotiu eccitzioe idipedete i rdo di uovere u tr veloce ote che sio le seueti specifiche: Tesioe di lietzioe dell

Dettagli

Analisi degli Effetti Indotti nei Ponti Bailey dal Gioco delle Connessioni

Analisi degli Effetti Indotti nei Ponti Bailey dal Gioco delle Connessioni Als degl Eett Idott e Pot Bley dl Goco delle Coesso Murzo Lez Pol Cp Preess L presete ot tecc lzz l luez del goco tr oro e pero elle coesso che relzzo l cotutà e Pot Bley. S trtt coe oto d pot etllc struttur

Dettagli

Integrazione numerica

Integrazione numerica Docee: Cludo Esco esco@usur. Iegrzoe umerc Lezoe s su ppu del pro. Mrco Gvo Iegrzoe umerc Iegrzoe umerc Formule d qudrur. Grdo d esezz. 3 Meodo de coece deerm. 4 Formule d qudrur erpolore. 5 Formule d

Dettagli

Variabili casuali ( ) 1 2 n

Variabili casuali ( ) 1 2 n Varabl casual &. Valore edo. Data ua varable casuale = ( x,x 2, K,x ) (.) cu valor assuoo le rspettve probabltà P = p,p, K,p (.2) s defsce valore edo la quattà ( ) 2 = [ ] T M = M = P = xp (.3) Sgfcato:

Dettagli

Laboratorio di Fisica I: laurea in Ottica e Optometria. Misura di una resistenza con il metodo VOLT-AMPEROMETRICO

Laboratorio di Fisica I: laurea in Ottica e Optometria. Misura di una resistenza con il metodo VOLT-AMPEROMETRICO Laboratoro d Fsca I: laurea Ottca e Optoetra Msura d ua ressteza co l etodo OLTMPEOMETICO descrzoe s sura ua ressteza utlzzado u voltetro e u llaperoetro sfruttado la relazoe : Per coduttor ohc è dpedete

Dettagli

La regressione Lineare

La regressione Lineare L regressoe Lere Als dell Dpedez L Regressoe Lere Prof. Cludo Cplupp - Fcoltà d Sceze dell Formzoe - A.A. 7/8 Qudo tr due vrl c è u relzoe d dpedez, s può cercre d prevedere l vlore d u vrle fuzoe del

Dettagli

Numeri complessi Pag. 1 Adolfo Scimone 1998

Numeri complessi Pag. 1 Adolfo Scimone 1998 Numer compless Pag. Adolfo Scmoe 998 NUMERI COMPLESSI Come sappamo, o esstoo el campo de umer real le radc d dce par de umer egatv. Ammettamo pertato l esstea della radce quadrata del umero. Questo uovo

Dettagli

Stima puntuale Quando un parametro della popolazione incognito è valutato (stimato) da una sola statistica (parametro) tratto da un campione

Stima puntuale Quando un parametro della popolazione incognito è valutato (stimato) da una sola statistica (parametro) tratto da un campione STIMA PARAMTRICA TST DLL IPOTSI L fereza Statstca rguarda affermazo crca I parametr d ua popolazoe sulla base della metodologa statstca e del calcolo delle probabltà Stma putuale Quado u parametro della

Dettagli

Corso di Matematica - Algebra. Algebra

Corso di Matematica - Algebra. Algebra Corso d Mtemtc - Alger Alger Oerzo Algerche Tell de Seg Proretà Algerche delle Oerzo Somm e d Prodotto tr Numer Assoctvtà dell dvsoe Uguglze Pssgg lgerc Regole memoche Prodotto croce Rduzoe Fttor Rduzoe

Dettagli

REGRESSIONE LINEARE MULTIPLA

REGRESSIONE LINEARE MULTIPLA REGRESSIONE LINERE ULTIPL Itroduzoe Per u ù gevole lettur d questo ctolo s cosgl lo studo relre dell regressoe lere selce rgoeto trttto el Ctolo Iftt l regressoe lere ultl è u estesoe dell regressoe lere

Dettagli

PROBLEMI DI TRASPORTO

PROBLEMI DI TRASPORTO Metod e modell per l supporto lle decso Prof Ferddo Pezzell - Ig Lug De Gov PROBLEMI DI TRSPORTO OFFERT IMPINTI UTENTI DOMND ( ) (org) (destzo) ( b ) (5) (8) (2) 2 2 (2) (3) 3 3 (9) 4 (9) c COSTO UNITRIO

Dettagli

CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE. Saper calcolare semplici limiti, in particolare delle funzioni razionali intere e fratte.

CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE. Saper calcolare semplici limiti, in particolare delle funzioni razionali intere e fratte. CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE OBIETTIVI MINIMI: Sper idividure le fuzioi cotiue Sper pplicre i teorei sui iti Sper idividure le fore ideterite Sper clcolre seplici iti, i prticolre delle fuzioi

Dettagli

Polinomi, disuguaglianze e induzione.

Polinomi, disuguaglianze e induzione. Allemeti Disid Mtemtic Geio 03 Poliomi, disuguglize e iduzioe. Qul è l mssim re di u rettgolo vete perimetro ugule 576? [Suggerimeto: utilizzre le medie e le loro disuguglize.] Svolgimeto. Predimo i cosiderzioe

Dettagli

Modelli di accumulo del danno dovuto a carichi ciclici

Modelli di accumulo del danno dovuto a carichi ciclici Modell d accumulo del dao dovuto a carch cclc Modell d accumulo del dao dovuto a carch cclc È molto raro che u compoete meccaco sa sollectato a fatca da u carco cclco ad ampezza costate. Geeralmete sa

Dettagli

ELLISSE STANDARD. 1. Il concetto

ELLISSE STANDARD. 1. Il concetto ELLIE TANDARD. Il cocetto L icertezz dell posizioe plimetric di u puto i u rete si deiisce ttrverso lo studio dell ellisse stdrd. Prim di pssre lle relzioi mtemtiche che govero questo rgometo è preeribile

Dettagli

CLASSIFICAZIONE SISTEMI DI PUNTI GEOMETRICI

CLASSIFICAZIONE SISTEMI DI PUNTI GEOMETRICI RIDUZINE DI UN SISTEM DI VETTRI LICTI S, a,,.... Sao R a e M a vettor caratterstc del sstea S relatv al polo, & M. R l varate scalare, p & / R R l varate vettorale, dopo aver rcordato la forula d trasposoe

Dettagli

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm Il lto d un ddo è pr. cm. Usndo le cfre sgnfctve per stmre l errore clcolre l volume del cuo. Supponendo che l devzone stndrd nell msur del lto s d mm clcolre l devzone stndrd che ssoct ll msur del volume.

Dettagli

FUNZIONI ESPONENZIALI

FUNZIONI ESPONENZIALI CONCETTI INTRODUTTIVI FUNZIONI ESPONENZIALI POTENZE AD ESPONENTE RAZIONALE L teori delle poteze può essere estes che lle poteze che ho per espoete u NUMERO RAZIONALE INSIEME Q. Ho seso solo le poteze che

Dettagli

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione Artmetca 06/07 Esercz svolt classe Quarta lezoe Rcorreze o lear Sa a c a cq ua rcorreza dove {c }, c C e c 0. Sa P C[λ] l polomo caratterstco della rcorreza. Allora ua soluzoe partcolare della rcorreza

Dettagli

Integrazione numerica.

Integrazione numerica. Itegrzioe umeric Autore: prof. RUGGIERO Domeico Itegrzioe umeric. Qui di seguito ci occupimo di metodi umerici volti l clcolo pprossimto di u itegrle defiito perveedo formule ce costituiscoo degli lgoritmi,

Dettagli

I vettori. Grandezze scalari: Grandezze vettoriali

I vettori. Grandezze scalari: Grandezze vettoriali Grndee sclr: I ettor engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee ettorl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it)

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it) I rdicli Cludio CANCELLI (www.cludioccelli.it) Ed..0 www.cludioccelli.it Dec. 0 I rdicli INDICE DEI CONTENUTI. I RADICALI... INDICE DI RADICE PARI...4 INDICE DI RADICE DISPARI...5 RADICALI SIMILI...6 PROPRIETA

Dettagli

Progressioni geometriche

Progressioni geometriche Progressioi geometriche Comicimo co due esempi: Esempio Cosiderimo l successioe di umeri:, 6,, 4, 48, 96 L successioe è tle che si pss d u termie l successivo moltiplicdo il precedete per. Si dice che

Dettagli

Analisi Matematica A

Analisi Matematica A http://www.g.o.too.t Als Mtemtc A Dto u umero turle o ullo, ssumerà seguet vlor ordt {,,,,...}. S desce ttorle o ttorle d :! ( )! quest ormul è corrett solo se >, poché! Quest dezoe è dett per rcorrez,

Dettagli

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria Vi Aldo Mo ro, 1097-300 15 Chioggi (VE) t el. 0414 965 81 1 - fx 0 414 96 54 3 - ww w. itisri ghi.com POTENZA i N... DIVISIBILITÀ e NUMERI PRIMI...3 MASSIMO COMUN DIVISORE e MINIMO COMUNE MULTIPLO...3

Dettagli

Note sulle lezioni del corso di STATICA tenute dal Prof. Luis Decanini

Note sulle lezioni del corso di STATICA tenute dal Prof. Luis Decanini Pra Facoltà d rctettura Ludovco Quaro Corso d Laurea 5 U.E... 00/00 - seestre Note sulle lezo del corso d STTC teute dal Prof. Lus Deca -a a -a a - Setra retta Setra olqua EMETR DELLE MSSE Corso d Statca

Dettagli

INDICE. Scaricabile su: Algebra e Equazioni TEORIA

INDICE. Scaricabile su:  Algebra e Equazioni TEORIA P r o f. Gu i d of r c h i i Atepri Atepri Atepri www. l e z i o i. j i d o. c o Scricile su: http://lezioi.jido.co/ Alger e Equzioi TEORIA INDICE Nozioi geerli, isiei, uioe ed itersezioe, ueri reli Mooi

Dettagli

FUNZIONI LOGICHE FORME CANONICHE SP E PS

FUNZIONI LOGICHE FORME CANONICHE SP E PS FUNZIONI LOGICHE FORME CANONICHE SP E PS Ua fuzoe logca può essere espressa quattro forme: 1. attraverso ua proposzoe logca; 2. attraverso ua tabella della vertà; 3. attraverso u espressoe algebrca; 4.

Dettagli

Matematica elementare art.1 di Raimondo Valeri

Matematica elementare art.1 di Raimondo Valeri Matematca elemetare art. d Ramodo Valer I questo artcolo voglamo provare che esste ua formula per calcolare l umero de dvsor d u dato umero aturale seza cooscere la scomposzoe fattor prm del umero stesso.

Dettagli

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso. I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess

Dettagli

Sdl ELEMENTI DI BASE: Potenze. Radicali. Logaritmi

Sdl ELEMENTI DI BASE: Potenze. Radicali. Logaritmi ELEMENTI DI BASE: Poteze Rdicli Logritmi POTENZE L potez co bse ed espoete, o potez - esim di, si idic co ed è il prodotto di fttori tutti uguli d. =... ( volte) 0 = 1 PROPRIETÀ DELLE POTENZE m = +m :

Dettagli

Modulo di Fisica Tecnica. Differenze finite per problemi di conduzione in regime instazionario

Modulo di Fisica Tecnica. Differenze finite per problemi di conduzione in regime instazionario Dpartmeto d Meccaca, Strutture, Ambete e Terrtoro UNIVERSITÀ DEGLI STUDI DI CASSINO Laurea Specalstca Igegera Meccaca: Modulo d Fsca Tecca Lezoe d: Dffereze fte per problem d coduzoe regme stazoaro /20

Dettagli

, dove s n è la somma parziale n-esima definita da. lim s n = lim s n = + (= ). a n = a 1 + a 2 +...

, dove s n è la somma parziale n-esima definita da. lim s n = lim s n = + (= ). a n = a 1 + a 2 +... . serie umeriche Def. (serie). Dt u successioe ( ) (co R per ogi ), si chim serie di termie geerle l successioe (s ), dove s è l somm przile -esim defiit d () s = + 2 +... + = k. L serie coverge (semplicemete)

Dettagli

Laboratorio di FISICA 2. Misura della resistenza di un conduttore con il ponte di Wheatstone R + R R 3 + R4 E, (2) =, (3) i 2 V B = R 3 = V AC

Laboratorio di FISICA 2. Misura della resistenza di un conduttore con il ponte di Wheatstone R + R R 3 + R4 E, (2) =, (3) i 2 V B = R 3 = V AC Lortoro d FISICA Msur dell resstez d u coduttore co l pote d Whetstoe Il pote d Whetstoe è u crcuto dtto ll msur dell resstez d u coduttore per cofroto co ressteze ote. ello schem d Fgur l tter E lmet

Dettagli

Misurare una grandezza fisica significa stabilire quante unità di misura sono contenute nella grandezza stessa.

Misurare una grandezza fisica significa stabilire quante unità di misura sono contenute nella grandezza stessa. L misur: Misurre u grdezz fisic sigific stilire qute uità di misur soo coteute ell grdezz stess. L misur di u grdezz si dice dirett qudo si effettu per cofroto co u grdezz d ess omogee scelt come cmpioe

Dettagli

2 Sistemi di equazioni lineari.

2 Sistemi di equazioni lineari. Sistemi di equzioi lieri. efiizioe. Si dice equzioe liere elle icogite equzioe dell form () + +...+ = o che (') i= i i = ove,,..., R si chimo coefficieti e R termie oto.,,..., ogi efiizioe. Si dice soluzioe

Dettagli

NECESSITÀ DEI LOGARITMI

NECESSITÀ DEI LOGARITMI NECESSITÀ DEI LOGARITMI Nelle equzioi espoezili he imo risolto sior er sempre possiile ridursi equzioi i ui si vev l stess se, l equzioe divetv lgeri sempliemete uguglido gli espoeti. M o tutte le equzioi

Dettagli

RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO

RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO L stbilità di u sistem liere, ivrite ed prmetri cocetrti può vlutrsi co due criteri diversi che fo rispettivmete riferimeto ll rispost

Dettagli

Teoria dei Fenomeni Aleatori AA 2012/13

Teoria dei Fenomeni Aleatori AA 2012/13 La Legge de Grad Numer Cosderata ua sere d prove rpetute co p par alla probabltà d successo ua sgola prova, l rapporto tra l umero d success K ed l umero d prove tede a p quado tede ad fto: K P p ε per

Dettagli

L INTEGRALE DEFINITO b f (x) d x a 1

L INTEGRALE DEFINITO b f (x) d x a 1 L INTEGRALE DEFINITO ( ) d ARGOMENTI. Il Trpezoide re del Trpezoide. L itegrle deiito de. Di Riem. Proprietà dell itegrle deiito teorem dell medi. L uzioe itegrle teorem di Torricelli-Brrow e corollrio

Dettagli

Calcolo numerico 2. Analisi matriciale: le Fattorizzazioni UNIVERSITA DEGLI STUDI DI CAGLIARI FACOLTA DI INGEGNERIA

Calcolo numerico 2. Analisi matriciale: le Fattorizzazioni UNIVERSITA DEGLI STUDI DI CAGLIARI FACOLTA DI INGEGNERIA UNIVERSIT DEGI STUDI DI CGIRI FCT DI INGEGNERI Corso d ure Igeger Elettroc Clcolo umerco Prof. Guseppe Rodrguez ls mtrcle: le Fttorzzzo cur d: ur rcs 3794 Rt Perr 38796 o ccdemco 8/9 Idce Rsoluzoe d sstem

Dettagli

Analisi dei Dati. La statistica è facile!!! Correlazione

Analisi dei Dati. La statistica è facile!!! Correlazione Aals de Dat La statstca è facle!!! Correlazoe A che serve la correlazoe? Mettere evdeza la relazoe esstete tra due varabl stablre l tpo d relazoe stablre l grado d tale relazoe stablre la drezoe d tale

Dettagli

10. L ARIA UMIDA. p =

10. L ARIA UMIDA. p = 0. L AIA UIDA 0. Preess Coe è gà stto ete trttto el sesto ctolo, l coorteto d u sste gssoso ce uò essere cosderto gs dele ee descrtto dell'equzoe d stto: (0.) cu 834,3 J/(kolK) è l costte uersle de gs

Dettagli

Lezione 3. Gruppi risolubili.

Lezione 3. Gruppi risolubili. Lezoe 3 Prerequst: Lezo 1 2 Class d cougo e cetralzzat rupp rsolubl I questo captolo troducamo ua ozoe che come vedremo seguto fuge da raccordo tra la teora de grupp e la teora de camp Defzoe 31 Dato u

Dettagli

Lezione 13. Anelli ed ideali.

Lezione 13. Anelli ed ideali. Lezoe 3 Prerequst: Aell e sottoaell. Sottogrupp. Rfermet a test: [FdG] Sezoe 5.2; [H] Sezoe 3.4; [PC] Sezoe 4.2 Aell ed deal. Rcordamo la seguete defzoe, data el corso d Algebra : Defzoe 3. S dce aello

Dettagli

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100 ESERCIZIO Data la seguete dstrbuzoe percetuale delle famgle talae per class d reddto, espresso mlo d lre, (ao 995, fote Istat): Class d reddto % famgle Fo a 5 5.3 5-5 6. 5-35. 35-45 8.6 45-55 3.6 Oltre

Dettagli

Geometria delle aree

Geometria delle aree eometra delle aree Lo studo de cocett ase relatv alla eometra delle ree: cosete d trasformare le azo tere sollectazo cosete d valutare l elastctà delle strutture forsce gl strumet per valutare le strutture

Dettagli

Teoremi su correnti e tensioni

Teoremi su correnti e tensioni Teorem su corrent e tenson 1) ombnzone lnere efnzone: n un crcuto, ogn corrente e tensone è dt un combnzone lnere d genertor: V = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... I = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... oe

Dettagli

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura Damca Modello damco ello spazo de gut: relazoe tra le coppe d attuazoe a gut ed l moto della struttura smulazoe del moto aals e progettazoe delle traettore progettazoe del sstema d cotrollo progetto de

Dettagli

Algebra» Appunti» Logaritmi

Algebra» Appunti» Logaritmi MATEMATICA & FISICA E DINTORNI Psqule Spiezi Algebr» Apputi» Logriti TEOREMA Sio e b ueri reli co R + {} e b R +. Esiste, ed è uico, u uero k R: k b Il uero k è detto rito di b i bse e viee idicto co l

Dettagli

Unità Didattica N 12. I logaritmi e le equazioni esponenziali

Unità Didattica N 12. I logaritmi e le equazioni esponenziali Uità Didttic N I riti e le equzioi espoezili Uità Didttic N I riti e le equzioi espoezili ) Potez co espoete itero di u uero rele. ) Potez co espoete rziole. ) Potez co espoete rele di u uero rele positivo.

Dettagli

Costi di entrata e equilibri di lungo periodo. Cles 6090 a.a

Costi di entrata e equilibri di lungo periodo. Cles 6090 a.a Cost d etrt e equlbr d lugo perodo Cles 6090.. 2009-2010 tefo Bresh Chr Fumgll - ettembre 2009 1 Cotesto e oett For bbmo lzzto l fuzometo d u merto olgopolsto osderdo ome dto l umero d mprese opert el

Dettagli

Premessa... 1. Equazioni i differenziali lineari

Premessa... 1. Equazioni i differenziali lineari Apput d Cotroll Autoatc Captolo 3 parte I Sste dac lear Preessa... Equazo dfferezal lear... Evoluzoe lbera ed evoluzoe forzata... Uso della trasforazoe d Laplace... 3 Esepo... 7 Osservazo sulla rsposta

Dettagli

LE MEDIE. Le Medie. Medie razionali. Medie di posizione

LE MEDIE. Le Medie. Medie razionali. Medie di posizione LE MEDIE RAZIONALI LE MEDIE Msure stetche trodotte per valutare aspett compless e global d ua dstrbuzoe d u feomeo X medate u solo umero reale costruto modo da dsperdere al mmo le formazo su dat orgar.

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 26 Febbrao 200 Dott. Mrko Bevlacqua ESERCIZIO Cosderado le class d altezza 60 6; 6 70; 70 78; 78 86 per u collettvo d 20 persoe, s può affermare che l ALTEZZA dpede

Dettagli

sistema di equazioni algebriche in Fig Fasi dello studio nel dominio di s. t Cx t Du t. (3.2.2)

sistema di equazioni algebriche in Fig Fasi dello studio nel dominio di s. t Cx t Du t. (3.2.2) 1 Cp. 3 Sudo de modell ler e zor el domo d 3.1 Iroduzoe Lo udo d u modello memco el domo d è d gr lug pù emplce d quello el domo del empo quo, co opporue operzo, rece rformre l modello couo, geerle, d

Dettagli

Rendite a rate costanti posticipate in regime di interessi composti

Rendite a rate costanti posticipate in regime di interessi composti Redte rte cott regme d tere compot Redte rte cott potcpte regme d tere compot /32 Redte rte cott potcpte regme d tere compot 2/32 Redte rte cott potcpte regme d tere compot VALORE ATTUALE DI UNA RENDITA

Dettagli

Interpolazione. Definizione: per interpolazione si intende la ricerca di una funzione matematica che approssima l andamento di un insieme di punti.

Interpolazione. Definizione: per interpolazione si intende la ricerca di una funzione matematica che approssima l andamento di un insieme di punti. Iterpolazoe Defzoe: per terpolazoe s tede la rcerca d ua fuzoe matematca che approssma l adameto d u seme d put. Iterpolazoe MATEMATICA Calcola ua fuzoe che passa PER tutt put Tp d terpolazoe Iterpolazoe

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

Lezione 4. Metodi statistici per il miglioramento della Qualità

Lezione 4. Metodi statistici per il miglioramento della Qualità Tecologe Iormatche per la Qualtà Lezoe 4 Metod statstc per l mglorameto della Qualtà Msure d Tedeza Cetrale Ultmo aggorameto: 30 Settembre 2003 Il materale ddattco potrebbe coteere error: la segalazoe

Dettagli

Nel gergo delle disequazioni vi sono dei simboli che devono essere conosciuti leggendoli da sinistra a destra:

Nel gergo delle disequazioni vi sono dei simboli che devono essere conosciuti leggendoli da sinistra a destra: Disequzioi Mrio Sdri DISEQUAZIONI Defiizioi U disequzioe è u disegugliz tr due espressioi che cotegoo icogite. Risolvere u disequzioe sigific trovre quell'isieme di vlori che, ttriuiti lle icogite, l redoo

Dettagli

Condizionamento dei segnali di misura LAC-SICSI

Condizionamento dei segnali di misura LAC-SICSI Codoeto de seg d sur C-SICSI 27-28 Necesstà de codoeto tteuoe d seg troppo eevt, rettfcoe e veeto d seg tert, trsforoe tesoe d seg correte dtteto d pede eoe d dsturb eettrogetc sovrppost sege ute. soeto

Dettagli

Esercitazioni di Elettrotecnica: doppi-bipoli

Esercitazioni di Elettrotecnica: doppi-bipoli . Mffucc: serctzon su dopp-pol er.-9 Unerstà degl tud d ssno serctzon d lettrotecnc: dopp-pol prof. ntono Mffucc er.. ottore 9 . Mffucc: serctzon su dopp-pol er.-9. opp-pol n rege stzonro.. on rferento

Dettagli

Successioni e Logica. Preparazione Gara di Febbraio 2009. Gino Carignani

Successioni e Logica. Preparazione Gara di Febbraio 2009. Gino Carignani Successioi e Logic Preprzioe Gr di Febbrio 009 Gio Crigi Progressioe ritmetic è u successioe di umeri tli che l differez tr ciscu termie e il suo precedete si u costte d (rgioe) d α α d α d K ( α )d 3

Dettagli

Teoria degli errori. Topografia Corso di Laurea in Ingegneria Civile, dell Ambiente e del Territorio Università di Pisa

Teoria degli errori. Topografia Corso di Laurea in Ingegneria Civile, dell Ambiente e del Territorio Università di Pisa Teor degl error Se s sur pu volte l stess grdezz s ho rsultt dvers speclete se le sure s o co lt precsoe. Se, per esepo, s sur su u crt l dstz r due put co l doppo decetro le deterzo otteute o l deco d

Dettagli

UNIVERSITÀ DEGLI STUDI DI BARI CATTEDRA DI MATEMATICA PER L'ECONOMIA DIPARTIMENTO DI SCIENZE ECONOMICHE E METODI MATEMATICI

UNIVERSITÀ DEGLI STUDI DI BARI CATTEDRA DI MATEMATICA PER L'ECONOMIA DIPARTIMENTO DI SCIENZE ECONOMICHE E METODI MATEMATICI FASCICOLO FUORI COMMERCIO DISTRIBUITO GRATUITAMENTE AGLI STUDENTI DEL CORSO DI MATEMATICA PER L'ECONOMIA ANNO ACCADEMICO 008-009 UNIVERSITÀ DEGLI STUDI DI BARI CATTEDRA DI MATEMATICA PER L'ECONOMIA DIPARTIMENTO

Dettagli

CALCOLARE VELOCEMENTE I LIMITI DI SUCCESSIONI finora 51 esercizi sviluppati + molti limiti notevoli dimostrati di Leonardo Calconi

CALCOLARE VELOCEMENTE I LIMITI DI SUCCESSIONI finora 51 esercizi sviluppati + molti limiti notevoli dimostrati di Leonardo Calconi CALCOLARE VELOCEMENTE I LIMITI DI SUCCESSIONI fior 5 esercizi sviluppti + molti limiti otevoli dimostrti di Leordo Clcoi Arevizioi: N = Numertore, D = Deomitore, sg = sego di L clssificzioe che segue è

Dettagli

Lezione 24. Campi finiti.

Lezione 24. Campi finiti. Lezoe 4 Prerequst: Lezo 0,,, 3 Rfermet a test: [FdG] Sezoe 86; [H] Sezoe 79; [PC] Sezoe 63; Cam ft Nelle lezo recedet abbamo vsto dvers esem d cam ft: ess erao tutt del to oure [ x ]/( f ( x )), dove f

Dettagli

LA CONCENTRAZIONE equidistribuzione massima concentrazione

LA CONCENTRAZIONE equidistribuzione massima concentrazione Corso d Sttstc (cle D) Dott.ss. Vcrd L CONCENTRZIONE Fssmo l ttezoe su crtter qutttv trsferbl. Rcordo che u crttere è trsferble se possmo mmgre che u utà poss cedere prte del crttere che possede d u ltr

Dettagli

Matematica I, Funzione integrale

Matematica I, Funzione integrale Mtemtic I, 24.0.2. Funzione integrle Definizione Sino f : A R, funzione continu su A intervllo, e c in A. L funzione che ssoci d ogni in A l integrle di f sull intervllo [c, ], viene dett funzione integrle

Dettagli

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi.

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi. 7. Redte I questo captolo edremo solamete u caso d redta, che useremo po per geeralzzare le redte e dedurre tutt gl altr cas. S defsce redta ua successoe d captal (rate) tutte da pagare, o tutte da rscuotere,

Dettagli

INDICI DI VARIABILITA

INDICI DI VARIABILITA INDICI DI VARIABILITA Defzoe d VARIABILITA': la varabltà s può defre come l'atttude d u carattere ad assumere dverse modaltà quattatve. La varabltà è la quattà d dspersoe presete e dat. Idc d varabltà

Dettagli

Algebra di Boole Forme normali P ed S. Variabili e funzioni booleane

Algebra di Boole Forme normali P ed S. Variabili e funzioni booleane 3/03/0 Corso d Cloltor Elettro I A.A. 0-0 Alger d Boole Forme orml ed Lezoe 6 rof. Roerto Coo Uverstà degl tud d Npol Federo II Foltà d Igeger Corso d Lure Igeger Iformt (llev A-DA) Corso d Lure Igeger

Dettagli

Esercitazione Dicembre 2014

Esercitazione Dicembre 2014 Esercitzione 10 17 Dicembre 2014 Esercizio 1 Un economi chius è crtterizzt di seguenti dti: A = 400 M = 250 γ = 1.5 (moltiplictore dell politic fiscle) β = 0.8 moltiplictore dell politic monetri z = 0.25

Dettagli

A=B se e solo se 1) m=p 2) n=q 3) a i,j =b i,j K per ogni i=1,,m e j=1,,n. Studiamo ora alcune delle proprietà che regolano queste operazioni.

A=B se e solo se 1) m=p 2) n=q 3) a i,j =b i,j K per ogni i=1,,m e j=1,,n. Studiamo ora alcune delle proprietà che regolano queste operazioni. Osservzioe: due trii soo idetihe se e solo se ho lo stesso uero di righe lo stesso uero di oloe e ho le stesse etrte i K: dte A i j i B i j i p j...... j...... q AB se e solo se p q ij ij K per ogi i e

Dettagli

LA REGRESSIONE LINEARE SEMPLICE

LA REGRESSIONE LINEARE SEMPLICE LA REGRESSIONE LINEARE SEMPLICE L ANALISI DI REGRESSIONE La regressoe è volta alla rcerca d u modello atto a descrvere la relazoe esstete tra ua varable Dpedete e ua varable dpedete (regressoe semplce)

Dettagli