Statica dei sistemi meccanici

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Statica dei sistemi meccanici"

Transcript

1 Gruppo di lezioi Ore Pricipali argometi Statica dei sistemi meccaici Statica degli elemeti selli Elemeti di meccaica del cotiuo Meccaica della trave Spostameti di elemeti strutturali e metodi di risoluzioe di sistemi strutturali Scieza delle Costruzioi per Igegeria Meccaica Modellazioe del sistema Elemeti strutturali vicoli Equazioi di equilibrio Sollecitazioi itere Pricipi di dimesioameto Sistemi piai e 3D Tesioi Deformazioi Legami costitutivi Sforzo ormale Torsioe Flessioe e Taglio Verifica e progetto di travi La liea elastica Metodo delle forze Metodo degli spostameti per strutture soggette a sforzo ormale

2 Tesioi itere Forze itere di superficie preseti su ogi itera di u elemeto strutturale. Scieza delle Costruzioi per Igegeria Meccaica

3 Tesioi tageziali Forces P ad P are applied trasversel to the member AB. Correspodig iteral forces act i the plae of sectio C ad are called shearig forces. The resultat of the iteral shear force distributio is defied as the shear of the sectio ad is equal to the load P. The correspodig average shear stress is, ave P A Shear stress distributio varies from zero at the member surfaces to maimum values that ma be much larger tha the average value. The shear stress distributio caot be assumed to be uiform. Scieza delle Costruzioi per Igegeria Meccaica

4 Esempi di tesioi tageziali : peri Sigle Shear Double Shear ave P A F A P A ave F A Scieza delle Costruzioi per Igegeria Meccaica

5 Bolts, rivets, ad pis create stresses o the poits of cotact or bearig surfaces of the members the coect. The resultat of the force distributio o the surface is equal ad opposite to the force eerted o the pi. Correspodig average force itesit is called the bearig stress, b P A P t d Scieza delle Costruzioi per Igegeria Meccaica

6 Esempio di progetto di dettagli strutturali Would like to determie the stresses i the members ad coectios of the structure show. From a statics aalsis: F AB 40 kn (compressio) F BC 50 kn (tesio) Must cosider maimum ormal stresses i AB ad BC, ad the shearig stress ad bearig stress at each pied coectio Scieza delle Costruzioi per Igegeria Meccaica

7 Tesioi Normali elle aste The rod is i tesio with a aial force of 50 kn. At the rod ceter, the average ormal stress i the circular cross-sectio (A m ) is BC 159 MPa. At the flatteed rod eds, the smallest cross-sectioal area occurs at the pi ceterlie, 6 A ( 0mm)( 40mm 5mm) m BC, ed P A 167 MPa The boom is i compressio with a aial force of 40 kn ad average ormal stress of 6.7 MPa. The miimum area sectios at the boom eds are ustressed sice the boom is i compressio N m Scieza delle Costruzioi per Igegeria Meccaica

8 Tesioi tageziali el pero The cross-sectioal area for pis at A, B, ad C, 5mm A π r π m The force o the pi at C is equal to the force eerted b the rod BC, 3 P N C, ave 6 A m 10 MPa The pi at A is i double shear with a total force equal to the force eerted b the boom AB, P A 0kN A, ave m 40.7 MPa Scieza delle Costruzioi per Igegeria Meccaica

9 Tesioi tageziali el pero Divide the pi at B ito sectios to determie the sectio with the largest shear force, P P E G 15kN 5kN (largest) Evaluate the correspodig average shearig stress, P 5kN, G B ave 6 A m 50.9 MPa Scieza delle Costruzioi per Igegeria Meccaica

10 Tesioi tageziali el pero To determie the bearig stress at A i the boom AB, we have t 30 mm ad d 5 mm, b td P 40kN ( 30mm)( 5mm) 53.3MPa To determie the bearig stress at A i the bracket, we have t (5 mm) 50 mm ad d 5 mm, b td P 40kN ( 50mm)( 5mm) 3.0 MPa Scieza delle Costruzioi per Igegeria Meccaica

11 Tesioi i u asta Aial forces o a two force member result i ol ormal stresses o a plae cut perpedicular to the member ais. Trasverse forces o bolts ad pis result i ol shear stresses o the plae perpedicular to bolt or pi ais. Will show that either aial or trasverse forces ma produce both ormal ad shear stresses with respect to a plae other tha oe cut perpedicular to the member ais. Scieza delle Costruzioi per Igegeria Meccaica

12 Tesioi su ua sezioe obliqua Pass a sectio through the member formig a agle with the ormal plae. From equilibrium coditios, the distributed forces (stresses) o the plae must be equivalet to the force P. Resolve P ito compoets ormal ad tagetial to the oblique sectio, F P cos V Psi The average ormal ad shear stresses o the oblique plae are F A V A P cos A0 cos Psi A0 cos P A P A 0 0 cos si cos Scieza delle Costruzioi per Igegeria Meccaica

13 Scieza delle Costruzioi per Igegeria Meccaica

14 Tesioe massima Normal ad shearig stresses o a oblique plae The maimum ormal stress occurs whe the referece plae is perpedicular to the member ais, P A cos P m A0 0 A0 0 The maimum shear stress occurs for a plae at 45 o with respect to the ais, P P m si 45 cos45 A A P 0 si cos 0 Scieza delle Costruzioi per Igegeria Meccaica

15 Problema 10.1 Bisoga dimesioare il blocco di lego di sezioe quadrata. Determiare il valore miimo del lato b affiché: 5.5MPa ma 5MPa 7.5MPa 140 kn Scieza delle Costruzioi per Igegeria Meccaica

16 mm b mm N b P mm b mm N b P mm b mm N b P / 4cos / si / cos 4 si cos / 5 cos cos si / 5.5 cos si ma π π π π π Scieza delle Costruzioi per Igegeria Meccaica

17 Tesioi per carichi geerali Si effettui u immagiaria sezioe di u elemeto mediate ua superficie passate per il puto Q. Per l equilibrio, i ogi puto della sezioe agiscoo forze itere di superficie. For equilibrium, a equal ad opposite iteral force ad stress distributio must be eerted o the other segmet of the member. Cosideriamo u area A ell itoro di Q. Su essa agisce ua forza F. Questa forza si può scomporre i ua compoete ormale ed ua tageziale. La tesioe i Q si defiisce come t lim A 0 F A Scieza delle Costruzioi per Igegeria Meccaica

18 Proiettado su u asse ormale ed uo tagete lim A 0 lim A 0 F A V A Per l equilibrio, sulla superficie opposta della sezioe devoo agire delle tesioi uguali ed opposte. Scieza delle Costruzioi per Igegeria Meccaica

19 m m t l l Si fissi sulla superficie della sezioe u sistema di assi locali, co l asse ormale alla superficie e assi m,l tageti alla superficie e si scompoga la tesioe secodo questa tera di assi. m m t l Scieza delle Costruzioi per Igegeria Meccaica l

20 Nel 3D su ogi piao si ha : tesioe ormale m, l : due compoeti di tesioe tageziale Superficie ormale ad m Tesioe i direzioe m Il primo idice è quello della ormale alla superficie su cui agisce la tesioe. Il secodo idice è quello relativo alla direzioe della compoete Scieza delle Costruzioi per Igegeria Meccaica

21 Per u puto passao sezioi (tati quate soo le rette passati per il puto). Cosegueza: i u puto si hao vettori tesioe, oguo relativo ad ua giacitura. Dal mometo che le tesioi soo legate dalle codizioi di equilibrio, ci si chiede: Qual è il umero miimo di tesioi che bisoga cooscere per calcolare tutte le altre? Scieza delle Costruzioi per Igegeria Meccaica

22 Tesore delle tesioi Scieza delle Costruzioi per Igegeria Meccaica

23 Scieza delle Costruzioi per Igegeria Meccaica

24 t t t z Cubetto di Cauch Scieza delle Costruzioi per Igegeria Meccaica

25 Per l equilibrio alla traslazioe deve essere ecc. - - Dall equilibrio dei mometi itoro a z: M 0 z aalogamete, ( A) a ( A) z z ad a z z Scieza delle Costruzioi per Igegeria Meccaica

26 T La matrice delle compoeti della tesioe T è simmetrica: T T T Scieza delle Costruzioi per Igegeria Meccaica

27 Scieza delle Costruzioi per Igegeria Meccaica

28 Scieza delle Costruzioi per Igegeria Meccaica

29 Trasformazioe delle compoeti di tesioe - 1 Beer Johsto De Wolf, capitolo 7 Scieza delle Costruzioi per Igegeria Meccaica

30 Per l equilibrio del tetraedro deve essere T z z z z z z z z z z z z z t t t A A A A A A A A A A t T 0 t t t t ma si può dimostrare che Per cui si ha o i otazioe compatta Scieza delle Costruzioi per Igegeria Meccaica

31 da da da da cos da Scieza delle Costruzioi per Igegeria Meccaica

32 t T t t t z z z z z z z Quidi: Nota i u puto la tesioe su tre piai idipedeti, è possibile determiare la tesioe che agisce su u qualuque altro piao di ormale passate per quel puto. La matrice T è la rappresetazioe i compoeti di u ete matematico detto tesore. Viee detto tesore delle tesioi o stato tesioale el puto. Scieza delle Costruzioi per Igegeria Meccaica

33 Tesioe ormale e tageziale su u piao ( ) ( ) z z z z z z z z z z z z z t T t t Scieza delle Costruzioi per Igegeria Meccaica

34 Fatti importati 1. La tesioe i u puto dipede dal piao su cui agisce Scieza delle Costruzioi per Igegeria Meccaica

35 . Le tesioi tageziali soo reciproche z z z z z z z Scieza delle Costruzioi per Igegeria Meccaica

36 Rotazioe delle tesioi. Caso piao ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) cos si 1 si cos 1 1,,si cos, z t t m t t e m m Scieza delle Costruzioi per Igegeria Meccaica

37 Facedo il quadrato delle due espressioi e sommado si ha Scieza delle Costruzioi per Igegeria Meccaica

38 Cerchio di Mohr Il grafico delle compoeti,, i u piao (,) è u cerchio, avete il cetro sull asse delle ascisse (), e raggio R. Esso è oto ua volta oto lo stato tesioale (ossia le compoeti di T). Le coordiate di u puto del cerchio soo le compoeti e di u vettore tesioe agete su u piao avete per supporto l asse 3. Problema 1. Note le tesioi sui piai coordiati,, determiare la tesioe su u qualsiasi altro piao di ormale. Cioè determiare a quale puto del cerchio di Mohr corrispode la tesioe t. Problema 1. Dato u puto del cerchio di Mohr, che co le sue coordiate rappreseta ua tesioe su u determiato piao, determiare qual è questo piao. Scieza delle Costruzioi per Igegeria Meccaica

39 t m Riscriviamo le relazioi di trasformazioe delle compoeti ( ) ( ) (, ) ( ) si 1 R cos cos si cos si ( ) 1 ( ), R m d d si cos Il vettore d ha per modulo il raggio del cerchio, e ruotado lo descrive d m Scieza delle Costruzioi per Igegeria Meccaica

40 X d m C Per 0 si ha il puto X relativo alla tesioe sul piao avete per ormale l asse 1 ( el ostro caso). Dato u piao la cui ormale forma u agolo (atiorario) rispetto all asse 1, il raggio ruota el cerchio di Mohr di rispetto a CX i seso orario. X m d m C Scieza delle Costruzioi per Igegeria Meccaica

41 N.B.1 Il sego della compoete tageziale si riferisce al sistema di assi locali (,m). N.B. L agolo è quello formato dalla ormale co l asse di riferimeto 1 (o dal piao). Per lo stato tesioale di figura, determiare le compoeti della tesioe su u elemeto otteuto ruotado di 30 quello assegato. SOLUZIONE: Costruzioe del cerchio di Mohr Scieza delle Costruzioi per Igegeria Meccaica ave R MPa ( CF ) ( FX ) ( 0) ( 48) 5MPa

42 Scieza delle Costruzioi per Igegeria Meccaica

43 Tesioi pricipali Si dicoo tesioi pricipali le tesioi aveti direzioe ormale al piao d azioe, cioè aveti le compoeti tageziali ulle. I piai su cui agiscoo queste tesioi soo detti piai pricipali di tesioe (soo elemeti tesi o compressi). Le direzioi ormali a questi piai, cioè le direzioi delle tesioi pricipali, si dicoo direzioi pricipali di tesioe. t Scieza delle Costruzioi per Igegeria Meccaica

44 Domade: Esistoo le tesioi pricipali? Se sì, quate? E soo uivocamete determiate? La risposta sta ella defiizioe stessa. ( ) compoeti i z z z z z z 0 I T T t dove è la direzioe pricipale cercata. Il sistema è compatibile ella icogita se il determiate della matrice è 0. Scieza delle Costruzioi per Igegeria Meccaica

45 Sviluppado il determiate si ottiee Le tesioi pricipali soo le radici dell equazioe cubica. Poiché T è simmetrico e reale, le radici soo tutte reali. Quidi i geerale si hao 3 direzioi pricipali di tesioe. Scieza delle Costruzioi per Igegeria Meccaica

46 1 1,.., z i z i i i z i i i z z z i z i i Ua volta ote le tesioi pricipali, le rispettive direzioi si ottegoo risolvedo il sistema omogeeo, dove si è sostituito a ua delle tesioi pricipali calcolate. Scieza delle Costruzioi per Igegeria Meccaica

47 Scieza delle Costruzioi per Igegeria Meccaica

48 Scieza delle Costruzioi per Igegeria Meccaica

49 Tesioi pricipali Caso piao ( ) ± 1 1 1, ta 0 ) ( 0 0 compoeti i I T T t Scieza delle Costruzioi per Igegeria Meccaica

50 Tesioi pricipali Cerchio di Mohr Equazioe del cerchio di Mohr ( ) co m m R R Le tesioi pricipali soo quelle che agiscoo sui piai pricipali dove o c è la tesioe tageziale. o ma,mi 90 di separati defiisce due piai Nota : ta p p m R ± ± p Scieza delle Costruzioi per Igegeria Meccaica

51 Esempio , 5 ± ± MPa MPa Direzioe pricipale 1: Scieza delle Costruzioi per Igegeria Meccaica

52 100 X C Y 10 ta ta rad Scieza delle Costruzioi per Igegeria Meccaica

53 Esempio: disco dei frei. Dispositivo ad attrito µ r r r A P T r Scieza delle Costruzioi per Igegeria Meccaica

54 Lo stato tesioale è piao. La ceramica che costituisce il disco è u materiale co limitata resisteza a trazioe, per il quale cioè deve essere: ma 0 La tesioe massima è la tesioe pricipale. Si ha: ma µ µ µ A P -P/A C ma A P Se µ Scieza delle Costruzioi per Igegeria Meccaica

55 Tesioe tageziale massima La massima tesioe tageziale si ha ave ma ta R s ave Si trova a 45 rispetto alla tesioe o massima Scieza delle Costruzioi per Igegeria Meccaica

56 Cerchi di Mohr i 3D Scieza delle Costruzioi per Igegeria Meccaica

57 Scieza delle Costruzioi per Igegeria Meccaica

58 Scieza delle Costruzioi per Igegeria Meccaica

59 Scieza delle Costruzioi per Igegeria Meccaica

3.1 Rappresentazione dello stato tensionale nel piano di Mohr: circoli di Mohr.

3.1 Rappresentazione dello stato tensionale nel piano di Mohr: circoli di Mohr. DIDATTICA DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA MODULO TRE I CONCETTI FONDAMENTALI NELL ANALISI DELLA TENSIONE PARTE B) MODULO PER LO SPECIALIZZANDO Modulo. Rappresetazioe dello stato

Dettagli

SOLLECITAZIONI SEMPLICI

SOLLECITAZIONI SEMPLICI Sussidi didattici per il corso di COSTRUZIONI EDILI Prof. Ig. Fracesco Zaghì SOLLECITAZIONI SEPLICI AGGIORNAENTO 04/10/2011 Corso di COSTRUZIONI EDILI Prof. Ig. Fracesco Zaghì SFORZO NORALE CENTRATO Lo

Dettagli

Cerchi di Mohr - approfondimenti

Cerchi di Mohr - approfondimenti Comportameto meccaico dei materiali Cerchi di Mohr - approfodimeti Stato di tesioe e di deformazioe Cerchi di Mohr - approfodimeti L algebra dei cerchi di Mohr Proprietà di estremo dei cerchi di Mohr Costruzioe

Dettagli

(1 2 3) (1 2) Lezione 10. I gruppi diedrali.

(1 2 3) (1 2) Lezione 10. I gruppi diedrali. Lezioe 0 Prerequisiti: Simmetrie di poligoi regolari. Gruppi di permutazioi. Cetro di u gruppo. Cetralizzate di u elemeto di u gruppo. Riferimeto al testo: [PC] Sezioe 5.4 I gruppi diedrali. Ogi simmetria

Dettagli

14. TENSIONI. Le tensioni sono lo strumento della meccanica dei continui per rappresentare lo stato di sforzo in un punto. n,n, n ).

14. TENSIONI. Le tensioni sono lo strumento della meccanica dei continui per rappresentare lo stato di sforzo in un punto. n,n, n ). 14. Le tesioi soo lo strumeto della meccaica dei cotiui per rappresetare lo stato di sforo i u puto. Defiiioe della tesioe secodo Cauch. f A V f Cosideriamo u geerico puto. uppoiamo di seioare idealmete

Dettagli

Lezione 10 - Tensioni principali e direzioni principali

Lezione 10 - Tensioni principali e direzioni principali Lezioe 10 - Tesioi pricipali e direzioi pricipali ü [A.a. 2011-2012 : ultima revisioe 23 agosto 2011] I questa lezioe si studiera' cio' che avviee alla compoete ormale di tesioe s, al variare del piao

Dettagli

SOLLECITAZIONI COMPOSTE

SOLLECITAZIONI COMPOSTE Sussidi didattici per il corso di COSTRUZIOI EDILI Prof. Ig. Fracesco Zaghì SOLLECITZIOI COPOSTE GGIORETO 8/10/011 Corso di COSTRUZIOI EDILI Prof. Ig. Fracesco Zaghì FLESSIOE DEVIT Si ha flessioe deviata

Dettagli

169. Segmenti paralleli

169. Segmenti paralleli 169. Segmeti paralleli Matematicamete.it UMERO 17 APRILE 01 Bruo Sachii bruosachii@yahoo.it Suto y ta x k b a ta ak x R cos ak Si utilizza il sistema: di ua grade famiglia di superfici. Lo scopo di questo

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria aalitica: rette e piai Coordiate polari Cambiameti di riferimeto el piao Cambiameti di riferimeto i geerale Isometrie Simmetrie Isometrie el piao Isometrie ello spazio 2 2006 Politecico di Torio

Dettagli

= Pertanto. Per la formula di Navier ( σ = ), gli sforzi normali σ più elevati nella sezione varranno: di compressione);

= Pertanto. Per la formula di Navier ( σ = ), gli sforzi normali σ più elevati nella sezione varranno: di compressione); La sezioe di trave di figura è soggetta ad u mometo flettete pari a 000 knmm e ed u azioe di taglio pari a 5 kn, etrambe ageti su u piao verticale passate per l asse s-s. Calcolare gli sforzi σ e τ massimi

Dettagli

Statica e Sismica. delle Costruzioni Murarie. Cerchio di Mohr

Statica e Sismica. delle Costruzioni Murarie. Cerchio di Mohr Uiversità degli Studi di Messia Facoltà di Igegeria A.A. 006/007 Statica e Sisica delle Costruzioi Murarie Docete: Ig. Alessadro Paleri Lezioe. 3: Circofereze di Mohr τ t P Sia P u puto geerico del cotiuo

Dettagli

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto Calcolo I - Corso di Laurea i Fisica - Geaio 08 Soluzioi Scritto Data la fuzioe f = 8 + / a Calcolare il domiio, puti di o derivabilità ed asitoti; b Calcolare, se esistoo, estremi relativi ed assoluti.

Dettagli

Seconda prova d esonero del Tema B

Seconda prova d esonero del Tema B UNIVRSITÀ DGLI STUDI G. D ANNUNZIO DI CHITI-PSCARA FACOLTÀ DI ARCHITTTURA CORSO DI LAURA QUINQUNNAL, CORSI DI LAURA TRINNALI INSGNAMNTO DI SCINZA DLL COSTRUZIONI a.a. - Docete M. VASTA Secoda prova d esoero

Dettagli

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.matefilia.it ORDINAMENTO 1 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Due osservatori si trovao ai lati opposti di u grattacielo, a livello del suolo. La cima dell edificio dista 16 metri dal primo

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

Precorso di Matematica, aa , (IV)

Precorso di Matematica, aa , (IV) Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe

Dettagli

3. Calcolo letterale

3. Calcolo letterale Parte Prima. Algera 1) Moomi Espressioe algerica letterale 42 Isieme di umeri relativi, talui rappresetati da lettere, legati fra loro da segi di operazioi. Moomio Espressioe algerica che o cotiee le operazioi

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f ( x; ϑ) θ = costate icogita Qual è il valore di θ? E verosimile

Dettagli

Viene imposto uno spostamento alla traversa e si misura il carico applicato (F) Si misura l allungamento in un tratto del provino ( L)

Viene imposto uno spostamento alla traversa e si misura il carico applicato (F) Si misura l allungamento in un tratto del provino ( L) Prova di trazioe UNI 55/86 556/79 Macchia di prova coloe traversa mobile provio cella di carico morsetti basameto Viee imposto uo spostameto alla traversa e si misura il carico applicato (F) Si misura

Dettagli

Appendice 2. Norme di vettori e matrici

Appendice 2. Norme di vettori e matrici Appedice 2. Norme di vettori e matrici La ozioe esseziale per poter defiire il cocetto di distaza e lughezza i uo spazio vettoriale lieare è quello di orma. Il cocetto di orma è ua geeralizzazioe del cocetto

Dettagli

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4 Quarto Compito di Aalisi Matematica Corso di laurea i Iformatica, corso B 5 Luglio 016 Soluzioi Esercizio 1 Determiare tutti i umeri complessi z tali che z = 3 4 i. Soluzioe. Scrivedo z = a + bi, si ottiee

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f x; = costate icogita Qual è il valore di? E verosimile

Dettagli

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 AA Dott.ssa Sandra Lucente Successioni numeriche

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 AA Dott.ssa Sandra Lucente Successioni numeriche Corso di laurea i Matematica Corso di Aalisi Matematica -2 AA. 0809.. Cooscere. Dott.ssa Sadra Lucete. Successioi umeriche Defiizioe di successioe, isieme degli elemeti della successioe, successioe defiita

Dettagli

Radicali. Esistenza delle radici n-esime: Se n è pari: ogni numero reale non negativo (cioè positivo o nullo) ha esattamente una radice n-esima in R.

Radicali. Esistenza delle radici n-esime: Se n è pari: ogni numero reale non negativo (cioè positivo o nullo) ha esattamente una radice n-esima in R. Radicali Radici quadrate Si dice radice quadrata di u umero reale a, e si idica co a, il umero reale positivo o ullo (se esiste) che, elevato al quadrato, dà come risultato a. Esisteza delle radici quadrate:

Dettagli

Il centro di pressione C risulta esterno al nocciolo (e > GX ) (grande eccentricità)

Il centro di pressione C risulta esterno al nocciolo (e > GX ) (grande eccentricità) Il cemeto armato: metodo alle tesioi ammissibili Uità 5 Flessioe semplice retta e sforzo ormale Il cetro di pressioe risulta estero al occiolo (e > X ) (grade eccetricità) 0L asse eutro taglia la sezioe,

Dettagli

La dinamica dei sistemi - intro

La dinamica dei sistemi - intro La diamica dei sistemi - itro Il puto materiale rappreseta ua schematizzazioe utile o solo per descrivere situazioi di iteresse diretto ma è ache il ecessario presupposto alla meccaica dei sistemi materiali

Dettagli

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI RISOLUZIONE MODERNA DI PROBLEMI ANTICHI L itelletto, duque, che o è la verità, o comprede mai la verità i modo così preciso da o poterla compredere (poi acora) più precisamete, all ifiito, perché sta alla

Dettagli

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri.

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri. Laboratorio di Matematica, A.A. 009-010; I modulo; Lezioi II e III - schema. Limiti e isiemi aperti; SB, Cap. 1 Successioi di vettori; SB, Par. 1.1, pp. 3-6 Itori sferici aperti. Nell aalisi i ua variabile

Dettagli

RAPPRESENTAZIONE ANALITICA DEI PUNTALI OGIVALI PER PROIETTILI

RAPPRESENTAZIONE ANALITICA DEI PUNTALI OGIVALI PER PROIETTILI M. G. BUSATO RAPPRESENTAZIONE ANALITIA DEI PUNTALI OGIVALI PER PROIETTILI mgbstudio.et SOMMARIO I umerose applicazioi balistiche, ed i particolare per calcolare la resisteza aerodiamica di u proiettile,

Dettagli

Diagramma polare e logaritmico

Diagramma polare e logaritmico Diagramma polare e aritmico ariatori discotiui del moto di taglio Dalla relazioe π D c si ota che la velocità di taglio dipede, oltre che dal umero di giri del madrio, ache dal diametro dell elemeto rotate

Dettagli

Precorso di Matematica. Parte IV : Funzioni e luoghi geometrici

Precorso di Matematica. Parte IV : Funzioni e luoghi geometrici Facoltà di Igegeria Precorso di Matematica 1. Equazioi e disequazioi Parte IV : Fuzioi e luoghi geometrici Richiamiamo brevemete la ozioe di fuzioe, che sarà utilizzato i quest ultima parte del precorso.

Dettagli

POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea in INGEGNERIA MECCANICA (Corso B) A.A. 2011/2012. per ogni n N

POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea in INGEGNERIA MECCANICA (Corso B) A.A. 2011/2012. per ogni n N POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea i INGEGNERIA MECCANICA Corso B) A.A. / ) Dimostrare, utilizzado il pricipio di iduzioe, che a) b) c) d) k= log + ) = log + ) per ogi N k k

Dettagli

Elementi finiti trave inflessa con deformazione a taglio Timoshenko

Elementi finiti trave inflessa con deformazione a taglio Timoshenko Elemeti fiiti trave iflessa co Timosheko q odo odo EI, GA s Covezioe sui segi spostameti e deformazioi v (e) =v A (e) = A Q (e) e e v (e) = v B (e) = B Q (e) Elemeto fiito trave iflessa u y( x) d dv, v

Dettagli

Esame di Stato di Liceo Scientifico- Sessione ordinaria 2003 Corso Sperimentale P.N.I. Tema di MATEMATICA

Esame di Stato di Liceo Scientifico- Sessione ordinaria 2003 Corso Sperimentale P.N.I. Tema di MATEMATICA L.Lecci\Sol. Problema 2\Esame di Stato di Liceo Scietifico\Sess. Ordiaria\Corso P.N.I.\ao23 Esame di Stato di Liceo Scietifico- Sessioe ordiaria 23 Corso Sperimetale P.N.I. Tema di MATEMATICA Problema

Dettagli

Definizione di Sistema di Riferimento Inerziale

Definizione di Sistema di Riferimento Inerziale Defiizioe di Sistema di Riferimeto Ierziale Defiiamo sistema di riferimeto ierziale u sistema i cui valga rigorosamete la legge di ierzia, i cui cioè u puto materiale o soggetto a forze laciato co velocità

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 21 Misura della dipedeza di u carattere

Dettagli

Informatica Grafica. Gianluigi Ciocca, Simone Bianco F1801Q120

Informatica Grafica. Gianluigi Ciocca, Simone Bianco F1801Q120 Iformatica Grafica Gialuigi Ciocca, Simoe Biaco F8Q Coordiate 3D P Righ-haded sstem Iformatica Grafica 3 Iformatica Grafica 4 Trasformaioi 3D Traslaioe I coordiate omogeee,, ( d d d d d d T P Iformatica

Dettagli

Algebra delle matrici

Algebra delle matrici Algebra delle matrici Prodotto di ua matrice per uo scalare Data ua matrice A di tipo m, e dato uo scalare r R, moltiplicado r per ciascu elemeto di A si ottiee ua uova matrice di tipo m, detta matrice

Dettagli

Caso studio 9. Distribuzioni doppie. Esempi

Caso studio 9. Distribuzioni doppie. Esempi 7/3/16 Caso studio 9 Si cosideri la seguete tabella che riporta i dati dei Laureati el 4 dei tre pricipali gruppi di corsi di laurea, per codizioe occupazioale a tre ai dalla laurea (Fote: ISTAT, Idagie

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2010

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PROBLEMA Sia ABCD u quadrato di lato, P u puto di

Dettagli

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA IPSAA U. Patrizi Città di Castello (PG) Classe A Tecico Agrario Lezioe di martedì 0 ovembre 0 (4 e ora) Disciplia: MATEMATICA La derivata della fuzioe composta Fuzioe composta Df(g())f (g())g () Questa

Dettagli

a'. a' e b n y se e solo se x, y, divisi per n danno lo stesso resto.

a'. a' e b n y se e solo se x, y, divisi per n danno lo stesso resto. E.5. Cogrueze Nella sezioe D. (esempio (d)) abbiamo itrodotto la relazioe di cogrueza modulo : dati due umeri iteri x, y e u umero itero positivo diciamo che x è cogruo a y modulo (i formula x y se è u

Dettagli

Solidi e volumi Percorso: Il problema della misura

Solidi e volumi Percorso: Il problema della misura Solidi e volumi Percorso: Il problema della misura Abilità Coosceze Nuclei Collegameti esteri Calcolare perimetri e aree Equivaleza el piao ed Spazio e figure Fisica di poligoi. equiscompoibilità tra Disego

Dettagli

Dimostrazione. σ σ. Quesito: esistono giaciture che hanno solo tensione normale?

Dimostrazione. σ σ. Quesito: esistono giaciture che hanno solo tensione normale? Caitolo5 DREZON E TENON PRNCPAL 5. DREZON E TENON PRNCPAL Nel uto P, su ua geerica giacitura di ormale agisce ua tesioe che, i geerale, ha ua comoete ormale e ua comoete tageiale. P Quesito: esistoo giaciture

Dettagli

Diottro sferico. Capitolo 2

Diottro sferico. Capitolo 2 Capitolo 2 Diottro sferico Si idica co il termie diottro sferico ua calotta sferica che separa due mezzi co idice di rifrazioe diverso. La cogiugete il cetro di curvatura C della calotta co il vertice

Dettagli

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale Calcolo della risposta di u sistema lieare viscoso a più gradi di libertà co il metodo dell Aalisi Modale Lezioe 2/2 Prof. Adolfo Satii - Diamica delle Strutture 1 La risposta a carichi variabili co la

Dettagli

( ) ( ) ( )( ) PROBLEMA Fissiamo un sistema di riferimento in cui A ( 0;0) C x y : siano α l angolo , ( ; ) l angolo ˆ

( ) ( ) ( )( ) PROBLEMA Fissiamo un sistema di riferimento in cui A ( 0;0) C x y : siano α l angolo , ( ; ) l angolo ˆ Soluzioe a cura di: lessadra iglio, Liceo lassico Vittorio lfieri, Torio Giuliaa ru, Liceo Scietifico Isaac Newto, hivasso (TO) laudia hau, IRRE Val d osta toella uppari, Liceo Scietifico Galileo Ferraris,

Dettagli

Titolo della lezione. Campionamento e Distribuzioni Campionarie

Titolo della lezione. Campionamento e Distribuzioni Campionarie Titolo della lezioe Campioameto e Distribuzioi Campioarie Itroduzioe Itrodurre le idagii campioarie Aalizzare il le teciche di costruzioe dei campioi e di rilevazioe Sviluppare il cocetto di distribuzioe

Dettagli

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii)

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii) Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi : Riferimeti: R.Adams, Calcolo Differeziale. -Si cosiglia vivamate di fare gli esercizi del testo. Cap. 9.5 - Serie di poteze,

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli

GLI INSIEMI NUMERICI

GLI INSIEMI NUMERICI GLI INSIEMI NUMERICI R 2 π 2, _ -,8 2,89 Q Z N -2 2 28-87 -87 _, 7,76267 7 - e 2,7-7 -,6 _ -,627 7 6 R Numeri Reali Q Numeri Razioali Z Numeri Iteri Relativi N Numeri Naturali Dal diagramma di Eulero-Ve

Dettagli

Principio di induzione: esempi ed esercizi

Principio di induzione: esempi ed esercizi Pricipio di iduzioe: esempi ed esercizi Pricipio di iduzioe: Se ua proprietà P dipedete da ua variabile itera vale per e se, per ogi vale P P + allora P vale su tutto Variate del pricipio di iduzioe: Se

Dettagli

Soluzioni degli esercizi del corso di Analisi Matematica I

Soluzioni degli esercizi del corso di Analisi Matematica I Soluzioi degli esercizi del corso di Aalisi Matematica I Prof. Pierpaolo Natalii Roberta Biachii & Marco Pezzulla ovembre 015 FOGLIO 1 1. Determiare il domiio e il sego della fuzioe ( ) f(x) = arccos x

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

Radici, potenze, logaritmi in campo complesso.

Radici, potenze, logaritmi in campo complesso. SOMMARIO NUMERI COMPLESSI... Formula di Eulero... Coiugato di u umero complesso... 3 Poteza -esima di u umero complesso z (formula di De Moivre... 3 Radice -esima di z... 3 Osservazioi... Logaritmo di

Dettagli

Unità Didattica N 32 Grandezze geometriche omogenee e loro misura

Unità Didattica N 32 Grandezze geometriche omogenee e loro misura Uità Didattica N 3 Uità Didattica N 3 01) Classi di gradezze omogeee 0) Multipli e sottomultipli di ua gradezza geometrica 03) Gradezze commesurabili ed icommesurabili 04) Rapporto di due gradezze 05)

Dettagli

Cenni di topologia di R

Cenni di topologia di R Cei di topologia di R. Sottoisiemi dei umeri reali Studieremo le proprietà dei sottoisiemi dei umeri reali, R, che hao ad esempio la forma: = (, ) (,) 6 8 = [,] { ;6;8} { } = (, ) (,) [, + ) Defiizioe:

Dettagli

Corso di Costruzioni in Zona Sismica

Corso di Costruzioni in Zona Sismica Corso di Costruzioi i Zoa Sismica Uiversità degli Studi di Cassio e del Lazio Meridioale Eresto Grade e.grade@uicas.it +39.0776.299.3478 Corso di Costruzioi i Zoa Sismica Lezioe 2 Sistema a u grado di

Dettagli

n=400 X= Km; s cor =9000 Km Livello di confidenza (1-α)=0,95 z(0,05)=1,96

n=400 X= Km; s cor =9000 Km Livello di confidenza (1-α)=0,95 z(0,05)=1,96 STATISTICA A K (60 ore Marco Riai mriai@uipr.it http://www.riai.it : stima della percorreza media delle vetture diesel di u certo modello al primo guasto 400 X34.000 Km; s cor 9000 Km Livello di cofideza

Dettagli

Appendice C. Scelta e dimensionamento delle canaline (cable trays) Appendix C. Cable trays selection and sizing

Appendice C. Scelta e dimensionamento delle canaline (cable trays) Appendix C. Cable trays selection and sizing Appedice C. Scelta e dimesioameto delle caalie (cable trays) Appedix C. trays selectio ad sizig C.1 Itroduzioe Itroductio Le caalie (cable trays) soo elemeti o isieme di elemeti e accessori che formao

Dettagli

Elettrotecnica II. 1 Materiale didattico

Elettrotecnica II. 1 Materiale didattico Politecico di Torio Elettrotecica Materiale didattico Trasformatore Si cosideri il seguete circuito magetico: Sia S la sezioe del materiale ferromagetico. Si facciao le segueti ipotesi: ) asseza di flussi

Dettagli

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA Politecico di Torio 7 Fuzioi Radice FUNZIONI RADICE RICHIAMI DI TEORIA f ( x) = x dom f Im f grafici. = = =7 =9. dispari R R -. - -. - - -. Grafici di fuzioi radici co pari pari [,+ ) [,+ ).. = = =6 =8

Dettagli

L ultimo Teorema di Fermat

L ultimo Teorema di Fermat L ultimo Teorema di Fermat L ultimo teorema di Fermat afferma che l equazioe x + y = z o può avere soluzioi itere di x + y = z co x, y, z > 2 e > 2 itero. La dimostrazioe di questa cogettura è stata sviluppata

Dettagli

ADEGUAMENTO SISMICO DEGLI EDIFICI ESISTENTI IN C.A.. Metodi di analisi e strumenti utilizzabili dai professionisti. Ing.

ADEGUAMENTO SISMICO DEGLI EDIFICI ESISTENTI IN C.A.. Metodi di analisi e strumenti utilizzabili dai professionisti. Ing. ADEGUAMENTO SISMICO DEGLI EDIFICI ESISTENTI IN C.A.. Metodi di aalisi e strumeti utilizzabili dai professioisti. Ig. Roberto Scotta ig. Roberto Scotta roberto.scotta@uipd.it Uiversità degli Studi di Padova

Dettagli

Sommando le (8-13), (8-14), (8-19), (8-20), (8-21), (8-22) e uguagliando a zero si ottiene: V g

Sommando le (8-13), (8-14), (8-19), (8-20), (8-21), (8-22) e uguagliando a zero si ottiene: V g Correti a superficie libera 5 F p (8-) La proiezioe su s della forza di ierzia è ivece pari a: d ρ A ds ρ A ds + (8-) dt Sommado le (8-3), (8-4), (8-9), (8-0), (8-), (8-) e uguagliado a zero si ottiee:

Dettagli

Il Teorema di Markov. 1.1 Analisi spettrale della matrice di transizione. Il teorema di Markov afferma che

Il Teorema di Markov. 1.1 Analisi spettrale della matrice di transizione. Il teorema di Markov afferma che 1 Il Teorema di Marov 1.1 Aalisi spettrale della matrice di trasizioe Il teorema di Marov afferma che Teorema 1.1 Ua matrice di trasizioe regolare P su u isieme di stati fiito E ha ua uica distribuzioe

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge.

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge. Le successioi A parole ua successioe é u isieme ifiito di umeri disposti i u particolare ordie. Piú rigorosamete, ua successioe é ua legge che associa ad ogi umero aturale u altro umero (ache o aturale):

Dettagli

Ricerca di un elemento in una matrice

Ricerca di un elemento in una matrice Ricerca di u elemeto i ua matrice Sia data ua matrice xm, i cui gli elemeti di ogi riga e di ogi coloa soo ordiati i ordie crescete. Si vuole u algoritmo che determii se u elemeto x è presete ella matrice

Dettagli

PROPRIETA DELLE FUNZIONI ARMONICHE

PROPRIETA DELLE FUNZIONI ARMONICHE CAPITOLO PROPRIETA DELLE FUNZIONI ARMONICHE - Defiizioi ed esempi Le fuzioi armoiche vegoo defiite ello spazio euclideo; i questa tesi sarà cosiderato u umero itero positivo maggiore di metre Ω sarà u

Dettagli

Sottospazi associati a matrici e forma implicita. Sottospazi associati a una matrice Dimensione e basi con riduzione Sottospazi e sistemi. Pag.

Sottospazi associati a matrici e forma implicita. Sottospazi associati a una matrice Dimensione e basi con riduzione Sottospazi e sistemi. Pag. Spazi vettoriali Sottospazi associati a ua matrice Dimesioe e basi co riduzioe Sottospazi e sistemi 2 Pag. 1 2006 Politecico di Torio 1 Spazi delle righe e delle coloe Sia A M m, ua matrice m x. Allora

Dettagli

Mole e Numero di Avogadro

Mole e Numero di Avogadro Mole e Numero di Avogadro La mole È ua uatità i grammi di ua sostaza che cotiee u umero preciso e be determiato di particelle (atomi o molecole) Numero di Avogadro Ua mole di ua sostaza cotiee u umero

Dettagli

17. Funzioni implicite

17. Funzioni implicite 17. Fuzioi implicite 17.a Fuzioi defiite implicitamete Sia data l equazioe lieare implicita i R 2 ax + by = 0. Se b 0, si puo ricavare la variabile y i fuzioe della x come y = ( a/b)x. Equivaletemete possiamo

Dettagli

Lezione n. 8. Le cupole La soluzione in regime di membrana

Lezione n. 8. Le cupole La soluzione in regime di membrana Lezioe. 8 Le cupole La soluzioe i regime di membraa Le volte sottili I geerale, si possoo idividuare delle strutture bidimesioali curve ello spazio, di piccolo spessore, che predoo il ome di volte sottili

Dettagli

ANALISI MATEMATICA 1. Funzioni elementari

ANALISI MATEMATICA 1. Funzioni elementari ANALISI MATEMATICA Fuzioi elemetari Trovare le soluzioi delle segueti disequazioi ) x + 4 5 > 8 + 5x 0 ) 5x + 0 > 0, x 4 < 0 3) x x 3 4) x + x + > 3 x + 4 5) 5x 4x x + )x ) 6) x x + > 0, x + 5x + 6 0,

Dettagli

Traccia delle soluzioni degli esercizi del fascicolo 6

Traccia delle soluzioni degli esercizi del fascicolo 6 Traccia delle soluzioi degli esercizi del fascicolo 6 Esercizio Vegoo geerati umeri casuali tra 0 e, co distribuzioe uiforme. Quati umeri è ecessario geerare affiché la probabilità che la somma di essi

Dettagli

Prova scritta di Analisi Matematica I 15/09/2010

Prova scritta di Analisi Matematica I 15/09/2010 Prova scritta di Aalisi Matematica I VO 5/09/00 ) Data la fuzioe f ( ) + a) disegare il grafico illustrado i passaggi fodametali b) Euciare e dimostrare il Teorema di Rolle e se possibile applicarlo a

Dettagli

n 1 = n b) {( 1) n } = c) {n!} In questo caso la successione è definita per ricorrenza: a 0 = 1, a n = n a n 1 per ogni n 1.

n 1 = n b) {( 1) n } = c) {n!} In questo caso la successione è definita per ricorrenza: a 0 = 1, a n = n a n 1 per ogni n 1. Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi 0: Riferimeti: R.Adams, Calcolo Differeziale - Si cosiglia vivamete di fare gli esercizi del testo. Successioi umeriche:

Dettagli

FONDAMENTI DI MECCANICA DELLE VIBRAZIONI

FONDAMENTI DI MECCANICA DELLE VIBRAZIONI Uiversità degli Studi di Bologa II Facoltà di Igegeria sede di Forlì Corso di Laurea i Igegeria Meccaica DINAMICA DELLE MACCHINE E DEI SISTEMI MECCANICI FONDAMENTI DI MECCANICA DELLE VIBRAZIONI prof. Alessadro

Dettagli

DIDATTICA DI DISEGNO E DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA ING. LAURA SGARBOSSA MODULO DUE

DIDATTICA DI DISEGNO E DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA ING. LAURA SGARBOSSA MODULO DUE DIDTTIC DI DISEGNO E DI ROGETTZIONE DELLE COSTRUZIONI ROF. CRELO JORN ING. LUR SGRBOSS ODULO DUE IL ROBLE DELL TRVE DI DE SINT VENNT (RTE B) TERILE DIDTTICO D UTILIZZRE IN UL (SCUOL SUERIORE) Esempio di

Dettagli

L Ultimo teorema di Fermat e le terne Pitagoriche

L Ultimo teorema di Fermat e le terne Pitagoriche L Ultimo teorema di Fermat e le tere Pitagoriche Aspetto aritmetico e geometrico A cura di Fracesco Di Noto Eugeio Amitrao ( http://www.atuttoportale.it/) Coteuti dell articolo: Titolo Pag. Abstract.........

Dettagli

LASTRE INFLESSE IN C.A.

LASTRE INFLESSE IN C.A. LASTRE INFLESSE IN C.A. 3. LA TEORIA DELLE LASTRE DI KIRCHHOFF-LOVE Si cosideri ua lastra sottile cioè ua lastra il cui spessore è molto più piccolo delle dimesioi i piata della lastra stessa. Si scelga

Dettagli

Introduzione all Analisi di Fourier. Prof. Luigi Landini Ing. Nicola Vanello. (presentazione a cura di N. Vanello)

Introduzione all Analisi di Fourier. Prof. Luigi Landini Ing. Nicola Vanello. (presentazione a cura di N. Vanello) Itroduzioe all Aalisi di Prof. Luigi Ladii Ig. Nicola Vaello (presetazioe a cura di N. Vaello) ANALII DI FOURIER egali tempo cotiui: egali periodici egali aperiodici viluppo i serie di Itroduzioe alla

Dettagli

C. P. Mengoni tel. 0554796339 c.mengoni@ing.unifi.it

C. P. Mengoni tel. 0554796339 c.mengoni@ing.unifi.it E. Fuaioli, A. Maggiore, U. Meeghetti Lezioi di MECCANICA APPLICAA ALLE MACCHINE, vol. I e II Pàtro Editore C. P. Megoi tel. 554796339 c.megoi@ig.uifi.it Meccaismi co orgai flessibili I meccaismi co orgai

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Trieale i Matematica Calcolo delle Probabilità I doceti G. Nappo, F. Spizzichio Prova di martedì luglio tempo a disposizioe: 3 ore. Scrivere su ogi foglio NOME e COGNOME. Le risposte devoo

Dettagli

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma 1 Serie di poteze È stato dimostrato che la serie geometrica x (1.1) coverge se e solo se la ragioe x soddisfa la disuguagliaza 1 < x < 1. I realtà c è covergeza assoluta i ] 1, 1[. Per x 1 la serie diverge

Dettagli

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI ALGEBRA I MODULO PROF. VERARDI - ESERCIZI Sezioe 1 NUMERI NATURALI E INTERI 2 1.1. Si dimostri per iduzioe la formula: N, k 2 "1( * " 3 ) " 3k +1(. 3 1.2. A) Si dimostri che per ogi a,b N +, N +, se a

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno Uiversità degli Studi di Cassio, Ao accademico 004-005 Corso di Statistica, Prof.. uro Esercitazioe del 01/03/005 dott. Claudio Coversao Esercizio 1 Si cosideri il seguete campioe casuale semplice estratto

Dettagli

1. (Punti 8) Deteminare modulo e argomento delle soluzioni della seguente equazione nel campo complesso. 1 x = 0. x 2 e 8.

1. (Punti 8) Deteminare modulo e argomento delle soluzioni della seguente equazione nel campo complesso. 1 x = 0. x 2 e 8. Corso di Laurea i Igegeria Biomedia ANALISI MATEMATICA Prova sritta del giugo 7 Fila. Esporre il proedimeto di risoluzioe degli eserizi i maiera ompleta e leggibile.. Puti 8) Detemiare modulo e argometo

Dettagli

Cosa vogliamo imparare?

Cosa vogliamo imparare? Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come

Dettagli

SULLE PARTIZIONI DI UN INSIEME

SULLE PARTIZIONI DI UN INSIEME Claudia Motemurro Ricordiamo la SULLE PRTIZIONI DI UN INSIEME Defiizioe: Ua partizioe di u isieme è ua famiglia { sottoisiemi o vuoti di X tali che: - X è l uioe degli isiemi X i (i I ), cioè X = U i X

Dettagli

Dispositivi e Sistemi Meccanici. 7 Esercizi. Politecnico di Torino CeTeM

Dispositivi e Sistemi Meccanici. 7 Esercizi. Politecnico di Torino CeTeM eem Dispositivi e Sistemi Meccaici Eserciio 7 Due ruote detate cilidriche a deti elicoidali ad assi paralleli hao detatura co profilo ad evolvete co agolo di pressioe ormale α 19, rapporto di igraameto

Dettagli

Sintesi. Le funzioni in C++ Motivazioni. Programmazione delle funzioni. Esempio (1.1) Esempio (1)

Sintesi. Le funzioni in C++ Motivazioni. Programmazione delle funzioni. Esempio (1.1) Esempio (1) Sitesi Le fuioi i C++ Fodameti di Iformatica 1 R. Basili 2 ciclo a.a. 2000-2001 Motivaioi Uso delle fuioi U esempio Dichiaraioe e Defiiioe Uso dei parametri Passaggio per valore Passaggio per riferimeto

Dettagli

6. Corrente elettrica

6. Corrente elettrica 6. Correte elettrica 6. Cosideriamo due coduttori, uo carico e l altro scarico e colleghiamoli co u filo coduttore La carica passa attraverso il filo Dopo u tempo τ il flusso di carica si arresta Defiiamo

Dettagli

Principio alla base della misura del legame tra X ed Y

Principio alla base della misura del legame tra X ed Y Pricipio alla base della misura del legame tra X ed Y Y o varia Asseza di legame Al variare di X Varia ache Y X ed Y soo coessi Come si misura la risposta di Y al variare di X? Dipede dalla atura di X

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.matefilia.it PNI 004 - SESSIONE SUPPLETIVA QUESITO La fuzioe f(x) = 3x six x 3six della fuzioe, per x + : è, per x +, ua forma idetermiata del tipo. Il limite A) No esiste; B) è 3/; C) è /3 ; D) è

Dettagli

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride?

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride? Calcolo combiatorio sempi Qual è il umero delle badiere tricolori a righe verticali che si possoo formare co i 7 colori dell iride? Dobbiamo calcolare il umero delle disposizioi semplici di 7 oggetti di

Dettagli

Congruenze in ; l insieme quoziente / n

Congruenze in ; l insieme quoziente / n Cogrueze i ; l isieme quoziete / Per ogi, si cosideri i la relazioe, che per il mometo deoteremo co ( ), così defiita: a ( ) b divide a-b Esempio: 5 (7 ) 19, perché 7 5-19=-14, metre 4 o è ella relazioe

Dettagli