ESERCITAZIONI 1 (vers. 1/11/2013)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESERCITAZIONI 1 (vers. 1/11/2013)"

Transcript

1 ESERCITAZIONI 1 (vers. 1/11/2013 Daiela De Caditiis tutoraggio MAT/06 Igegeria dell Iformazioe - sede di Latia, prima qualche richiamo di teoria... CALCOLO COMBINATORIO Il pricipio fodametale del calcolo combiatorio sostiee che dovedo mettere isieme 1 scelte co 2 altre scelte, se esse soo idipedeti, allora il umero totale di scelte che posso fare é 1 2. Es. Se ell armadio ci soo 5 giacche e 6 paia di pataloi, posso scegliere u vestito (giacca+pataloe i modi diversi. Di seguito elechiamo u pó di regole per il calcolo delle disposizioi - combiazioi di u isieme fiito di oggetti. Importate é avere be presete la differeza tra disposizioi e combiazioi. Nelle disposizioi ha importaza l ordie co cui si presetao gli oggetti e duque ua disposizioe di k oggetti é ua k-pla di valori (v 1, v 2,..., v k, metre elle combiazioi l ordie o ha importaza e duque ua combiazioe di k oggetti é u isieme di k oggetti {v 1, v 2,..., v k }. Disposizioi semplici di oggetti su k posti,(d,k co k, Soo tutti i modi possibili di disporre (cioe di creare disposizioi diverse di oggeti distiti su k posti. Poiché per il primo posto ho scelte diverse, per il secodo posto ho 1 scelte diverse,..., per il k-esimo posto ho k + 1 scelte diverse, il totale delle possibili disposizioi di oggetti distiti su k posti é dato da D,k ( 1( 2 ( k + 1! ( k!. (1 Quado k allora le disposizioi di oggetti distiti su posti soo dette permutazioi. Dalla formula (1 si ricava che le permutazioi di oggetti soo apputo! ( 1( Es. Quate soo le sequeze umeriche di tre cifre distite scelte i {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}? La risposta é D 10, ! 7! 720 Es. I quati modi diversi é possibile aagrammare la parola ROMA? 1

2 La risposta é i 4!24 modi diversi che soo apputo le possibili permutazioi di 4 oggetti/lettere distite su 4 posti. Combiazioi semplici di oggetti distiti su k posti, (C,k co k Soo tutti i modi possibili di combiare (cioe di creare combiazioi diverse, sottisiemi diversi di umerositá k a partire da oggeti distiti. Poiché per ciascua disposizioe delle D,k! ( k! possibili si possoo permutare i k oggetti che la compogoo i k! modi diversi otteedo la stessa combiazioe/isieme/gruppo di k oggetti, per cotare le possibili combiazioi di oggetti distiti su k posti é sufficiete dividere il umero delle disposizioi per k!. Quello che si ottiee é oto come coefficiete biomiale C,k valgoo le segueti proprietá: i 0! 1 ii ( 0 1 iii ( 1 iv ( 1 v ( ( k vi ( k k ( 1 k ( + 1 k 1! k!( k! (. (2 k Es. I quati modi diversi si possoo dividere 20 bambii i due squadre da 10? Nella composizioe della squadra o ha importaza l ordie co cui si elecao i membri e duque la risposta é il umero di combiazioi/sottogruppi di umerositá 10 che si possoo fare a partire da 20 oggetti/bambii distiti: ( Es. I quati modi diversi si possoo dividere 20 bambii i due squadre ua composta da 5 bambii e l altra composta da 15 bambii? La risposta é il umero di combiazioi/sottogruppi di umerositá 5 che si possoo fare a partire da 20 oggetti/bambii distiti: ( Chiaramete per ogi squadra di 5 bambii automaticamete rimae fissata l altra squadra ( di 15 bambii. La risposta ifatti poteva ache essere data co 20 ( Disposizioi di oggetti (o distiti su posti Suppoiamo di voler cotare i modi diversi i cui possiamo disporre oggetti su posti sapedo che degli oggetti 1, 2,.., r soo idistiguibili tra loro ( r. 2

3 Poiché i ua qualuque permutazioe degli oggetti si possoo permutare tra loro gli 1 oggetti uguali seza poter distiguere differeze, e cosi gli 2 oggetti uguali,.. gli r oggetti uguali, si coclude che il umero delle possibili disposizioi di oggetti distiti i r classi diverse di umerositá 1, 2,..., r é (! r 1! 2! r!, (3 questa quatitá é detta coefficiete multiomiale. Il coefficiete multiomiale serve ache a calcolare i modi possibili di partizioare u isieme di oggetti distiti i umerositá date r. Ifatti se devo creare r sottogruppi a partire dall isieme di parteza di cardialitá posso creare i ( 1 modi diversi u sottoisieme di cardialitá 1 a partire dagli oggetti dati, poi dagli 1 oggetti rimasti posso creare i ( 1 2 modi diversi u sottoisieme di cardialitá 2 e cosi via dagli r 1 2 r 1 oggetti rimasti posso creare i u uico modo ( r r u sottoisieme di cardialitá r. Il totale delle possibili diverse partizioi é duque dato dal seguete prodotto ( ( ( ( r r (! r 1! 2! r! Abbiamo duque visto come la stessa quatitá, per l apputo il coefficiete multiomiale, puó essere usato i due situazioi totalmete diverse. Nella prima, gli oggetti avevao umerositá diverse e veivao disposti i ua disposizioe, ella secoda gli oggetti erao tutti distiti e veivao partizioati i gruppi di umerositá diverse. Ecco due esempi delle due situazioi. Es. I quati modi diversi posso aagrammare la parola FARFALLA? Poiché tra le 8 lettere/oggetti che compogoo la parola, ci soo 3 A, 2 F, 2 L e ua R, i possibili aagrammi dela parola data soo 8! 3!2!2! Es. I quati modi diversi posso formare 3 squadre di rispettivamete 5, 10 e 15 compoeti a partire da u isieme di 30 bambii? La risposta é il umero di partizioi di u isieme di 30 oggetti/bambii distiti i sottoisiemi di umerositá 5,10,15 e duque i modi diversi soo 30! ( !10!15!. Tutto ció che é stato detto fiora si basa sull ipotesi che ogi oggetto dell isieme di parteza viee cotato/utilizzato ua volta sola, quest ipotesi i uo schema di estrazioi da ure rietra ell ipotesi di estrazioe seza rimpiazzameto. Tutto cio che e stato detto fiora ifatti puó essere visto come il coteggio dei risultati possibili dell estrazioe di k pallie da ura coteete pallie. I particolare se gli oggetti soo distiti le pallie soo da cosiderarsi distite, se gli oggetti soo distiti i classi di umerositá 1, 2,.., r allora 3

4 l ura puó pesarsi composta da 1 pallie idistiguibili (es. stesso colore, 2 pallie idistiguibili etc... Negli schemi i cui si soo cotate le possibili disposizioi su k posti si soo cotati i possibili modi di estrarre i sequeza k pallie, metre egli schemi i cui si soo cotate le possibili combiazioi su k posti si soo cotati i possibili modi di estrarre i blocco k pallie dall ura. A completameto dello schema di estrazioi da ure diamo il umero di disposizioi di oggetti distiti su k posti co ripetizioi. Esso rappreseta il umero di possibili diverse sequeze di k estrazioi a partire da u ura composta da pallie diverse co rimpiazzameto. Il umero delle disposizoi di oggetti distiti su k posti co ripetizioe é ˆD,k k ció é facilmete dimostrato pesado che ad ogi estrazioe si hao sempre le possibilitá diverse di estrarre ua pallia. ESERCIZI: 1 Quati soo tutti i possibili sottisiemi di Ω {1, 2,, }, (compreso l isieme vuoto e Ω? I altre parole qual é la cardialitá dell isieme delle parti di Ω, P(Ω? Soluzioe 1: il umero totale dei sottoisiemi é la somma di quelli co 0 elemeti (C,0 ( 0, piú quelli co 1 elemeto (C,1 ( 1, piú quelli co 2 (C,2 ( ( 2 e cosí via. Dalla formula del biomio di Newto segue che ( 0 + ( ( Oppure u modo alterativo di risolvere questo esercizio é il sguete: idichiamo co 0 oppure 1 l asseza oppure la preseza di ciscu elemeto di Ω i u geerico suo sottisieme, per cui, per esempio, l isieme vuoto é costitutito dalla sequeza di tutti zeri ecc., allora il umero dei possibili sottisiemi di Ω é dato dal umero di disposizioi di 2 oggetti (0 e 1 su posti co ripetizioe e cioé apputo ˆD 2, 2. 2 I quati modi 5 buste umerate possoo essere assegate a 7 persoe, se ogua di esse riceve ua busta? Soluzioe 2: il umero di modi diversi é dato dalle disposizioi di 7 oggetti distiti (le persoe su 5 posti: D 7,5 7! (7 5!. Ifatti ho 7 scelte per la prima busta/posto, 6 scelte per la secoda busta/posto, ecc. 3 I quati modi 5 buste umerate possoo essere assegate a 7 persoe? Soluzioe 3: o essedo specificato altrimeti ogi persoa puó ricevere piú di ua busta e duque il umero dei modi diversi é dato dalle Disposizioi di 7 oggetti distiti su 5 posti co ripetizioe, ˆD7,

5 4 I quati modi 5 buste idistiguibili possoo essere assegate a 7 persoe, se ogua di esse riceve ua busta? Soluzioe 4: I modi diversi equivalgoo ai modi diversi che ho di estrarre combiazioi di 5 pallie/persoe a partire da u ura di 7 pallie/persoe: C 7,5 ( Quati meú completi diversi puó servire u ristorate che i u gioro dispoga di 4 primi; 5 secodi; 2 tipi di dolce? Soluzioe 6 se le scelte soo idipedeti/svicolate allora possiamo scegliere u primo i 4 modi diversi, u secodo i 5 modi diversi e u dolce i 2 modi diversi e duque (per il pricipio del calcolo combiatorio avremo meu diversi se le scelte o fossero state svicolate, besi la scelta di u tipo di secodo fosse dipesa dalla scelta del primo piatto, allora il coto sarebbe stato diverso. 7 Ua particella é posizioata i u puto di ua retta e viee spostata di ua lughezza uitaria a destra o a siistra i dipedeza del risultato del lacio di ua moeta (testa si sposta di +1 (croce si sposta di 1. Calcolare il umero di traiettorie distite che portao la particella ella posizioe k dopo laci. Soluzioe 7 Idichiamo co T il umero di teste uscite e co C il umero di croci uscite. Per trovarsi dopo passi ella posizioe k la particella deve aver compiuto k passi a destra i pi di quelli che ha compiuto a siistra e duque deve risultare T C k, ioltre sappiamo che il umero totale di passi é pari ad e duque deve ache valere il vicolo T + C. Risolvedo il sistema lieare { T C k T + C { T ( + k/2 C ( k/2 segue che il umero di traiettorie distite che portao la particella dopo pasi ella posizioe k é dato dal umero di possibili disposizioi di oggeti su posti (permutazioi di di cui T ( + k/2 uguali tra loro e i restati C ( k/2 uguali tra loro e duque vale (! C! T! C T 8 Il codice ASCII é u codice biario a 8 bit ed é costituito da ua sequeza di 0 e di 1. Quati simboli diversi si possoo rappresetare co il codice ASCII? Soluzioe 8 Il umero di simboli diversi rappresetabili co il codice ASCII é dato dal umero di disposizioi di 2 oggetti distiti su 8 posti co ripetizioe ˆD 2,

6 9 Si dispoe di libri di matematica e di m libri di fisica. I quati modi diversi posso disporli su uo scaffale sistemadoli peró sempre cotigui per materia? Soluzioe 9 Gli libri di matematica possoo essere disposti i! modi diversi ed aalogamete gli m libri di fisica possoo essere dipsosti i m! modi diversi. Per oguma delle!m! possibili disposizioi ho ua doppia scelta quella di dipsorre prima quelli di matematica e poi quelli di fisica oppure viceversa e duque i totale avró 2! m! modi diversi. 10 (Ross, cap1,.15 Ua classe di tago argetio ha 22 studeti di cui 10 doe e 12 uomii. I quati modi si possoo formare 5 coppie? Soluzioe 10 Se avessimo solo 5 doe e 5 uomii potremmo creare u set di 5 coppie diverse i ! modi diversi perché la prima doa ha 5 possibilitá, la secoda e ha 4 e cosi via... Dalla classe di studeti peró abbiamo ( ( modi diversi di scegliere 5 uomii e 5 doe e duque i totale avremo ( ( ! modi di scegliere 5 coppie. Da otare che u set di 5 coppie é diverso da u altro set di 5 coppie ache se solo ua delle coppie o coicide. 11 (Ross, cap1,.28 I quati modi si possoo assegare 8 uovi maestri a 4 scuole? rispodere alla stessa domada se ogi scuola deve ricevere 2 maestri. Soluzioe 11 Idichiamo co A, B, C, e D i omi delle 4 scuole. No essedoci alcu vicolo, ogi maestro puó essere assegato ad ua qualuque delle 4 scuole idipedetemete dagli altri. Duque il umero di modi possibili é il umero di disposizioi di 4 oggetti/pallie su 8 posti co rimpiazzameto (pesado che i maestri siao 8 posti da riempire co ua qualuque delle biglie co simboli A, B, C e D e duque ˆD 4, Se ivece ciascua scuola deve ricevere 2 maestri, allora o pesiamo all ura costituita da 8 biglie (di cui 2 co lettera A, 2 co la lettera B, 2 co la lettera C e 2 co la lettera D e cotiamo le possibili disposizioi seza rimpiazzameto di 8 oggetti/pallie (distiti i 4 tipologie diverse co umerositá 2 ciascua su 8 posti ed otteiamo ( , oppure arriviamo allo stesso risultato utilizzado il coefficiete multiomiale che ci dice i quati modi diversi posso suddividere u isieme di 8 maestri i 4 sottogruppi di umerositá 2 ciascuo. 6

Calcolo Combinatorio (vers. 1/10/2014)

Calcolo Combinatorio (vers. 1/10/2014) Calcolo Combiatorio (vers. 1/10/2014 Daiela De Caditiis modulo CdP di teoria dei segali Igegeria dell Iformazioe - sede di Latia, CALCOLO COMBINATORIO Pricipio Fodametale del Calcolo Combiatorio: Si realizzio

Dettagli

Tutorato di Probabilità 1, foglio I a.a. 2007/2008

Tutorato di Probabilità 1, foglio I a.a. 2007/2008 Tutorato di Probabilità, foglio I a.a. 2007/2008 Esercizio. Siao A, B, C, D eveti.. Dimostrare che P(A B c ) = P(A) P(A B). 2. Calcolare P ( A (B c C) ), sapedo che P(A) = /2, P(A B) = /4 e P(A B C) =

Dettagli

Appunti complementari per il Corso di Statistica

Appunti complementari per il Corso di Statistica Apputi complemetari per il Corso di Statistica Corsi di Laurea i Igegeria Edile e Tessile Ilia Negri 24 settembre 2002 1 Schemi di campioameto Co il termie campioameto si itede l operazioe di estrazioe

Dettagli

Elementi di Calcolo Combinatorio

Elementi di Calcolo Combinatorio Elemeti di Calcolo Combiatorio Alessadro De Gregorio Sapieza Uiversità di Roma alessadro.degregorio@uiroma1.it Idice 1 Premessa 1 2 Permutazioi 2 3 Disposizioi 3 4 Combiazioi 4 5 Il coefficiete multiomiale

Dettagli

Calcolo combinatorio. Disposizioni - Permutazioni - Combinazioni Coefficienti binomiali - Binomio di Newton Disposizioni semplici.

Calcolo combinatorio. Disposizioni - Permutazioni - Combinazioni Coefficienti binomiali - Binomio di Newton Disposizioni semplici. Calcolo combiatorio. Disposizioi - Permutazioi - Combiazioi Coefficieti biomiali - Biomio di Newto Disposizioi semplici. Disposizioi semplici di oggetti di classe soo tutti gli allieameti che è possibile

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO Che cosa sigifica cotare Tutti coosciamo la successioe dei umeri iteri Naturali N = {0, 1,,, } si tratta di ua struttura metale fodametale, chiaramete presete alla ostra ituizioe che

Dettagli

MATEMATICA DEL DISCRETO elementi di calcolo combinatorio. anno acc. 2009/2010

MATEMATICA DEL DISCRETO elementi di calcolo combinatorio. anno acc. 2009/2010 elemeti di calcolo combiatorio ao acc. 2009/2010 Cosideriamo u isieme fiito X. Chiamiamo permutazioe su X u applicazioe biuivoca di X i sè. Ad esempio, se X = {a, b, c}, le permutazioi distite soo 6 e

Dettagli

SULLE PARTIZIONI DI UN INSIEME

SULLE PARTIZIONI DI UN INSIEME Claudia Motemurro Ricordiamo la SULLE PRTIZIONI DI UN INSIEME Defiizioe: Ua partizioe di u isieme è ua famiglia { sottoisiemi o vuoti di X tali che: - X è l uioe degli isiemi X i (i I ), cioè X = U i X

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Trieale i Matematica Calcolo delle Probabilità I doceti G. Nappo, F. Spizzichio Prova di martedì luglio tempo a disposizioe: 3 ore. Scrivere su ogi foglio NOME e COGNOME. Le risposte devoo

Dettagli

Aritmetica 2016/2017 Esercizi svolti in classe Seconda lezione

Aritmetica 2016/2017 Esercizi svolti in classe Seconda lezione Aritmetica 06/07 Esercizi svolti i classe Secoda lezioe Dare ua formula per 3 che o coivolga sommatorie Dato che sappiamo che ( + e ( + ( + 6 vogliamo esprimere 3 mediate, e poliomi i U idea possibile

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO 0. Itroduzioe Oggetto del calcolo combiatorio è quello di determiare il umero dei modi mediate i quali possoo essere associati, secodo prefissate regole, gli elemeti di uo stesso

Dettagli

In questo capitolo approfondiremo le nostre conoscenze su sequenze e collezioni,

In questo capitolo approfondiremo le nostre conoscenze su sequenze e collezioni, Cotare sequeze e collezioi Coteuto Sequeze e collezioi di elemeti distiti Sequeze e collezioi arbitrarie 3 Esercizi I questo capitolo approfodiremo le ostre coosceze su sequeze e collezioi, acquisedo gli

Dettagli

Elementi di calcolo combinatorio

Elementi di calcolo combinatorio Appedice A Elemeti di calcolo combiatorio A.1 Disposizioi, combiazioi, permutazioi Il calcolo combiatorio si occupa di alcue questioi iereti allo studio delle modalità secodo cui si possoo raggruppare

Dettagli

Calcolo Combinatorio

Calcolo Combinatorio Uiversità degli Studi di Palermo Facoltà di Ecoomia Dip. di Scieze Ecoomiche, Aziedali e Statistiche Apputi del corso di Matematica Geerale Calcolo Combiatorio Ao Accademico 2013/201 V. Lacagia - S. Piraio

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioi a.a. 2006/2007 C.d.L.: Igegeria per l Ambiete ed il Territorio, Igegeria Civile, Igegeria Gestioale, Igegeria dell Iformazioe C.d.L.S.: Igegeria Civile Estrazioi-II

Dettagli

1.2 IL PRINCIPIO FONDAMENTALE DEL CALCOLO COMBINATORIO

1.2 IL PRINCIPIO FONDAMENTALE DEL CALCOLO COMBINATORIO Aalisi combiatoria CAPITOLO 1 1.1 INTRODUZIONE Quello che segue è u tipico problema pratico che coivolge le probabilità. U sistema di comuicazioe cosiste di atee apparetemete idetiche che vegoo allieate

Dettagli

Calcolo combinatorio Premessa Calcolo Combinatorio

Calcolo combinatorio Premessa Calcolo Combinatorio Calcolo combiatorio Premessa Calcolo Combiatorio Cosideriamo u isieme di oggetti: G={a1,a2,a3, a} co 0, di atura qualuque ma perfettamete distiguibili l uo dall altro i base a qualche caratteristica, ad

Dettagli

Calcolo combinatorio

Calcolo combinatorio Calcolo combiatorio Il pricipio fodametale del calcolo combiatorio Il pricipio fodametale del calcolo combiatorio può essere euciato così: Se dobbiamo fare N scelte e la prima scelta può essere fatta i

Dettagli

Per questi argomenti ti consiglio anche di effettuare questo collegamento:

Per questi argomenti ti consiglio anche di effettuare questo collegamento: Prof. Roberto Milizia, presso Liceo Scietifico E. Ferdiado Mesage BR) UNITA 8. IL CALCOLO COMBINATORIO.. Itroduzioe al calcolo combiatorio.. I raggruppameti. 3. Esercizi vari co i raggruppameti. 4. Il

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57 Tracce di soluzioi di alcui esercizi di matematica - gruppo 42-57 4. Limiti di successioi Soluzioe dell Esercizio 42.. Osserviamo che a = a +6 e duque la successioe prede valori i {a,..., a 6 } e ciascu

Dettagli

Teoria degli insiemi : alcuni problemi combinatorici.

Teoria degli insiemi : alcuni problemi combinatorici. Teoria degli isiemi : alcui problemi combiatorici. Il calcolo combiatorio prede i cosiderazioe degli isiemi fiiti particolari e e cota l ordie. Questo può dar luogo ad iteressati e utili applicazioi. Premettiamo

Dettagli

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con Calcolo Combiatorio Adolfo Scimoe pag 1 Calcolo combiatorio Cosideriamo u isieme di oggetti di atura qualsiasi. Idicheremo questi oggetti co a1 a2... a. Co questi oggetti si voglioo formare dei gruppi

Dettagli

Principio di induzione: esempi ed esercizi

Principio di induzione: esempi ed esercizi Pricipio di iduzioe: esempi ed esercizi Pricipio di iduzioe: Se ua proprietà P dipedete da ua variabile itera vale per e se, per ogi vale P P + allora P vale su tutto Variate del pricipio di iduzioe: Se

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO Pricipio fodametale del calcolo combiatorio Se u eveto E si può presetare i modi e u secodo eveto E 2 si può maifestare i 2 modi, allora l eveto composto E E 2 si può presetare i modi. 2 ORDINE/ RIPETIZIONE

Dettagli

Passiamo ad una formula meno semplice dato che non sembra avere una facile interpretazione combinatoria. s m. m + k n r+m. (2.

Passiamo ad una formula meno semplice dato che non sembra avere una facile interpretazione combinatoria. s m. m + k n r+m. (2. 60 Cotare sequeze e collezioi Passiamo ad ua formula meo semplice dato che o sembra avere ua facile iterpretazioe combiatoria. Proposizioe. Siao r, s, m, N. Allora r s + s m ( ) =( ) m + r+m. (.) r Z Osservazioe.

Dettagli

STUDIO DEL LANCIO DI 3 DADI

STUDIO DEL LANCIO DI 3 DADI Leoardo Latella STUDIO DEL LANCIO DI 3 DADI Il calcolo delle probabilità studia gli eveti casuali probabili, cioè quegli eveti che possoo o o possoo verificarsi e che dipedoo uicamete dal caso. Tale studio

Dettagli

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI ALGEBRA I MODULO PROF. VERARDI - ESERCIZI Sezioe 1 NUMERI NATURALI E INTERI 2 1.1. Si dimostri per iduzioe la formula: N, k 2 "1( * " 3 ) " 3k +1(. 3 1.2. A) Si dimostri che per ogi a,b N +, N +, se a

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f x; = costate icogita Qual è il valore di? E verosimile

Dettagli

Algebra delle matrici

Algebra delle matrici Algebra delle matrici Prodotto di ua matrice per uo scalare Data ua matrice A di tipo m, e dato uo scalare r R, moltiplicado r per ciascu elemeto di A si ottiee ua uova matrice di tipo m, detta matrice

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

PROPRIETÀ DELLE POTENZE IN BASE 10

PROPRIETÀ DELLE POTENZE IN BASE 10 PROPRIETÀ DELLE POTENZE IN BASE Poteze i base co espoete itero positivo Prediamo u umero qualsiasi che deotiamo co la lettera a e u umero itero positivo che deotiamo co la lettera Per defiizioe (cioè per

Dettagli

Stima della media di una variabile X definita su una popolazione finita

Stima della media di una variabile X definita su una popolazione finita Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

Corso di Informatica

Corso di Informatica Corso di Iformatica Codifica dell Iformazioe Sistemi Numerici Per rappresetare ua certo quatità di oggetti è ecessaria ua covezioe o sistema umerico che faccia corrispodere ad ua sequeza di ua o più cifre,

Dettagli

A B C D E F. n n. Calcolo combinatorio. n n-1 n-2 n-3 n-4. n-5 6 n-k+1 k. n n-1. n n-1 n-2 n Permutazioni semplici di n oggetti

A B C D E F. n n. Calcolo combinatorio. n n-1 n-2 n-3 n-4. n-5 6 n-k+1 k. n n-1. n n-1 n-2 n Permutazioni semplici di n oggetti 1. Permutazioi semplici di oggetti Calcolo combiatorio Dato u isieme di oggetti, ad esempio lettere, si vuol sapere quati soo i possibili modi i cui esse possoo essere ordiate i ua fila. Il umero complessivo

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f ( x; ϑ) θ = costate icogita Qual è il valore di θ? E verosimile

Dettagli

Sottospazi associati a matrici e forma implicita. Sottospazi associati a una matrice Dimensione e basi con riduzione Sottospazi e sistemi. Pag.

Sottospazi associati a matrici e forma implicita. Sottospazi associati a una matrice Dimensione e basi con riduzione Sottospazi e sistemi. Pag. Spazi vettoriali Sottospazi associati a ua matrice Dimesioe e basi co riduzioe Sottospazi e sistemi 2 Pag. 1 2006 Politecico di Torio 1 Spazi delle righe e delle coloe Sia A M m, ua matrice m x. Allora

Dettagli

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

Calcolo combinatorio n

Calcolo combinatorio n 1. Permutazioi semplici di oggetti Calcolo combiatorio Dato u isieme di oggetti, ad esempio lettere, si vuol sapere quati soo i possibili modi i cui esse possoo essere ordiate i ua fila. Il umero complessivo

Dettagli

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride?

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride? Calcolo combiatorio sempi Qual è il umero delle badiere tricolori a righe verticali che si possoo formare co i 7 colori dell iride? Dobbiamo calcolare il umero delle disposizioi semplici di 7 oggetti di

Dettagli

L INFORMAZIONE E LE CODIFICHE

L INFORMAZIONE E LE CODIFICHE L INFORMAZIONE E LE CODIFICE UN PO DI STORIA - La Teoria dell iformazioe è ata ella secoda metà del 900, sebbee il termie iformazioe sia atico (dal latio mettere i forma) - I omi più importati soo Nyquist,

Dettagli

1 Progressioni aritmetiche e geometriche

1 Progressioni aritmetiche e geometriche Corso di Combiatoria A Machì Dispesa I Progressioi aritmetiche e geometriche Sia u 0,u,u,,u k,u k+,,u, ( ua successioe di umeri Se la differeza u k+ u k tra due termii successivi è costate la ( prede il

Dettagli

Cenni di Calcolo Combinatorio

Cenni di Calcolo Combinatorio Cei di Calcolo Combiatorio 28 marzo 2011 AVVISO: I preseti apputi possoo coteere (azi sicuramete coterrao) errori e/o ripetizioi. Essi soo ifatti opera di vari collage e, per ovvie questioi di tempo, o

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

Calcolo delle Probabilità 2012/13 Foglio di esercizi 3

Calcolo delle Probabilità 2012/13 Foglio di esercizi 3 Calcolo delle Probabilità 01/13 Foglio di esercizi 3 Probabilità codizioale e idipedeza. Esercizio 1. Sia B u eveto fissato di uo spazio di probabilità (Ω, A, P), co P(B) > 0. Si mostri che P( B) è l uica

Dettagli

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge.

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge. Le successioi A parole ua successioe é u isieme ifiito di umeri disposti i u particolare ordie. Piú rigorosamete, ua successioe é ua legge che associa ad ogi umero aturale u altro umero (ache o aturale):

Dettagli

GLI INSIEMI NUMERICI

GLI INSIEMI NUMERICI GLI INSIEMI NUMERICI R 2 π 2, _ -,8 2,89 Q Z N -2 2 28-87 -87 _, 7,76267 7 - e 2,7-7 -,6 _ -,627 7 6 R Numeri Reali Q Numeri Razioali Z Numeri Iteri Relativi N Numeri Naturali Dal diagramma di Eulero-Ve

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

Lezione 4. Gruppi di permutazioni

Lezione 4. Gruppi di permutazioni Lezioe 4 Prerequisiti: Applicazioi tra isiemi Lezioi e Gruppi di permutazioi I questa lezioe itroduciamo ua classe ifiita di gruppi o abeliai Defiizioe 41 ia X u isieme o vuoto i dice permutazioe su X

Dettagli

Esercizi di Calcolo delle Probabilità e Statistica Matematica

Esercizi di Calcolo delle Probabilità e Statistica Matematica Esercizi di Calcolo delle Probabilità e Statistica Matematica Lucio Demeio Dipartimeto di Igegeria Idustriale e Scieze Matematiche Uiversità Politecica delle Marche 1. Esercizio (31 marzo 2012. 1). Al

Dettagli

Esercizi di Probabilità e Statistica della 2 a settimana (Corso di Laurea in Matematica, Università degli Studi di Padova).

Esercizi di Probabilità e Statistica della 2 a settimana (Corso di Laurea in Matematica, Università degli Studi di Padova). Esercizi di Probabilità e Statistica della 2 a settimaa (Corso di Laurea i Matematica, Uiversità degli Studi di Padova). Esercizio. Sia (Ω, A, P) uo spazio probabilizzato e B A o trascurabile. Dimostrare

Dettagli

3.1 Il principio di inclusione-esclusione

3.1 Il principio di inclusione-esclusione Capitolo 3 Calcolo combiatorio 3.1 Il pricipio di iclusioe-esclusioe Il calcolo combiatorio prede i cosiderazioe degli isiemi fiiti particolari e e cota il umero di elemeti. Questo può dar luogo ad iteressati

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

Capitolo III : Calcolo combinatorio

Capitolo III : Calcolo combinatorio Liceo Lugao 1, 2011-2012 3N (Luca Rovelli) Capitolo III : Calcolo combiatorio 1 Itroduzioe I matematica, co Combiatoria 1 si idica la disciplia che si occupa dello studio degli isiemi fiiti i cui elemeti

Dettagli

(1 2 3) (1 2) Lezione 10. I gruppi diedrali.

(1 2 3) (1 2) Lezione 10. I gruppi diedrali. Lezioe 0 Prerequisiti: Simmetrie di poligoi regolari. Gruppi di permutazioi. Cetro di u gruppo. Cetralizzate di u elemeto di u gruppo. Riferimeto al testo: [PC] Sezioe 5.4 I gruppi diedrali. Ogi simmetria

Dettagli

INFERENZA o STATISTICA INFERENTE

INFERENZA o STATISTICA INFERENTE INFERENZA o STATISTICA INFERENTE Le iformazioi sui parametri della popolazioe si possoo otteere sia mediate ua rilevazioe totale (o rilevazioe cesuaria) sia mediate ua rilevazioe parziale (o rilevazioe

Dettagli

Calcolo combinatorio. Introduzione. Paolo Siviglia. Calcolo combinatorio 1

Calcolo combinatorio. Introduzione. Paolo Siviglia. Calcolo combinatorio 1 Paolo Siviglia Calcolo combiatorio Itroduzioe I questa parte della matematica vegoo affrotati i problemi riguardati lo studio dei raggruppameti che si possoo realizzare co gli elemeti di u isieme. Problemi

Dettagli

Esame di Probabilità e Statistica del 9 luglio 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Probabilità e Statistica del 9 luglio 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Probabilità e Statistica del 9 luglio 27 Corso di Laurea Trieale i Matematica, Uiversità degli Studi di Padova). Cogome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto fiale Attezioe: si cosegao

Dettagli

TEOREMA DELLA PROIEZIONE, DISUGUAGLIANZA DI BESSEL E COMPLEMENTI SULLE SERIE DI FOURIER

TEOREMA DELLA PROIEZIONE, DISUGUAGLIANZA DI BESSEL E COMPLEMENTI SULLE SERIE DI FOURIER TEOREMA DELLA PROIEZIONE, DISUGUAGLIANZA DI BESSEL E COMPLEMENTI SULLE SERIE DI FOURIER I uo spazio euclideo di dimesioe fiita, ad esempio R 3, cosideriamo u sottospazio, ad esempio u piao passate per

Dettagli

Precorso di Matematica, aa , (IV)

Precorso di Matematica, aa , (IV) Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe

Dettagli

1 Congruenze. Definizione 1.1. Siano a, b, n Z con n 2, definiamo a b (mod n) se n a b.

1 Congruenze. Definizione 1.1. Siano a, b, n Z con n 2, definiamo a b (mod n) se n a b. 1 Cogrueze Defiizioe 1.1. Siao a, b, Z co 2, defiiamo a b (mod ) se a b. Proposizioe 1.2. 2 la cogrueza mod è ua relazioe di equivaleza su Z. a a () perché a a a b () b a () a b () b c () a b b c a c =

Dettagli

1 Congruenze. Definizione 1.1. a, b, n Z n 2, allora definiamo a b (mod n) se n a b.

1 Congruenze. Definizione 1.1. a, b, n Z n 2, allora definiamo a b (mod n) se n a b. 1 Cogrueze Defiizioe 1.1. a, b, Z 2, allora defiiamo a b (mod ) se a b. Proposizioe 1.2. 2 la cogrueza mod è ua relazioe di equivaleza su Z. a a () perché a a a b () b a () a b () b c () a b b c a c =

Dettagli

La formula del binomio

La formula del binomio La formula del biomio Ua spiegazioe elemetare Riccardo Dossea 7 dicembre 5 I questo articolo vogliamo presetare ua dimostrazioe elemetare, che eviti espliciti riferimeti di carattere combiatorio, della

Dettagli

Titolo della lezione. Campionamento e Distribuzioni Campionarie

Titolo della lezione. Campionamento e Distribuzioni Campionarie Titolo della lezioe Campioameto e Distribuzioi Campioarie Itroduzioe Itrodurre le idagii campioarie Aalizzare il le teciche di costruzioe dei campioi e di rilevazioe Sviluppare il cocetto di distribuzioe

Dettagli

Appunti di STATISTICA

Appunti di STATISTICA Apputi di STATISTICA! Distribuzioe espoeziale X v.a. cotiua, R X = (0,+ ) Si dice che X ha distribuzioe espoeziale a parametro f X = >0 E (X) = 1/ Var (X) = 1/ e - x x>0 0 altrove (umero reale) se la p.d.f.

Dettagli

Esercizi di econometria: serie 2

Esercizi di econometria: serie 2 Esercizi di ecoometria: serie Esercizio Per quali delle segueti uzioi di desità cogiuta le variabili casuali ed soo idipedeti?......3.4.5..5 (a) (b) 3 4....3.6.9..4...5..5 3.. 3.8..4.6 (c) (d) Nel caso

Dettagli

Capitolo Parte IV

Capitolo Parte IV Capitolo 1 11 Parte IV Exercise 11 Siao A, B,C tre eveti i uo spazio di probabilità discreto (Ω, P) Si assuma che A,B,C siao idipedeti Si mostri che (1) A B è idipedete da C () A B è idipedete da C Solutio

Dettagli

Appendice 2. Norme di vettori e matrici

Appendice 2. Norme di vettori e matrici Appedice 2. Norme di vettori e matrici La ozioe esseziale per poter defiire il cocetto di distaza e lughezza i uo spazio vettoriale lieare è quello di orma. Il cocetto di orma è ua geeralizzazioe del cocetto

Dettagli

13/10/16. Codice 1: Italiana 00. Macchina 00 Razzo 01 Aereo 10

13/10/16. Codice 1: Italiana 00. Macchina 00 Razzo 01 Aereo 10 Rappresetazioe dell'iformazioe I calcolatori elettroici soo macchie i grado di elaborare iformazioi trasformadole i altre iformazioi. Nel modo dell'iformatica, itediamo i modo più restrittivo per iformazioe

Dettagli

Unità Didattica N 32 Grandezze geometriche omogenee e loro misura

Unità Didattica N 32 Grandezze geometriche omogenee e loro misura Uità Didattica N 3 Uità Didattica N 3 01) Classi di gradezze omogeee 0) Multipli e sottomultipli di ua gradezza geometrica 03) Gradezze commesurabili ed icommesurabili 04) Rapporto di due gradezze 05)

Dettagli

Soluzioni Esercizi Capitolo 3

Soluzioni Esercizi Capitolo 3 Soluzioi Esercizi Capitolo 3 Esercizio 1 a. I u mazzo di carte fracesi lo spazio campioario è costituito da 52 elemeti. Nel caso dell'estrazioe di u fate, il umero di eveti favorevoli è 4, per cui la probabilità

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

Calcolo differenziale e integrale

Calcolo differenziale e integrale Calcolo differeziale e itegrale fuzioi di ua variabile reale Gabriele H. Greco Dipartimeto di Matematica Uiversità di Treto 385 POVO Treto Italia www.sciece.uit.it/ greco a.a. 5-6: Apputi del corso di

Dettagli

Calcolo delle Probabilità Distribuzioni di probabilità

Calcolo delle Probabilità Distribuzioni di probabilità Calcolo delle Probabilità Distribuzioi di probabilità Istituzioi di Matematiche Scieze Naturali Sergio Cosole Tora alla prima pagia Distribuzioi di probabilità Facciamo u istogramma le cui barre rappresetao

Dettagli

Appunti di Matematica

Appunti di Matematica 1.2 I umeri reali Nel riassuto delle cose da sapere prima di iiziare il corso avevamo ricordato la descrizioe dei umeri reali come espressioi decimali possibilmete é limitate é periodiche ; il loro isieme

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli

Delimitazioni inferiori e superiori alla complessita di un problema

Delimitazioni inferiori e superiori alla complessita di un problema Delimitazioi iferiori e superiori alla complessita di u problema Alcue teciche Nozioi prelimiari Ua ozioe prelimiare: albero k-ario completo U U albero k-ario è completo se se tutti i i odi iteri hao k

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioi di Matematica 1 - I modulo Luciao Battaia 4 dicembre 2008 L. Battaia - http://www.batmath.it Mat. 1 - I mod. Lez. del 04/12/2008 1 / 28 -2 Sottosuccessioi Grafici Ricorreza Proprietà defiitive Limiti

Dettagli

Cenni di topologia di R

Cenni di topologia di R Cei di topologia di R. Sottoisiemi dei umeri reali Studieremo le proprietà dei sottoisiemi dei umeri reali, R, che hao ad esempio la forma: = (, ) (,) 6 8 = [,] { ;6;8} { } = (, ) (,) [, + ) Defiizioe:

Dettagli

Esercitazione n 3. 1 Successioni di funzioni. Esercizio 1: Studiare la convergenza in (0, 1) della successione {f n } dove f n (x) =

Esercitazione n 3. 1 Successioni di funzioni. Esercizio 1: Studiare la convergenza in (0, 1) della successione {f n } dove f n (x) = Esercitazioe 3 Successioi di fuzioi Esercizio : Studiare la covergeza i (0, ) della successioe {f } dove f (x) = metre Sol.: Si verifica facilmete che lim f (x) = 0 x (0, ) lim sup f (x) = lim = + (0,)

Dettagli

Caso studio 9. Distribuzioni doppie. Esempi

Caso studio 9. Distribuzioni doppie. Esempi 7/3/16 Caso studio 9 Si cosideri la seguete tabella che riporta i dati dei Laureati el 4 dei tre pricipali gruppi di corsi di laurea, per codizioe occupazioale a tre ai dalla laurea (Fote: ISTAT, Idagie

Dettagli

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri.

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri. Laboratorio di Matematica, A.A. 009-010; I modulo; Lezioi II e III - schema. Limiti e isiemi aperti; SB, Cap. 1 Successioi di vettori; SB, Par. 1.1, pp. 3-6 Itori sferici aperti. Nell aalisi i ua variabile

Dettagli

Soluzioni degli esercizi del corso di Analisi Matematica I

Soluzioni degli esercizi del corso di Analisi Matematica I Soluzioi degli esercizi del corso di Aalisi Matematica I Prof. Pierpaolo Natalii Roberta Biachii & Marco Pezzulla ovembre 015 FOGLIO 1 1. Determiare il domiio e il sego della fuzioe ( ) f(x) = arccos x

Dettagli

,5 882,5 894,5 906,5 918,5 930,5 942,5 954,5

,5 882,5 894,5 906,5 918,5 930,5 942,5 954,5 Il 16 dicembre 015 ero a Napoli. Ad u agolo di Piazza Date mi soo imbattuto el "matematico di strada", come egli si defiisce, Giuseppe Poloe immerso el suo armametario di tabelle di umeri. Il geiale persoaggio

Dettagli

Probabilità e Statistica I

Probabilità e Statistica I Probabilità e Statistica I Elvira Di Nardo (Dipartimeto di Matematica) Uiversità degli Studi della Basilicata e-mail:diardo@uibas.it http://www.uibas.it/uteti/diardo/home.html Tel:097/05890 Prerequisiti:

Dettagli

Teorema delle progressioni di numeri primi consecutivi con distanza sei costante

Teorema delle progressioni di numeri primi consecutivi con distanza sei costante Teorema delle progressioi di umeri primi cosecutivi co distaza sei costate A cura del Gruppo Eratostee - http://www.gruppoeratostee.com/) Co la collaborazioe di Eugeio Amitrao ( http://www.atuttoportale.it/)

Dettagli

Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09

Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09 Probabilità, laurea trieale i Matematica II prova scritta sessioe estiva a.a. 8/9. U ura cotiee dadi di cui la metà soo equilibrati, metre gli altri soo stati maipolati i modo che, per ciascuo di essi,

Dettagli

CODICI E GRAFI Stefano Bertorelli Dottorato in Ingegneria dell Informazione XVIII ciclo Anno Accademico 2003/2004 Corso di Matematica Discreta

CODICI E GRAFI Stefano Bertorelli Dottorato in Ingegneria dell Informazione XVIII ciclo Anno Accademico 2003/2004 Corso di Matematica Discreta CODICI E GRAFI Stefao Bertorelli Dottorato i Igegeria dell Iformazioe XVIII ciclo Ao Accademico 00/00 Corso di Matematica Discreta Riassuto I questo lavoro si mostra come sia possibile geerare codici biari

Dettagli

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni A Alcui cocetti di statistica: medie, variaze, covariaze e regressioi Esistoo svariati modi per presetare gradi quatità di dati. Ua possibilità è presetare la cosiddetta distribuzioe, raggruppare cioè

Dettagli

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti:

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti: Quesito. I segueti dati si riferiscoo ai tempi di reazioe motori a uo stimolo lumioso, espressi i decimi di secodo, di u gruppo di piloti: 2, 6 3, 8 4, 8 5, 8 2, 6 4, 0 5, 0 7, 2 2, 6 4, 0 5, 0 7, 2 2,

Dettagli

Cenni di Calcolo di probabilità e. Il concetto di probabilità

Cenni di Calcolo di probabilità e. Il concetto di probabilità Cei di Calcolo di probabilità e Statistica Dario Maio http://www.csr.uibo.it/~maio/ dmaio@deis.uibo.it 1 Il cocetto di probabilità Il termie probabilità è usato el liguaggio quotidiao per deotare casi

Dettagli

Lezione 10 - Tensioni principali e direzioni principali

Lezione 10 - Tensioni principali e direzioni principali Lezioe 10 - Tesioi pricipali e direzioi pricipali ü [A.a. 2011-2012 : ultima revisioe 23 agosto 2011] I questa lezioe si studiera' cio' che avviee alla compoete ormale di tesioe s, al variare del piao

Dettagli

Soluzione Dai dati di energia libera standard di formazione si può ricavare il G per la reazione:

Soluzione Dai dati di energia libera standard di formazione si può ricavare il G per la reazione: La metilammia, reagisce co acqua allo stato gassoso portado alla formazioe di alcool metilico e ammoiaca secodo la reazioe: (g) + H (g) H(g) + (g). Soo oti i segueti dati a 5 C G f (kj mol -1 ) (g).16

Dettagli

Capitolo Terzo CALCOLO COMBINATORIO

Capitolo Terzo CALCOLO COMBINATORIO Capitolo Terzo CALCOLO COMBINATORIO 1. INTRDUZIONE, INSIEME PRODOTTO Il Calcolo Combiatorio è quel Capitolo della Matematica che si occupa del computo degli elemeti di u isieme fiito otteuto a partire

Dettagli

Probabilit` a Discreta

Probabilit` a Discreta Probabilità Discreta Itroduzioe Feomeo determiistico e o determiistico (o aleatorio): il determiistico, dato u sistema meccaico, e cooscedo le codizioi iiziali è sempre possibile studiare e prevedere quale

Dettagli

a'. a' e b n y se e solo se x, y, divisi per n danno lo stesso resto.

a'. a' e b n y se e solo se x, y, divisi per n danno lo stesso resto. E.5. Cogrueze Nella sezioe D. (esempio (d)) abbiamo itrodotto la relazioe di cogrueza modulo : dati due umeri iteri x, y e u umero itero positivo diciamo che x è cogruo a y modulo (i formula x y se è u

Dettagli