Capitolo 6. Introduzione. Tipi di laminati di uso frequente

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Capitolo 6. Introduzione. Tipi di laminati di uso frequente"

Transcript

1 Catolo 6 T d lamat d uso frqut Itroduzo 6 Lamat dsaoat 65 Lamat qulbrat 67 Lamat agl-ly 7 Lamat ross-ly 7 Lamat quas sotro 7 Lamat sotro 74 Lamat quas omog 77 6 Itroduzo I qusto atolo s osdrao alu t d lamat d uso frqut ll alazo l loro rortà lasth. I rsultat h sguoo rguardao solo lamat a strat dt, quato solo tal aso s ossoo dar dll rgol gral rguardat l rortà lasth la loro rogttazo. I fftt, l atolo rdt s è vsto om l omortamto d u lamato a strat dt sa odzoato, da u lato dall rortà lasth dllo strato d bas, dall'altro dalla squza dgl strat dalla loro ortazo. U uto fodamtal rguarda roro l ortazo: var strat soo gr ortat modo dvrso, qud, om ù volt otato, ll formul h forsoo var tsor h dsrvoo l omortamto d u lamato, tsor d rgdzza dgl strat dvoo ssr ruotat l rfrmto global dl lamato. usto s fa o la trasformazo d aga 8. 6

2 Itroduzo Ora, s s ossrvao l formul d qusta trasformazo s ota h ss ddoo da ombazo d quarto grado dll fuzo rolar dll'ortazo dllo strato. usto mla h la rogttazo d u lamato quado l ortazo dgl strat soo l varabl d rogtto è u roblma molto omlato gral a soluzo o ua s formulato om u roblma d ottmo è o ovsso). Allora, s soo svluat gl a tutta ua sr d rgol rath r rogttar lamat, artolar r ottr d lamat rsodt a rt rqust d rgdzza trm d smmtr lasth s è gà otato h l dsaoamto r lamat a strat dt uò ssr vsto om u roblma d sotroa d B). ust rgol soo solo, gral, dll odzo sufft, ma o ssar, r ottr ua rta rortà. S tratta l ù dll volt d rgol sml, a volt tutv, h hao dato luogo ad alu lass d lamat d uso artolarmt frqut. 64 Lamat dsaoat La rortà ù rrata u lamato è l dsaoamto lasto, oè s vuol smr, tra alu as artolar u s è fatto o, B O. S s osdrao allora l formul d aga 5 Cartsa) o ah d aga 56 olar) s rorda h offt b varao larmt sullo sssor h soo atsmmtr rstto al ao mdo, s rava subto h ua odzo sufft r avr B O è qulla d dsorr gl strat modo smmtro rstto al ao mdo, ossa modo h,,...,. usta rgola, molto sml, è qulla sguta lla quas totaltà d as. Tuttava, s dv sottolar h, otraramt a quato ssso affrmato a torto, qusta rgola o è ssara, ma solo sufft r l dsaoamto lasto. 65

3 Lamat dsaoat Gà l 98 Caro Crvll Vsot avvao dmostrato l'sstza d lamat dsaoat a squza o smmtra. I sguto, Vau Vrhry 998) hao mostrato h l umro d soluzo dsaoat smmtrh è molto sguo ua lass ù vasta d lamat dsaoat squz quasbaal). Ioltr, lo svataggo ù grad a utlzzar l squz smmtrh, sta l fatto h, s s vuol ottr l dsaoamto, s è ssso obblgat a raddoar l umro dgl strat; altr arol, l'utlzzo dll squz smmtrh lla rra d lamat avt rt rortà, omorta ssso u umro d strat molto suror a qullo mmo o u s sarbbro otut ottr l stss rortà rhst. La rra d lamat dsaoat a squza o smmtra è ossbl sa modo satto, fado rorso al otto d squza quas-baal, sa modo arossmato, utlzzado rodur umrh d rra. 66 Lamat qulbrat I lamat qulbrat balad gls) soo qull r u ad og strato ortato dll'agolo θ orrsod uo strato ortato dll'agolo θ. S tratta qud d lamat a umro ar d strat. S oltr la squza è smmtra, allora s ha ah l dsaoamto. L'trss d qusta lass d lamat sta l fatto h hao u omortamto ortotroo mmbraa. Ifatt, r qust lamat, h A h / ) [ ) + )]. Ora, dato h lo strato d bas è smr ortotroo, s s osdra, vd formul a aga 8, h ys θ) θ) ys θ), θ), 67

4 Lamat qulbrat s rava mmdatamt, r la formula d A, h A A ys. Duqu, l lamato è ortotroo mmbraa l rfrmto global dlla astra. usto gral o è vro flsso. Ifatt, D h d la rsza d offt d o rmtt d ottr automatamt l'ortotroa d flsso. Tuttava, dal momto h vd aga 54) d d, s la squza è atsmmtra, oè s, s ha h d d ys ) d ) d ys ), ), ). 68 Lamat qulbrat Duqu, h D h d ) [ ) )] [ ], h h Dys d ys ) d ys ) ys ), qud l lamato è ortotroo ah flsso, o solo mmbraa. Tuttava, ssdo la squza o smmtra, l lamato sarà gral aoato ma o ssaramt; Valot Vau, 5, hao mostrato l'sstza d lamat omltamt ortotro, atsmmtr dsaoat). ud, s ah A D soo ortotro, gral a d o lo sarao, ssdo B O vdr formul a aga ); è u aso to h mostra la dffoltà d dfr l smmtr lasth r lamat: s ha ortotroa rgdzza, ma o dvolzza, a ausa dll'aoamto. d 69

5 Lamat qulbrat usto smo mostra la dffoltà d ottr lamat h sao ortotro flsso dsaoat. usto roblma è aora ogg ua dffoltà maggor ll'ottmzzazo d lamat rstto a roblm d stabltà lasta. I fftt, la mssa a uto d mtod, aalt umr, r la rra d lamat dsaoat ortotro flsso è aora oggtto d rra; aora ù dffl è la rra d lamat omltamt ortotro dsaoat, d vtualmt o gl stss ass d ortotroa mmbraa d flsso. I tal as, s dv gr rorrr a mtod umr, s o s vuol far uso d squz ross-ly vd oltr). 7 Lamat agl-ly U lamato agl-ly è u aso artolar d lamato qulbrato, u s ha ua sola ortazo ossbl, θ, la sua oosta, θ. I qusto aso, s ha h h A h ) xx xy xy yy [ θ) + θ) ] h. ss Il lamato è ortotroo mmbraa l omot xx t qu sora soo qull dlla lama, ruotat d θ rstto al rfrmto global formul d aga 8). Com gà dtto r l aso d lamat qulbrat, D o è ortotroo, gral. Normalmt, s utlzzao squz agl-ly smmtrh. 7

6 Lamat ross-ly I lamat ross-ly hao strat ortat solo a o 9. I qusto modo, ssdo gl strat ortotro o gl ass d ortotroa odt o qull dl lamato, qusto è omltamt ortotroo, sa r A h r B D. E' l aso d all multstrato lgo. Cotraramt a quato ssso s affrma, l loro omortamto rsta ortotroo, o sotroo, mmo s s ha lo stsso umro d strat ll du drzo ortogoal. 7 Lamat quas sotro Nlla lttratura ta s da o quas-sotroo u lamato r l qual la squza omorta solo dll ortazo a, ±45, 9. Ioltr, l umro dgl strat a 45 dv ssr ugual a qullo a -45. I qust odzo, s v subto, basta rordar quato dtto su agl-ly ross-ly, h l omortamto mmbraa è ortotroo. I agguta, s l umro dgl strat og drzo è dto, allora l omortamto d mmbraa è sotroo, ma o qullo d flsso, vd aragrafo sgut, da u l om dato al to d squza. ust lamat soo molto utlzzat sorattutto aroauta. La rago è h ss offroo ua buoa uformtà rgdzza rsstza sodo tutt l drzo, d ah u buo otrasto alla roagazo dll fssur. 7

7 Lamat sotro Ah s lla maggor art d loro mgh lamat omosto hao u omortamto asotroo, oto sodo bsog struttural, rt as s usao lamat a rsosta sotroa. usto è ssaro r smo quado s dbbao olar rqust d lggrzza o qull d ua rsosta lasta h s dsdra ostat o la drzo, gr rhé ausata da azo d dvrsa atura drzo. Wrr Norrs 95) hao dato r rm ua rgola sml, sufft ma o ssara, r l'sotroa mmbraa: s lo strato d bas è a rforzo udrzoal, s dv dsorr lo stsso umro q d strat sodo m ortazo dvrs, o m, sfalsat d u agolo ostat ar a π/m. Soluzo ossbl soo duqu dll squz d to q /6 q /-6 q, q/; q /45 q /-45 q /9 q, q/4; q /6 q /7 q /8 q /44 q, q/5; t. 74 Lamat sotro S l rforzo dllo strato d bas è tssuto qulbrato, allora s dmostra falmt, o l mtodo olar, h basta dsorr u umro dto d strat a a 45. Gralmt, s ala la rgola d Wrr Norrs a squz smmtrh, osì da ottr lamat dsaoat sotro mmbraa. Utlzzado l mtodo olar, Prso, Vau Vrhry ) hao dato u'altra odzo sufft d satta r ostrur lamat sotro mmbraa, sza h s tratt d ua soluzo d to Wrr Norrs. L'sotroa total, d A d D, o ah solo d D, è molto ù omlata o sstoo rgol gral. Alu soluzo satt soo stat dat da Parads 996) r la sola sotroa d flsso. La rma soluzo satta d u lamato totalmt sotroo è dovuta a Vrhry Vog 986), o ua squza d 48 strat. 75

8 Lamat sotro Sussvamt, d ttatv soo stat fatt da dvrs rrator r trovar soluzo satt totalmt sotro o u umro smr fror d strat; Vau Vrhry hao roosto 5 soluzo totalmt sotro, satt, o smmtrh a 8 strat, h smbra ssr l umro mmo r ua soluzo satta. Pr va umra, dvrs studos hao o trovato soluzo arossmat totalmt sotro o u mmo d strat udrzoal; o smbra ossbl ottr l'sotroa total o u umro fror d strat udrzoal o a smmtra dl quadrato o R -ortotro). S v s utlzzao strat a ortotroa artolar smmtra dl quadrato o ortotroa R ), allora s ossoo ottr soluzo arossmat totalmt sotro o 7 strat Gréda,, Vau, ), h smbra ssr l umro mmo d strat ssaro r ottr l'sotroa total. 76 Lamat quas-omog U lamato, s è gà dtto, ha gr u omortamto dvrso mmbraa d flsso, oè gral A* D*, d ù è, s o s rdoo l dovut rauzo, aoato, B O. Tuttava, è ossbl far modo h l lamato s omort a tutt gl fftt om s foss osttuto da u uo strato, qud om s foss omogo; u tal lamato è dtto quas-omogo. usta ozo è stata trodotta r rmo da Vrhry Vrhry Kadl, 988), h ha ah forto l rm soluzo. Sussvamt, è stata rrsa da Wu Avry 99), o lo stsso sgfato, d sguto da Gréda 998) da Vrhry Vau 998), h hao dato u mtodo d rra d soluzo satt squz quas-baal). L'utlzzo d lamat quas-omog uò rvlars utl dvrs rostaz, r smo l aso dll'laborazo d tsts srmtal artolar our rt roblm d ottmzzazo. 77

9 78 Lamat quas-omog Pr aalzzar la quas-omogtà d trodu l tsor d omogtà: Allora, u lamato è quas-omogo s solo s S ha duqu, r u lamato a strat dt, E' trssat ah srvr l odzo dlla quas-omogtà olar, d utlzzado la umrazo dgl strat d aga 5, qulla o gl strat umrat a artr dal tro. D *. A * C., O C O B. 6 4 ) ), d C 79 Lamat quas-omog Ifatt, tal aso s ott falmt h l omot olar d C, dat dal smbolo, soo o,,,, R R R R T T Φ Φ Φ Φ [ ] s, 4, s ) 4

10 Lamat quas-omog S ossrva h, om gà r B, ah r C la art sotroa è ulla, qud la quas-omogtà s trrta trm d smmtr lasth om l'sotroa d tsor B C. Ioltr, offt varao quadratamt sullo sssor soo smmtr rstto al ao mdo. U lamato sarà qud quas-omogo s solo s b b 4 4,,,. ust soo 8 odzo ral da rsttar; fftt, l odzo soo, orrsodt all'aullamto dll omot Cartsa d tsor B C, ma om s è vsto 8 Lamat quas-omog olar, 4 odzo soo automatamt rsttat, qull rguardat l omot olar d sotroa, s gl strat soo dt, duqu o rstao h 8 odzo ddt, h olar soo qull dat qu sora. La ozo d quas-omogtà uò ssr stsa al aso trmolasto: u lamato è quas-omogo trmolastamt s, oltr all odzo lasth d quas-omogtà, è ah L O, dov L è l tsor d omogtà trmolasta: L U * W *. Utlzzado l srsso vst r U W s ott L ), γ offt ssdo gl stss dl tsor C. 8

11 Lamat quas-omog Aora ua volta, assado all omot olar d L s trova T, R Φ R Φ. Duqu, la odzo aggutva r la quas-omogtà trmolasta è Ora, qusta è gà ua dll odzo rdt, l h sgfa h u lamato quas-omogo lastamt lo è ah trmolastamt, ma l otraro o è gral vro l sso h sstoo lamat h vrfao BLO ma o CO). I altr arol, la odza dll arattrsth lasth rd ah ugual offt trm, d dlatazo d urvatura, og drzo, ma o l otraro. Pr la art gro-lasta s hao rsultat aalogh.. 8

Trasformatore. Parte 2 Trasformatori trifase (versione del ) Trasformatore trifase (1)

Trasformatore. Parte 2 Trasformatori trifase  (versione del ) Trasformatore trifase (1) Trasformator Part 2 Trasformator trfas www.d.g.ubo.t/prs/mastr/ddattca.htm (vrso dl 0-11-2010) Trasformator trfas Pr trasfrr rga lttrca tra du rt trfas s possoo utlzzar tr trasformator moofas, ugual tra

Dettagli

FACOLTA DI INGEGNERIA. Corso di Fisica Tecnica Ambientale ESERCIZI SVOLTI CONDUZIONE

FACOLTA DI INGEGNERIA. Corso di Fisica Tecnica Ambientale ESERCIZI SVOLTI CONDUZIONE FO DI INGEGNERI orso d Fsa a tal ESERIZI SVOI ONDUZIONE Esrzo Esrzo Dtrar l flusso tro pr utà d suprf attravrsa rg prat ua lastra paa ooga dllo spssor d 8 o l du fa atut all tpratur d 9 =.9 /..9 9 85.8

Dettagli

3 - Trasformata di Fourier discreta Discrete Fourier Transform ( DFT)

3 - Trasformata di Fourier discreta Discrete Fourier Transform ( DFT) 3 - rasormata d orr dscrta Dscrt orr rasorm D - Dscrtzzazo dlla sr d orr - Dzo rortà dlla D - D d sgal traslat - U smo d D - ormla d vrso dlla D - Egaglaza d Parsval - D ral 3 - Dscrtzzazo dlla sr d orr

Dettagli

Diodo: V D > 0. n p = N. p n0. x n. -x p 0. Figura 1

Diodo: V D > 0. n p = N. p n0. x n. -x p 0. Figura 1 CORREI E IOO Pr l calcolo dlla corrt l dodo rsza d ua tso d olarzzazo stra faccamo l sgut ots smlfcatv: 1. cotatt mtallo-smcoduttor co l zo d soo d to ohmco, ovvrosa ad ss è assocata ua caduta d tso roorzoal

Dettagli

Limiti di successioni - svolgimenti

Limiti di successioni - svolgimenti Limiti di succssioi - svolgimti Scrivrmo a b quado a b =. Calcoliamo qusto it, raccoglido il fattor al umrator al domiator. Si ha 2 + 2 4 = + 2 2 3! 4 3!. Iazitutto, ricordiamo ch Ioltr, si ha utilizzado

Dettagli

Lezione 3. Omomorfismi di gruppi

Lezione 3. Omomorfismi di gruppi Lzio 3 Prrquisiti: Applicazioi tra isimi. Rlazioi di quivalza. Lzio. Omomorismi di gruppi I qusta lzio itroduciamo uo strumto util a corotar l struttur di gruppi distiti. Diizio 3. Siao (, (, gruppi. U'applicazio

Dettagli

Prova scritta di Analisi Matematica I - 1 febbraio 2011 Proff. B. CIFRA F. ILARI. Compito A

Prova scritta di Analisi Matematica I - 1 febbraio 2011 Proff. B. CIFRA F. ILARI. Compito A SEDE DISTACCATA DI LATINA a.a. / Prova sritta di Aalisi Matmatia I - fbbraio Proff. B. CIFRA F. ILARI Compito A COGNOME...... NOME. Matr... Corso di Laura o o o Ambit Trritorio Risors Iformazio Maia firma

Dettagli

Norma UNI EN ISO 13788

Norma UNI EN ISO 13788 UNI EN ISO 13788 (2003: PRESTAZIONE IGROTERMICA DEI COMPONENTI E DEGLI ELEMENTI PER EDILIZIA TEMPERATURA SUPERFICIALE INTERNA PER EVITARE L'UMIDITA' SUPERFICIALE CRITICA E CONDENSAZIONE INTERSTIZIALE METODO

Dettagli

La distribuzione Normale

La distribuzione Normale Matatca Fca cla 5G La dtrbuzo oral Fracco Fotaa otaa@lcorrar.t paga La dtrbuzo oral Mda dvazo tadard Codrao rultat pr ua varabl alatora. Il valor do ott co la da arttca d valor qut oo ugualt rqut ugualt

Dettagli

I metodi di costruzione degli indici sintetici

I metodi di costruzione degli indici sintetici I mtod d costruzo dgl dc sttc Numros soo mtod dsobl r la sts d dcator lmtar. Gl alcatv ch costoo l calcolo d tal dc d sts soo soltamt lgat alla loro mlmtazo. Pr tal motvo, l cofroto tra rsultat ottut co

Dettagli

I motori a COMBUSTIONE INTERNA ALTERNATIVI sono classificati in

I motori a COMBUSTIONE INTERNA ALTERNATIVI sono classificati in M O T O R I A C O M B U S T I O N E I N T E R N A Soo MACCHINE MOTRICI TERMICHE cu l ra trmca (CALORE) v rodotta all tro dlla stssa maccha rucado u comustl assoso o lqudo faclmt ulzzal. L ENERGIA ELASTICA

Dettagli

Alessandro Ottola matr. 208003 lezione del 11/3/2010 ora 10:30-13:30. Parete omogenea sottoposta a differenze termiche e diffusione

Alessandro Ottola matr. 208003 lezione del 11/3/2010 ora 10:30-13:30. Parete omogenea sottoposta a differenze termiche e diffusione Alssandro Ottola matr. 0800 lzon dl //00 ora 0:0-:0 Indc Dagramma d Glasr... Part omogna sottoosta a dffrnz trmch dffuson... Dagramma d Glasr r art omogna... 4 Dagramma d Glasr r art multstrato... 5 Esrczo

Dettagli

Esercitazioni di Elettrotecnica: circuiti in regime stazionario

Esercitazioni di Elettrotecnica: circuiti in regime stazionario Maffucc: rcut n rgm stazonaro r- Unrstà dgl Stud d assno srctazon d lttrotcnca: crcut n rgm stazonaro ntono Maffucc r sttmbr Maffucc: rcut n rgm stazonaro r- Sr paralllo parttor S alcolar la rsstnza qualnt

Dettagli

Introduzione. La regressione logistica

Introduzione. La regressione logistica Aals statstca multvarata La rgrsso logstca Autor Alsado Lubsco Stfaa Mga Marla Pllat La rgrsso logstca Itroduzo S vuol dscrvr la rlazo d dpdza dl posssso d u attrbuto dcotomco da ua o pù varabl dpdt (X,

Dettagli

Capitolo 11 Regressione con variabile dipendente binaria

Capitolo 11 Regressione con variabile dipendente binaria Capitolo Rgrssio co variabil dipdt biaria.. (a) La statistica t pr il cofficit di Expric è 0,03/0,009 3,44, sigificativa al livllo dll %. (b) z 0,72 0,030,022; (,022) 0,847 Matthw (c) z 0,72 0,03 0 0,72;

Dettagli

Capitolo 5. Introduzione. Teoria classica dei laminati

Capitolo 5. Introduzione. Teoria classica dei laminati Captl 5 ra lassa lamat Cprgt P. Vau UVSQ pal.vau@ma.uvsq.fr Itru 87 Il mll ma 9 La lgg famtal lamat 98 I tsr rmalat 7 Ivrs lla lgg famtal lamat Lamat appat sappat 5 I mul last l mstrat quvalt Il mprtamt

Dettagli

1 - Numeri complessi. 1.0 Breve cronologia dei simboli Definizione e proprietà dei numeri complessi

1 - Numeri complessi. 1.0 Breve cronologia dei simboli Definizione e proprietà dei numeri complessi - um complss - Dfo poptà d um complss - Rappstao gomtca d um complss - Espoal d u umo complsso - Cougao d u umo complsso - Radc -sm dll utà I matmatca l voluo o s fao dstuggdo mod pcdt ch matao smp la

Dettagli

1 Studio di funzioni, sviluppi di Taylor e serie

1 Studio di funzioni, sviluppi di Taylor e serie Studio di fuzioi, sviluppi di Taylor sri. Esrcizi. Sia fx = x +. Dtrmiar l isim di dfiizio. Studiar il sgo. Calcolar i iti agli strmi dll isim di dfiizio. Dir s ci soo asitoti. Dtrmiar l isim di cotiuità

Dettagli

Lezione 24. Campi finiti.

Lezione 24. Campi finiti. Lezoe 4 Prerequst: Lezo 0,,, 3 Rfermet a test: [FdG] Sezoe 86; [H] Sezoe 79; [PC] Sezoe 63; Cam ft Nelle lezo recedet abbamo vsto dvers esem d cam ft: ess erao tutt del to oure [ x ]/( f ( x )), dove f

Dettagli

e k Queste sono funzioni oscillanti, periodiche di periodo N/k.

e k Queste sono funzioni oscillanti, periodiche di periodo N/k. Vr.. ot pr Aalisi di Fourir di Squz co l ausilio dl Matlab Cosidriamo ua squza ifiita priodica di priodo, x[t] tal pr cui x[t+t]x[t]. Pr rapprstar tal squza si possoo utilizzar fuzioi complss dl tipo jπ

Dettagli

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0)

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0) Massm e Mm Fuzo d pù varabl Massm e Mm Dezoe: Sa z = (, ) ua uzoe deta u seme E U puto (, E s dce puto d massmo (rsp mmo) relatvo per (, ) se esste δ > tale che ((, ) B((, ), δ ) E (, ) (, ) (rsp (, )

Dettagli

Università di Camerino Corso di Laurea Fisica Indirizzo Tecnologie per l Innovazione Appunti di Calcolo Prof. Angelo Angeletti

Università di Camerino Corso di Laurea Fisica Indirizzo Tecnologie per l Innovazione Appunti di Calcolo Prof. Angelo Angeletti Uivrsità di Camrio Corso di Laura Fisica Idirizzo Tcologi pr l Iovazio Apputi di Calcolo Prof. Aglo Agltti Formula di Taylor Si ricordrà ch l quazio dlla tagt ad ua curva di quazio y f() i u puto è data

Dettagli

National Federation s Conference, Londra 6 Marzo 2016

National Federation s Conference, Londra 6 Marzo 2016 Natioal Fdratio s Cofrc, odra 6 Marzo 2016 a Cofrza dll Fdrazioi Nazioali, orgaizzata dalla FISA, è giuta qust'ao alla sua quita dizio, svoltasi a odra domica 6 marzo co la rsza di oltr 80 dlgati i rarstaza

Dettagli

LIUC ebook. Analisi Matematica. Anna Maria Mascolo Vitale

LIUC ebook. Analisi Matematica. Anna Maria Mascolo Vitale LIUC Boo Aals Matmatca Aa Mara Mascolo Vtal LIUC Boo Aals Matmatca Aa Mara Mascolo Vtal LIUC Uvrstà Cattao Castllaza Aals matmatca Aa Mara Mascolo Vtal Coprght Uvrstà Carlo Cattao - LIUC Cso Mattott

Dettagli

LA MODA: Unità: è il valore della variabile X osservato il maggior numero di volte;

LA MODA: Unità: è il valore della variabile X osservato il maggior numero di volte; Apput d Statstca Socal Uvrstà Kor d Ea IDICI DI POSIZIOE O DI TEDEZA CETRALE Gl dc d poszo, o d tdza ctral, soo umr ch sprmoo la sts umrca d ua dstrbuzo ( ) statstca smplc d ua varabl X. I valor ossrvat

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

Caso studio 7. Concentrazione. Misurazione della concentrazione (distribuzione unitaria) 07/03/2016

Caso studio 7. Concentrazione. Misurazione della concentrazione (distribuzione unitaria) 07/03/2016 07/0/206 Caso studo 7 L OCSE la dsguaglaza: a ch puto è la ott? D Stfao Prr (rtcolo dspobl qu: http://www.coomapoltca.t/ prmo-pao/locs--la-dsguaglaza-a-ch-puto--la-ott/). Dopo la rcrca dl 2008 Growg Uqual[],

Dettagli

corrispondenza della generica i-esima modalità. Indicando con #(.) la cardinalità di un insieme, per esse si ha, rispettivamente:

corrispondenza della generica i-esima modalità. Indicando con #(.) la cardinalità di un insieme, per esse si ha, rispettivamente: Corso d Statstca docete: Domeco Vstocco Le requeze cumulate S cosder ua varable qualtatva ordale X Per essa, oltre alle requeze assolute, relatve e ercetual, è ossble calcolare ache le requeze cumulate

Dettagli

Prova scritta di Analisi Matematica 1 14/1/ (tutti) Determinare l area della porzione di piano delimitata dall asse delle x con

Prova scritta di Analisi Matematica 1 14/1/ (tutti) Determinare l area della porzione di piano delimitata dall asse delle x con Prova scritta di Aalisi Matmatica A 4//4 (tutti) Illustrado tutti i passaggi, disgar il grafico dlla fuzio l f ( ),, (tutti) Dtrmiar l ara dlla porzio di piao ditata dall ass dll co dal grafico dlla fuzio

Dettagli

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

CAP. 6 INFERENZA STATISTICA BAYESIANA

CAP. 6 INFERENZA STATISTICA BAYESIANA Corso d laura magstral SCIENZE STATISTICHE (Not ddattch) Bruo Chadotto Vrso 4 Cap 6 Ifrza statstca baysaa Itroduzo CAP 6 BAYESIANA N captol prcdt s è stata affrotata, modo quas sclusvo, la problmatca dll

Dettagli

Principi ed applicazioni del metodo degli elementi finiti. Formulazione base con approccio agli spostamenti

Principi ed applicazioni del metodo degli elementi finiti. Formulazione base con approccio agli spostamenti Prncp d applcazon dl mtodo dgl lmnt fnt Formulazon bas con approcco agl spostamnt PRINCIPIO DEI LAVORI VIRTALI Data una crta statca: sforz σ j, forz d volum F forz d suprfc f j ; s dmostra ch mporr la

Dettagli

EffePi Srl. Valore immobiliare: gestire ed amministrare per creare il valore degli immobili. EffePi S.r.l. Valore Immobiliare. EffePi S.r.l.

EffePi Srl. Valore immobiliare: gestire ed amministrare per creare il valore degli immobili. EffePi S.r.l. Valore Immobiliare. EffePi S.r.l. EffP Srl Valor mmoblar: gstr d ammstrar pr crar l valor dgl mmobl 1 Il Il U mmobl è u valor ch va prsrvato, curato, gstto matuto l tmpo. EffP è u azda ata pr forr srvz ch sostgoo l vostro. Il Valor dlla

Dettagli

LA NOSTRA AVVENTURA NEL CREARE UN LIBRO

LA NOSTRA AVVENTURA NEL CREARE UN LIBRO LA NOSTRA AVVENTURA NEL CREARE UN LIBRO Abbiamo iniziato a lggr in class Nonno Tano la casa dll strgh. Lo scopo ra ascoltar comprndr. Sguir la mastra ch dava sprssività alla lttura imparar da lla a lggr.

Dettagli

Esercizio 1. Costruire un esempio di variabili casuali X ed Y tali che Cov(x,y) = 0, ma X ed Y siano dipendenti.

Esercizio 1. Costruire un esempio di variabili casuali X ed Y tali che Cov(x,y) = 0, ma X ed Y siano dipendenti. srcz d conomtra: sr srczo Costrur un smpo d varabl casual d tal ch Cov(,), ma d sano dpndnt. Soluzon Dobbamo vrcar l sgunt condzon: σ [ ] [ ] [ ] covaranza nulla ) ( ) ( ) dpndnza non lnar Prma cosa da

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

De Rossi, profumo di primavera Sabato 23 Marzo 2013 10:49 - DANIELE GIANNINI

De Rossi, profumo di primavera Sabato 23 Marzo 2013 10:49 - DANIELE GIANNINI DANIELE GIANNINI Frsco com un fior sboccia nl primo giorno primavra Il gol Danil D Rossi al Brasil ha s gnato simbolicamnt la fin dll invrno Il risvglio dlla natura qullo dlla Nazional stava prdndo immritatamnt

Dettagli

INDICE. Studio di funzione. Scaricabile su: TEORIA. Campo di esistenza. Intersezione con gli assi

INDICE. Studio di funzione. Scaricabile su:  TEORIA. Campo di esistenza. Intersezione con gli assi P r o f. Gu i d of r a n c h i n i Antprima Antprima Antprima www. l z i o n i. j i md o. c o m Scaricabil su: http://lzioni.jimdo.com/ Studio di funzion INDICE TEORIA Campo di sistnza Intrszion con gli

Dettagli

Biennio CLEM - Prof. B. Quintieri. Anno Accademico 2012-2013, I Semestre. (Tratto da: Feenstra-Taylor: International Economics)

Biennio CLEM - Prof. B. Quintieri. Anno Accademico 2012-2013, I Semestre. (Tratto da: Feenstra-Taylor: International Economics) CONOMIA INTRNAZIONAL Bnno CLM - Prof. B. Quntr IL TASSO DI CAMBIO Anno Accadmco 2012-2013, I Smstr (Tratto da: Fnstra-Taylor: Intrnatonal conomcs) S propon, d sguto, una brv rassgna d prncp fondamntal

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme LIMITI DI FUNZINI. CNCETT DI LIMITE Esula dallo scopo di qusto libro la trattazion dlla toria sui iti. Tuttavia, pnsando di far cosa gradita allo studnt, ch dv possdr qusta nozion com background, ritniamo

Dettagli

lim x 3 lim Servendosi della definizione, verifica l esattezza dei limiti seguenti Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no.

lim x 3 lim Servendosi della definizione, verifica l esattezza dei limiti seguenti Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no. Edutcnica.it Dfinizion di it Srvndosi dlla dfinizion, vrifica l sattzza di iti sgunti Esrcizio no. Soluzion a pag. ( ) Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. ( ) Esrcizio no. Soluzion

Dettagli

SOMMARIO. I Motori in Corrente Continua

SOMMARIO. I Motori in Corrente Continua SOMMARIO Gralità sull Macchi i Corrt Cotiua...2 quazio dlla forza lttromotric...2 Circuito quivalt...2 Carattristica di ccitazio...3 quazio dlla vlocità...3 quazio dlla Coppia rsa all'albro motor:...3

Dettagli

S O L U Z I O N I + 100

S O L U Z I O N I + 100 S O L U Z I O N I Nl 00 un farmaco vnva vnduto a 70 a) Nll pots ch ogn anno l przzo aumnt dl 3% rsptto all anno prcdnt quanto vrrbb a costar lo stsso farmaco nl 0? b) Supponamo ch l przzo dl farmaco nl

Dettagli

Esperienza n 8:Determinazione del calore specifico di un corpo

Esperienza n 8:Determinazione del calore specifico di un corpo Espz 8:Dzo dl lo spfo d u opo Spo: o Eul (N ol 4549 v.o.) v Noo (N ol 458656 v.o.) Sopo dll spz Qus spz h lo sopo d d l lo spfo d u opo vso l uso dl loo dll solz. Su ulzz P l'spz soo s ulzz sgu su: -U

Dettagli

Linee accoppiate. Corso di Componenti e Circuiti a Microonde. Ing. Francesco Catalfamo. 3 Ottobre 2006

Linee accoppiate. Corso di Componenti e Circuiti a Microonde. Ing. Francesco Catalfamo. 3 Ottobre 2006 orso di omponnti ircuiti a Microond Ing. Francsco atalamo 3 Ottobr 006 Indic Ond supriciali modi di ordin suprior Lin in microstriscia accoppiat Ond supriciali Un onda supricial è un modo guidato ch si

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

FOTODIODI. La fotorivelazione è basata sull effetto fotoelettrico.

FOTODIODI. La fotorivelazione è basata sull effetto fotoelettrico. OODIODI La otorivlazio è basata sull tto otolttrico. I N Ua radiazio lumiosa icidt lla rgio itrisca di u diodo smicoduttor drogato IN polarizzato ivrsamt produc di portatori libri. Ogi coppia di portatori

Dettagli

Istogrammi e confronto con la distribuzione normale

Istogrammi e confronto con la distribuzione normale Istogramm e cofroto co la dstrbuzoe ormale Suppoamo d effettuare per volte la msurazoe della stessa gradezza elle stesse codzo (es. la massa d u oggetto, la tesoe d ua pla, la lughezza d u oggetto, ecc.):

Dettagli

Appunti sulle Equazioni Differenziali. Appunti sulle equazioni differenziali

Appunti sulle Equazioni Differenziali. Appunti sulle equazioni differenziali Apput sull Equazo Dffrzal Apput sull quazo dffrzal S chama quazo dffrzal u tpo partcolar d quazo fuzoal, lla qual la fuzo cogta compar sm ad alcu su drvat, ossa u quazo lla qual oltr all ormal oprazo algbrch

Dettagli

Limite Inferiore per l Ordinamento. Algoritmi e Strutture Dati (Mod. A) Limite Inferiore per l Ordinamento. Limite Inferiore per l Ordinamento

Limite Inferiore per l Ordinamento. Algoritmi e Strutture Dati (Mod. A) Limite Inferiore per l Ordinamento. Limite Inferiore per l Ordinamento Limit Ifrior pr l Ordiamto Ma quato può ssr fficit, i pricipio, u algoritmo di ordiamto? Algoritmi Struttur Dati (Mod. A) Limit Ifrior pr l Ordiamto Qusta è ua dll domad più ambizios itrssati ma ach ua

Dettagli

Statistiche quantiche

Statistiche quantiche Statstch quatch Rflttamo su asptt bas dlla Mccaca quatstca ch hao fluto sull aals statstca d sstm d partcll. Cosguz dl prcpo d dtrmazo Sulla bas dl prcpo d dtrmazo d Hsbrg o è possbl dfr lo stato mcroscopco

Dettagli

Successioni numeriche

Successioni numeriche 08//05 uccssioi umrich uccssioi umrich Dfiizio U succssio è u fuzio ch d ogi umro turl ssoci u umro rl 0 : 0 : Es. 08//05 uccssioi umrich Dfiizio Il it dll succssio ch ch covrg d ) si idic è il umro rl

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

Caso studio 12. Regressione. Esempio

Caso studio 12. Regressione. Esempio 6/4/7 Caso studo Per studare la curva d domada d u bee che sta per essere trodotto sul mercato, s rlevao dat rguardat l prezzo mposto e l umero d pezz vedut 7 put vedta plota, ell arco d ua settmaa. I

Dettagli

Calore Specifico

Calore Specifico 6.08 - Calor Spcifico 6.08.a) Lgg Fondamntal dlla Trmologia Un modo pr far aumntar la Tmpratura di un Corpo è qullo di cdr ad sso dl Calor, pr smpio mttndolo in Contatto Trmico con un Corpo a Tmpratura

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Introduon al METODO DEGLI ELEMENTI FINITI Ossrvaon su mtod varaonal approssmat classc L unon approssmant dvono: Soddsar rqust d contnutà Essr lnarmnt ndpndnt complt Soddsar l condon al contorno ssnal Dcoltà:

Dettagli

Numeri complessi - svolgimento degli esercizi

Numeri complessi - svolgimento degli esercizi Numri complssi - svolgimnto dgli srcizi ) Qusto srcizio richid di calcolar la potnza n-sima (n 45) di un numro complsso. Scriviamo z nlla forma sponnzial z ρ iθ dov ) ( ) ρ ( + θ π 6 dato ch sin θ cos

Dettagli

RETROAZIONE A V. = segnale d ingresso del blocco dell amplificatore retroazionato. = segnale d uscita A = amplificatore β = rete di retroazione

RETROAZIONE A V. = segnale d ingresso del blocco dell amplificatore retroazionato. = segnale d uscita A = amplificatore β = rete di retroazione ETOZOE Un amplcat è sggtt a azn quand una pat dl sgnal d uscta vn ptat n ngss smmat algbcamnt al sgnal d ngss. n un amplcat taznat è psnt una t β (bta) d tazn ch pta n ngss una pat dl sgnal d uscta. l

Dettagli

3) DIFFUSIONE DELLA LUCE E SPETTROSCOPIA RAMAN

3) DIFFUSIONE DELLA LUCE E SPETTROSCOPIA RAMAN DIFFUSION DLLA LU STTROSOIA RAAN La uso lla lu a pa u aomo quval al sgu posso (l aomo è l lvllo : (A Assobmo u oo quza vo oa k passaggo allo sao ao aua (sao al o msso u oo quza vo oa k. Oppu: (B msso u

Dettagli

VICKY RUGBY PROJECT. Proposta Educativa

VICKY RUGBY PROJECT. Proposta Educativa VICKY RUGBY PROJECT Prst Eductv Vcky l Vchg s c ll b u r,, m v k l V ch H d gl l t t f r g rs c hé st su l m l d m r, s ( è, dr d gl s t g fs t m c r Qu k tt. V s u d b v v ò tt, s s c vt s u ). s s c

Dettagli

CONOSCENZE. 1. La derivata di una funzione y = f (x)

CONOSCENZE. 1. La derivata di una funzione y = f (x) ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)

Dettagli

aleatoria; se è nota la sua densità di probabilità ad essa si può associare una valore medio statistico. La grandezza così definita: (III.1.

aleatoria; se è nota la sua densità di probabilità ad essa si può associare una valore medio statistico. La grandezza così definita: (III.1. Caitolo III VALORI MEDI. SAZIONARIEÀ ED ERGODICIÀ III. - Mdi tatitich dl rimo ordi. Sia f( ) ua fuzio cotiua i aoci al gal alatorio (, t ζ ) la uatità dfiita dalla y f[(, t ζ )]. Ea idividua, a ua volta,

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI ANALISI ESERCITAZIONE DEL 06//00 PUNTI CRITICI Un punto critico è un punto in cui la funzion è diffrnziabil il piano tangnt al grafico è orizzontal Riconosciamo qusti punti prché il gradint è il vttor

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in due gruppi

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in due gruppi Le mede Italo Nofro LE MEDIE Statstca medca Le mede (o valor med) soo dc d tedeza cetrale e costtuscoo u modo semplce ed mmedato per stetzzare u solo valore dat eterogee raccolt el collettvo oggetto d

Dettagli

Errore standard di misurazione. Calcolare l intervallo del punteggio vero

Errore standard di misurazione. Calcolare l intervallo del punteggio vero Error sandard di misurazion Calcolar l inrvallo dl punggio vro Problmi di prcision La prsnza noa dll rror di misura rnd incro il significao dl punggio onuo. L andibilià dl s ci informa di quano rror di

Dettagli

Minicorso Controllo Statistico di Processo

Minicorso Controllo Statistico di Processo MIICORSO: Cotrollo Statistico di Procsso art 4/5 di Adra Saviao Part 4 Miicorso Cotrollo Statistico di Procsso di Adra Saviao L fruz cumulativ, rmssa L distribuzioi discrt L distribuzioi cotiu Distribuzioi

Dettagli

Parte 4 - Pag.1. Vision 2000 - obiettivi della revisione. Oltre la ISO 9000: Vision 2000. Vision 2000 - elementi innovativi

Parte 4 - Pag.1. Vision 2000 - obiettivi della revisione. Oltre la ISO 9000: Vision 2000. Vision 2000 - elementi innovativi Olr la ISO 9000: Vso 2000 G.Rass - 11 maggo 2001 1 Vso 2000 - obv dlla rvso Obv dlla rvso dlla ISO 9000: passar dalla culura dlla coformà dll vdz a qulla dl couo mgloramo, ral msurabl dal cl Il progo d

Dettagli

Studio dei transitori con il metodo delle trasformate di Laplace

Studio dei transitori con il metodo delle trasformate di Laplace Studio di traitori co il mtodo dll traformat di Laplac Apputi a cura dll Igg. Baoccu Gia Piro Marra Luca Tutor dl coro di ELETTROTECNICA pr mccaici chimici A. A 3/4 4/5 Facoltà di Iggria dll Uivrità dgli

Dettagli

la mente cosciente... oltre i neuroni?

la mente cosciente... oltre i neuroni? la mnt coscint... oltr i nuroni? smbra ch ci sia un problma insolubil pr la scinza! com puo il mondo fisico produrr qualcosa con l carattristich dlla mnt coscint? un problma cosi difficil ch qualcuno lo

Dettagli

Errori a regime per controlli in retroazione unitaria

Errori a regime per controlli in retroazione unitaria Appunt d ontoll Autoatc Eo a g n sst n toazon Eo a g p contoll n toazon untaa... Eo a g nlla sposta al gadno (o d poszon)... Eo a g nlla sposta alla apa (o d vloctà)...3 Eo a g nlla sposta alla paabola

Dettagli

Il sistema MOS (Metallo Ossido Semiconduttore)

Il sistema MOS (Metallo Ossido Semiconduttore) Il sstma MO Mtallo Osso mcouttor Il sostvo a fftto camo ù ffuso è l trasstor MOFT. tratta, com l caso l JFT, u sostvo a tr trmal cu la tso alcata al trmal gat cotrolla la corrt ch scorr l caal ch collga

Dettagli

Trasformatore. Parte 2 Trasformatori trifase www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 16-11-2012) Trasformatore trifase (1)

Trasformatore. Parte 2 Trasformatori trifase www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 16-11-2012) Trasformatore trifase (1) Trasformator Part Trasformator trfas www.d.ng.unbo.t/prs/mastr/ddattca.htm (vrson dl 1-11-01) Trasformator trfas Pr trasfrr nrga lttrca tra du rt trfas s possono utlzzar tr trasformator monofas, ugual

Dettagli

LEZIONE N 11 IL CEMENTO ARMATO PRECOMPRESSO

LEZIONE N 11 IL CEMENTO ARMATO PRECOMPRESSO Unvrstà dgl Stud d Roma Tr Facoltà d Inggnra Corso d Tcnca dll dll Costruon I Modulo / 007-0808 LEZIOE 11 IL CEMETO RMTO PRECOMPRESSO IL CO RISULTTE IL SISTEM EQUILETE LL PRECOMPRESSIOE Gnraltà Il sstma

Dettagli

Serie Numeriche e Convergenza Puntuale di Serie di Funzioni

Serie Numeriche e Convergenza Puntuale di Serie di Funzioni Sri umrich sri di fuzioi Sri Numrich Covrgza Putual di Sri di Fuzioi Suto- Il lavoro coti la risoluzio di alcui srcizi sullo studio dl carattr di sri umrich sulla covrgza putual di sri di fuzioi. Gli srcizi

Dettagli

CAPITOLO I INTRODUZIONE ALLA FISICA DEI MATERIALI SEMICONDUTTORI

CAPITOLO I INTRODUZIONE ALLA FISICA DEI MATERIALI SEMICONDUTTORI I. 1 CAPITOLO I INTRODUZION ALLA FISICA DI MATRIALI SMICONDUTTORI 1.1 - Richiami di fisica atomica. L lttroica studia i disositivi, i circuiti d i sistmi i quali la rsza d il movimto dgli lttroi gioca

Dettagli

Tekla Structures Guida di riferimento per le opzioni avanzate. Versione del prodotto 21.1 agosto 2015. 2015 Tekla Corporation

Tekla Structures Guida di riferimento per le opzioni avanzate. Versione del prodotto 21.1 agosto 2015. 2015 Tekla Corporation Tkla Structurs Guda d rfrmnto pr l opzon avanzat Vrson dl prodotto 21.1 agosto 2015 2015 Tkla Corporaton Indc 1 Guda d rfrmnto pr l opzon avanzat... 17 1.1 Catgor nlla fnstra d dalogo Opzon avanzat...

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in Le mede Italo Nofro LE MEDIE Le mede (o valor med) soo dc d tedeza cetrale e costtuscoo u modo semplce ed mmedato per stetzzare u solo valore dat eterogee raccolt u collettvo Statstca medca Le mede Le

Dettagli

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y)

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y) Campi Vttoriali Form iffrnziali-sconda Part Torma (sconda condizion sufficint pr i campi consrvativi piani): Sia F (, y) un campo vttorial piano dfinito in un aprto A di R, si supponga ultriormnt = y ;

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

Variabili casuali ( ) 1 2 n

Variabili casuali ( ) 1 2 n Varabl casual &. Valore edo. Data ua varable casuale = ( x,x 2, K,x ) (.) cu valor assuoo le rspettve probabltà P = p,p, K,p (.2) s defsce valore edo la quattà ( ) 2 = [ ] T M = M = P = xp (.3) Sgfcato:

Dettagli

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura Damca Modello damco ello spazo de gut: relazoe tra le coppe d attuazoe a gut ed l moto della struttura smulazoe del moto aals e progettazoe delle traettore progettazoe del sstema d cotrollo progetto de

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

Solidi assialsimmetrici - Dischi

Solidi assialsimmetrici - Dischi Sol assalsmmt - Dsh D ω s Caattsth sh Smmta assal Pao amtal smmta asso appoto spsso / amto Assza bush vaazo spsso Cah aal assalsmmt s

Dettagli

r r r OSCILLATORE ARMONICO

r r r OSCILLATORE ARMONICO Uvrstà Roa La Sapza oa - OSCILLATOR ARMONICO Ssta ollo ll vbrazo ll olcol (approssazo lla raltà) Vaolo a u puto vsta Classco Quatstco Scoo la Mccaca Classca f f r r r f f V V f k && a cos k t ( ν t φ )

Dettagli

CLIMAGREEN. La APP di Publicontrolliper il

CLIMAGREEN. La APP di Publicontrolliper il Fabio CANNONE La APP Publicontrollipr Con ClimaGREEN Publicontrolli vuol dar al Cittano la possibità controllar lo stato rnmnto dl suo impianto climatizzazion stiva/invrnal vrificar risptto dll prscrizioni

Dettagli

CAPITOLO 2. ( ) 10 8 cm 2. μm Basandosi sulla Tabella 2.1, una resistività di 2.6 μω-cm < 1 mω-cm, quindi l alluminio è un conduttore.

CAPITOLO 2. ( ) 10 8 cm 2. μm Basandosi sulla Tabella 2.1, una resistività di 2.6 μω-cm < 1 mω-cm, quindi l alluminio è un conduttore. CPITOLO. Basados sulla Tabella., ua resstvtà d.6 μω- < mω-, qud l allumo è u coduttore.. Basados sulla Tabella., ua resstvtà d 0 5 Ω- > 0 5 Ω-, qud l dossdo d slco è u solate.. I max 0 7 ( 5μm)μm.4 ( )

Dettagli

Minicorso Controllo Statistico di Processo

Minicorso Controllo Statistico di Processo MIICORSO: Cotrollo Statistico di Procsso art 4/5 di Adra Saviao Part 4 Miicorso Cotrollo Statistico di Procsso di Adra Saviao L fruz cumulativ, rmssa L distribuzioi discrt L distribuzioi cotiu Distribuzioi

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI

INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI Gnralità INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI Una acchina lttrica rotant è un convrtitor di nrgia ccanica in lttrica (gnrator) o, vicvrsa, di nrgia lttrica in ccanica (otor). Il fnono

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

M. Usai Circuiti digitali 7_3 1

M. Usai Circuiti digitali 7_3 1 Stima dllo spttro I molt applicazioi si è itrssati al calcolo dllo spttro di u sgal campioato: spttro di dsità di rgia o; spttro di dsità di potza. La FFT può ssr utilizzata a qusto scopo. Occorr cosidrar

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO

ESAME DI STATO DI LICEO SCIENTIFICO Ssso ordara sprmtal 8 9 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PIANO NAZIONALE INFORMATICA Tma d: MATEMATICA Il caddato rsolva uo d du problm rspoda a 5 qust dl qustoaro. PROBLEMA Sa la

Dettagli

Caso studio 4. La media geometrica. Esempio

Caso studio 4. La media geometrica. Esempio Caso studo 4 U vsttor dv dcdr s vstr l suo captal d 0.000 uro obblazo a tasso sso o a tasso varabl. Il tasso sso d trss ch l v proposto è dl 4% auo, pr u vstmto a 5 a. Pr l obblazo a tasso varabl l v vc

Dettagli

( ) mentre: Se si fa l ipotesi SVEA cioè di inviluppo del campo lentamente variabile lungo z:

( ) mentre: Se si fa l ipotesi SVEA cioè di inviluppo del campo lentamente variabile lungo z: I B PROPGTION THOD (BP) ssga il cap i pr sudiar l vlui è cssari calclar il valr i quidi:. Si suppga ch il cap sia craic uidirial si prpaghi lla diri psiiva dll ass. Si par dall quai scalar dll d di Hlhl

Dettagli

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data.

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data. LE FRAZIONI La frazion è un oprator ch opra su una qualsiasi grandzza ch da com risultato una grandzza omogna a qulla data. AB (Il sgmnto AB è stato diviso i tr parti sono stat prs du) Una frazion è scritta

Dettagli