Il calcolo integrale: intro

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Il calcolo integrale: intro"

Transcript

1

2 Il clcolo integrle: intro Le ppliczioni del clcolo integrle sono svrite: esistono, inftti, molti cmpi, dll fisic ll ingegneri, dll iologi ll economi, in cui si f lrgo uso degli integrli. Per fornire l ide intuitiv del concetto crdine del clcolo differenzile, ossi l derivt, imo introdotto il prolem dell tngente; llo stesso modo, per presentre l ide di integrle trtteremo il prolem del clcolo dell re. Si immgini di dover clcolre l re dell regione S sottostnte l curv y = f(x) d, rppresentt in figur.

3 Come si evince dll precedente figur S rppresent l regione compres tr il grfico dell funzione f e le rette verticli x = e x = : Nel tenttivo di clcolre l re dell regione S, ci domndimo: qul è il significto dell prol re? L domnd è semplice per regioni con i lti rettilinei; d esempio per un rettngolo l re è semplicemente il prodotto dell se per l ltezz. Per un poligono, l re si trov suddividendolo in tringoli, come in figur, e sommndo l re dei tringoli così ottenuti. Invece, non è fftto semplice trovre l re di regioni delimitte d contorni curvilinei.

4 Illustrimo l ide nell esempio seguente: si y = x 2 l prol rppresentt in Figur; supponimo di voler clcolre l re dell regione sottostnte l curv delimitt dlle rette x = 0 e x = 1, utilizzndo dei rettngoli. Si noti suito che essendo S l regione sottostnte il grfico e delimitt dlle rette x = 0 e x = 1, mmetterà re compres tr 0 e 1; tle risultto si potev nche giungere immginndo di rcchiudere S in un qudrto di lto 1; prtire d tle riflessione, cerchimo un stim migliore. Supponimo di dividere S in quttro strisce S1; S2; S3; ed S4 disegnndo le rette verticli x =1/4 ; x =1/2; e x =3/4 come in Figur

5 Possimo pprossimre ogni strisci con un rettngolo vente l stess se dell strisci e ltezz pri l lto destro dell strisci, così come mostrto in Figur. In ltre prole, le ltezze di questi rettngoli sono i vlori dell funzione f(x) = x 2 nell estremo destro dei sotto intervlli [0; 1/4]; [1/4; 1/2]; [1/2; 3/4] e [3/4; 1]:

6 Ogni rettngolo h se ¼ e le ltezze sono (1/4) 2,(1/2) 2,(3/2) 2 e 1 2. Se indichimo con R 4 l somm delle ree di questi rettngoli pprossimti, ottenimo R 4 =0, M dll figur è chiro che l re A di S è minore di R 4 e dunque A<0, Se, invece di usre questo tipo di pprossimzione, ne usssimo un ltr crtterizzt d rettngoli le cui ltezze sono i vlori di f nell estremo sinistro dei sotto intervlli, come mostrto in figur L somm delle ree di questi rettngoli pprossimnti è L 4 =0,21875; inoltre, essendo l re di S mggiore di L 4 ottenimo un stim per difetto ed un per eccesso di A: 0,21875<A<0, Ripetendo quest procedur con un numero mggiore di strisce, si ottiene un stim sempre migliore di A.

7 Il metodo di esustione L'ide di se del concetto di integrle er not d Archimede di Sircus, vissuto tr il 287 ed il 212.C., ed er contenut nel metodo d lui usto per il clcolo dell're del cerchio o del segmento di prol, detto metodo di esustione. L're del cerchio è determint costruendo un successione di poligoni che ssomiglino sempre di più l cerchio. Ad esempio, un successione di poligoni regolri con numero crescente di lti: in figur, un pentgono, un esgono e un ottgono. A second che si scelgno poligoni iscritti o circoscritti nell circonferenz, l're di quest risulterà essere pprossimt inferiormente o superiormente. Entrme le scelte portno comunque l limite ll're del cerchio.

8 Introduzione storic Nel XVII secolo lcuni mtemtici trovrono ltri metodi per clcolre l're sottes l grfico di semplici funzioni, e tr di essi figurno d esempio Fermt (1636) e Nicolus Merctor(1668). Nel dicissettesimo e diciottesimo secolo Newton, Leiniz, Johnn Bernoulli scoprirono indipendentemente il teorem fondmentle del clcolo integrle, che ricondusse tle prolem ll ricerc dell primitiv di un funzione. L definizione di integrle per le funzioni continue in tutto un intervllo, introdott d Pietro Mengoli ed espress con mggiore rigore d Cuchy, venne post su se divers d Riemnn in modo d evitre il concetto di limite, e d comprendere clssi più estese di funzioni. Nel 1875 Gston Droux mostrò che l definizione di Riemnn può essere enuncit in mnier del tutto simile quell di Cuchy, purché si intend il concetto di limite in modo un po' più generle. Per questo motivo si prl di integrle di Cuchy-Riemnn. Il simolo che rppresent l'integrle nell notzione mtemtic fu introdotto d Leiniz ll fine del XVIII secolo. Il simolo si s sul crttere ſ (esse lung), letter che Leiniz utilizzv come inizile dell prol summ, in ltino somm, poiché questi considerv l'integrle come un somm infinit di ddendi infinitesimli.

9 Appliczioni ll iologi Tr i differenti contesti pplictivi del clcolo integrle, ci foclizzeremo sul cmpo dell iologi, nlizzndo l.ppliczione dell integrzione ll individuzione dell gettt crdic, ossi del volume del sngue pompto dl cuore nell unità di tempo o meglio l velocità del flusso nell ort. Il sngue ritorn l corpo ttrverso le vene, entr nell trio destro del cuore e viene pompto i polmoni ttrverso le rterie polmonri per ossigenrsi. Poi ritorn ll trio sinistro ttrverso le vene polmonri e viene rimndto del resto del corpo ttrverso l ort. L gettt crdic rppresent l velocità del flusso nell ort, l cui misurzione vviene utilizzndo un metodo detto metodo di diluizione dell tintur.

10 Quest ultim viene iniettt nell trio destro e fluisce ttrverso il cuore nell ort. Un sond inserit nell ort misur l concentrzione di tintur che lsci il cuore dopo uguli periodi di tempo nell intervllo [0; T] finché l tintur non è più rilevile. Si c(t) l concentrzione dell tintur l tempo t: Se dividimo l intervllo [0; T] in sottointervlli di ugule lunghezz Δt, llor l quntità di tintur che oltrepss il punto dell misurzione durnte il sottointervllo d t = t i 1 t i è circ concentrzione volume = c t i F t, dove F è l velocità del flusso che stimo cercndo di clcolre. Così l quntità totle di tintur è circ n i=1 c t i F t = F n i=1 c t i t per n l sommtori discret si trsform in un somm continu sull intervllo [0,T] e di conseguenz, trovimo che l tintur totle è: Allor l gettt crdic è dt d: A = F F = T 0 0 T c t dt c t dt Dove l quntità di tintur A è not e l integrle può essere pprossimto con le letture di concentrzione. A

11 Primitive e integrzione indefinit Definizione: Si dice che un funzione f : X R è dott di primitiv, se esiste un funzione F definit in X, ivi derivile, tle che: F x = f x, x X Proposizione: Se F è un primitiv di f, llor, c R, F + c è nch ess un primitiv di f Dimostrzione. L dimostrzione di tle sserto è immedit se si tiene presente che un funzione costnte in X h derivt null in ogni punto di X. Proposizione: Se f è definit in un intervllo X, llor due primitive di f differiscono per un costnte. Dimostrzione: Se F e G, inftti, sono due primitive di f, l funzione F - G è derivile in X e risult: F G x = f x f x = 0, x X pertnto F - G è costnte in X e l tesi è dimostrt.

12 Definizione. Si I un intervllo di R ed f un funzione definit nell intervllo I di R; l insieme di tutte le primitive dell f in I si chim integrle indefinito dell f e si denot con f x dx Osservzione. L operzione di integrzione indefinit può considerrsi come invers dell operzione di derivzione. Non isogn, tuttvi, dimenticre che l operzione di integrzione indefinit, qundo è possiile, ssoci d un funzione un clsse di funzioni; mentre l operzione di derivzione d ogni funzione ssoci un sol funzione. Definizione. L integrle indefinito è l opertore inverso dell derivt perché ssoci ll funzione integrnd f(x) l insieme di tutte e sole le funzioni primitive di f(x) stess.

13 Proposizione: L integrle indefinito è un opertore linere Inftti gode delle seguenti due proprietà: Proprietà di linerità: un costnte moltiplictiv si può trsportre dentro o fuori del segno di integrle indefinito k f x dx = k f x dx Proprietà di dditività: l integrle di un somm lgeric di due o più funzioni è ugule ll somm lgeric degli integrli delle singole funzioni f 1 x + f 2 (x) dx = f 1 x dx + f 2 x dx Cominndo insieme le due proprietà si h: k 1 f 1 x + k 2 f 2 (x) dx = k 1 f 1 x dx + k 2 f 2 x dx

14 Nozione di integrle per un funzione rele continu Si consideri l prtizione P di un intervllo chiuso [;] in n sottointervlli [x k-1 ;x k ] di ugule mpiezz, e si consideri un funzione continu f(x) definit su [;]. Per ogni intervllo dell prtizione si possono definire due punti: m k = inf f(x) e M k = sup x x k 1,x k x x k 1,x k f(x) che corrispondono ll'ordint minore m k nell'intervllo e ll'ordint mggiore M k dell'intervllo. Si definisce somm integrle inferiore reltiv ll prtizione P il numero: n s P = m k x k x k 1 k=1 Ammettendo che f ssum vlori positivi nell'intervllo, l somm integrle inferiore è l somm dei rettngoli inscritti ll regione del pino. Anlogmente, si definisce somm integrle superiore reltiv ll prtizione P il numero: n S P = M k x k x k 1 k=1

15 L somm integrle superiore è quindi l somm delle ree dei rettngoli circoscritti ll regione. Si pong: m < f x < M, x [, ] si dimostr che per ogni coppi di prtizioni P e Q di [;] si h: m < s P < S Q < M( ) Per ogni possiile prtizione P di [;] si definiscono: δ = s P, = S(P) Dl lemm precedente si può dedurre che gli insiemi δ e Σ sono seprti cioè: s<s L'ssiom di completezz di R fferm che llor esiste lmeno un numero rele ξ pprtenente R tle che: s ξ S Se vi è un unico elemento di seprzione ξ tr δ e Σ llor si dice che f(x) è integrile in [,] secondo Riemnn. L elemento ξ si indic con: ξ = f x dx e si chim integrle definito di f in [;]. I numeri e sono detti estremi di integrzione ed f è dett funzione integrnd. L vriile di integrzione è un vriile mut, e dx è detto differenzile dell vriile di integrzione.

16 Integrle secondo Riemnn DEFINIZIONE: L'integrle secondo Riemnn di f nell'intervllo chiuso e limitto [;] è definito come il limite per n che tende d infinito dell somm integrle: σ n = f(t n k ) k=1 dett somm integrle di Riemnn. Se tle limite esiste, è finito e non dipende dll scelt dei punti t k, si h: f x dx = lim σ n = f(t n n s ) s=1 L'esistenz di un unico elemento seprtore tr δ e Σ nell definizione è equivlente richiedere che: s(p) = S(P) = f x dx L funzione limitt f è integrile in [;] se e solo se per ogni ε>0 esiste un prtizione P di [;] per cui si h: S P s(p) < ε Se l funzione integrile f(x) è positiv llor l'integrle ssume il significto di re dell regione, mentre se l funzione f cmi segno su [;] llor l'integrle rppresent un somm di ree con segno diverso n n

17 Teorem dell medi Il teorem dell medi integrle è un teorem che mette in relzione le nozioni di integrle e di funzione continu per le funzioni di un vriile rele. Un funzione continu f definit su un intervllo h come immgine ncor un intervllo: il teorem dell medi integrle stilisce che l medi integrle di f è un vlore incluso nell'intervllo immgine. Il concetto di medi integrle è un generlizzzione dell'ide di medi ritmetic. L'ide è quell di clcolre il vlore medio ssunto d un funzione su un intervllo [,] clcolndo l medi ritmetic dei vlori che l funzione ssume su un insieme finito (molto grnde) di punti distriuiti uniformemente nell'intervllo, cioè si suddivide l'intervllo in N sottointervlli [x k, x k+1 ] tutti di lunghezz (-)/N e si clcol l medi: f x 0 + f x f(x N ) N quest può essere scritt nche come 1 N i=0 N f(x i) Dll definizione di integrle di Riemnn segue che considerndo quntità N sempre mggiori di punti, quest espressione convergerà l vlore che viene chimto medi integrle di f. 1 f x dx

18 Teorem Se f: [, ] R è continu e integrile llor esiste un punto c pprtenente d [,] tle che x o equivlentemente detto 1 f x dx = f x dx = f(c) f(c) Essendo f continu in [,], per il teorem di Weierstrss ess è dott di mssimo M e di minimo m su [,], quindi si vrà m f(x) M Dll proprietà di monotoni dell'integrle risult mdx f x dx Mdx Nei memri destr e sinistr dell disuguglinz stimo integrndo un funzione costnte, quindi imo Anlogmente mdx = m Mdx = M dx = m( ) d x = M( )

19 Si ottiene quindi ovvero, se >, m( ) m 1 f x dx M( ) f x dx M Per il teorem dei vlori intermedi, f deve ssumere in [,] tutti i vlori compresi tr sup f x = M e inf f x = m [,] [,] Quindi in prticolre esisterà un punto c pprtenente d [,] tle che f c = 1 f x dx

20 Teorem fondmentle del clcolo integrle Il teorem fondmentle del clcolo stilisce un'importnte connessione tr i concetti di integrle e derivt per funzioni vlori reli di vriile rele. L prim prte del teorem è dett primo teorem fondmentle del clcolo, e grntisce l'esistenz dell primitiv per funzioni continue. L second prte del teorem è dett secondo teorem fondmentle del clcolo, e consente di clcolre l'integrle definito di un funzione ttrverso un delle sue primitive. Un prim versione del teorem è dovut Jmes Gregory, mentre Isc Brrow ne fornì un versione più generle. Isc Newton, studente di Brrow, e Gottfried Leiniz completrono successivmente lo sviluppo dell teori mtemtic in cui è mientto il teorem

21 Teorem di Torricelli-Brrow o I teorem fondmentle del clcolo integrle Si f(x) un funzione integrnd, continu in un intervllo chiuso e limitto [,], llor l funzione integrle con x F x = f t dt è derivile in [,] e l derivt dell funzione integrle coincide con l funzione integrnd; si h cioè: F x = f(x) Dimostrzione Ricordimo che un funzione è derivile se esiste ed è finito il limite del rpporto incrementle l tendere 0 dell incremento Δx dell vriile indipendente. Determinimo il rpporto incrementle F x + x F(x) x e osservimo che F x + x = f t dt x+ x

22 Si h llor: F x + x x F(x) = x+ x x f t dt f t dt x Per l proprietà dditiv dell integrle: x+ x F x + x F(x) f t dt f t dt = x x x x+ x x f t dt + f t dt f t dt x = x Per il teorem dell medi esiste un x [x,x+ x] tle che x = x+ x x x f t dt x x x x f ( x) f ( t) dt x f ( x) f ( x) x Clcolimo il limite del rpporto incrementle per x che tende zero e si h, per l ipotesi di continuità, lim f ( x) f ( x) x 0 D cui si può concludere che F x = f(x)

23 Formul di Newton-Leinitz o secondo teorem fondmentle del clcolo integrle Si f:, R un funzione che mmette un primitiv F su [,]. Se f è integrile si h: f x dx = G(x) = G G() Tle relzione è dett formul fondmentle del clcolo integrle.

24 Il clcolo delle ree L integrle definito f x dx rppresent geometricmente l re dell regione di pino limitt dl grfico dell funzione y=f(x) e dll sse x nell intervllo [,]. Di due grfici si può vedere che il segno dell re è negtivo se l prte di pino si trov l di sotto dell sse x mentre è positivo se l prte di pino è l di sopr dell sse x.

25 Esempio Ad esempio che voglimo clcolre l re dell regione di pino rffigurt, compres tr l sse x e l curv di equzione f x = x 3 4x 2 + 3x doimo considerre l intervllo [0,3]. Questo intervllo deve essere diviso in due intervlli: nell intervllo [0,1] l prte di pino si trov l di sopr dell sse x e quindi h segno positivo, mentre nell intervllo [1,3] l prte di pino è l di sotto dell sse x quindi ssume segno negtivo. Pertnto doimo risolvere due integrli: 0 1 x 3 4x 2 + 3x dx 1 3 (x 3 4x 2 + 3x)dx

26 Are tr due curve Ci ponimo or il prolem di determinre l re dell regione di pino limitt di grfici di due funzioni y=f(x) e y=g(x) nell intervllo [,] Come si vede di grfici l re si ottiene come differenz tr l re del trpezoide individuto d f nell intervllo [,] e l re del trpezoide individuto d g nell intervllo [,]. Pertnto, l re cerct risult essere espress dll formul f x dx g x dx NB. Si noti che l formul vle se f(x)>g(x) ltrimenti l differenz v invertit.

27 Integrli delle funzioni pri e dispri Si f(x) un funzione dispri, ossi tle che f(-x)=-f(x) e si consideri il suo integrle in un intervllo simmetrico rispetto ll origine f x dx E intuitivo e si potree dimostrre che l integrle risult nullo: inftti ricordndo il significto geometrico di integrle definito, l integrle rppresent l somm lgeric delle due ree (ros e lu). Per l simmetri del grfico di f(x), tli ree risultno equivlenti e quindi hnno, in vlore ssoluto, l stess misur. Poiché un si trov l di sopr e un l di sotto dell sse x, le loro misure vrnno segni opposti e l loro somm lgeric srà perciò zero.

28 Si invece, y=f(x) un funzion pri il cui grfico, rppresentto in figur, è simmetrico rispetto ll sse y. In questo cso le due ree equivlenti vnno sommte. Pertnto: f ( x) dx 2 f ( x) dx 0

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

Il calcolo integrale: intro

Il calcolo integrale: intro Il clcolo integrle: intro Le ppliczioni del clcolo integrle sono svrite: esistono, inftti, molti cmpi, dll fisic ll ingegneri, dll iologi ll economi, in cui si f lrgo uso degli integrli. Per fornire l

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito Appunti di nlisi mtemtic: Integrle Deinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle Deinito Clcolo delle ree di ig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

Integrale definito. Introduzione: il problema delle aree

Integrale definito. Introduzione: il problema delle aree Integrle definito Introduzione: il prolem delle ree Il prolem delle ree è uno dei tre grndi prolemi che ci sono stti trmndti dgli ntichi, che lo definivno come il prolem dell qudrtur del cerchio: trovre,

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y Differenzile Considerimo l vrizione finit, dell vriile indipendente cui corrisponde un vrizione finit dell funzione f, f y Δf 1 Δ 2 L vrizione dell vriile dipendente puo' essere molto piccol, infinitesim

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo Integrli ll integrle deinito ll integrle indeinito Indice dell lezione Integrle Deinito Rettngoloide Integrle deinito come re del rettngoloide Esempi e propriet Primitiv Teorem ondmentle del clcolo integrle

Dettagli

Area del Trapezoide. f(x) A f(a) f(b) f(x)

Area del Trapezoide. f(x) A f(a) f(b) f(x) Are del Trpezoide y o A f() trpezoide h B f() f() L're del trpezoide S puo' essere pprossimt dll're del trpezio AB. Per vere un migliore pprossimzione possimo suddividere il trpezio in trpezi piu' piccoli.

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito Appunti di nlisi mtemtic: Integrle Deinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle Deinito Clcolo delle ree di ig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata Cpitolo 5 Integrli 5.1 Integrli di funzioni grdint Un concetto molto semplice m di fondmentle importnz per l trttzione dell integrle di Riemnn è quello di divisione di un intervllo [, b]. In sostnz si

Dettagli

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1.

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1. TEST DI MATEMATICA Funzioni in un, Funzioni in due vriili Integrli Equzioni differenzili ) Il vlore del limite seguente e e e lim è ) Il vlore del limite seguente 5 lim 5 è : ) L derivt prim dell funzione

Dettagli

1 Il problema del calcolo dell area di una regione piana limitata

1 Il problema del calcolo dell area di una regione piana limitata Anlisi Mtemtic 2 1 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 1 INTEGRALI DI FUNZIONI DI UNA VARIABILE REALE 1 Il problem del clcolo dell re di un regione pin limitt Se si consider un

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

Corso di Analisi Matematica. Calcolo integrale

Corso di Analisi Matematica. Calcolo integrale .. 2011/12 Lure triennle in Informtic Corso di Anlisi Mtemtic Clcolo integrle Avvertenz Questi sono ppunti informli delle lezioni, che vengono resi disponibili per comodità degli studenti. Prte del mterile

Dettagli

Erasmo Modica. : K K K

Erasmo Modica.  : K K K L insieme dei numeri reli L INSIEME DEI NUMERI REALI Ersmo Modic helthinsurnce@tin.it www.glois.it Per introdurre l insieme dei numeri reli si hnno disposizione diversi modi. Generlmente l iennio si preferisce

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

Matematica I, Funzione integrale

Matematica I, Funzione integrale Mtemtic I, 24.0.2. Funzione integrle Definizione Sino f : A R, funzione continu su A intervllo, e c in A. L funzione che ssoci d ogni in A l integrle di f sull intervllo [c, ], viene dett funzione integrle

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

Modulo o "valore assoluto" Proprietà del Valore Assoluto. Intervalli

Modulo o valore assoluto Proprietà del Valore Assoluto. Intervalli Modulo o "vlore ssoluto" Dto x definimo modulo o vlore ssoluto di x il numero rele positivo x se x 0 x = x se x < 0 Es. 5 è 5. 2.34 è 2.34 Dl punto di vist geometrico x rppresent l distnz di x d 0. x x

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale.

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale. 1 Integrli dipendenti d un prmetro e derivzione sotto il segno di integrle. Considerimo l funzione f(x, t) : A [, b] R definit nel rettngolo A [, b], essendo A un sottoinsieme perto di R e [, b] un intervllo

Dettagli

Calcolo integrale. Capitolo Primitive ed integrale inde nito

Calcolo integrale. Capitolo Primitive ed integrale inde nito Cpitolo 9 Clcolo integrle 9.1 Primitive ed integrle inde nito De nizione 9.1 Assegnt un funzione f : A! R, si de nisce primitiv di f un qulunque funzione F : A! R derivbile, tle che F 0 (x) = f(x), per

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

1 Integrali generalizzati su intervalli illimitati

1 Integrali generalizzati su intervalli illimitati Lezioni per il corso di Anlisi 2, AA 07-08. Dott.ss Sndr Lucente Argomento: Integrli generlizzti 1 1 Integrli generlizzti su intervlli ilitti Definizione 1.1. Si f : [,[ R un funzione continu. Se esiste

Dettagli

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI Considerimo un funzione f : I R, dove I è un intervllo di R. Si c un punto interno I in cui f è discontinu. Diremo che c è un punto di discontinuità di prim

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo Lure triennle in Scienze dell Ntur.. 2009/200 Regole di Clcolo In queste note esminimo lcune conseguenze degli ssiomi reltivi lle operzioni e ll ordinmento nell insieme R dei numeri reli. L obiettivo principle

Dettagli

Corso di Laurea in Ingegneria Civile ed Ambientale Prima prova scritta di Analisi Matematica 1 del 10/01/2011 A

Corso di Laurea in Ingegneria Civile ed Ambientale Prima prova scritta di Analisi Matematica 1 del 10/01/2011 A Prim prov scritt di Anlisi Mtemtic 1 del 10/01/2011 A (1) Fornire l definizione di funzione integrbile secondo Riemnn e di integrle di Riemnn. (2) Enuncire e dimostrre il Teorem di Rolle. (3) Dimostrre

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anlitic Domnde, Risposte & Esercizi. Dre l definizione di iperole come luogo di punti. L iperole è un luogo di punti, è cioè un insieme di punti del pino le cui distnze d due punti fissi F e F

Dettagli

FUNZIONI IPERBOLICHE

FUNZIONI IPERBOLICHE FUNZIONI IPERBOLICHE Umberto Mrconi Diprtimento di Mtemtic Pur e Applict Pdov Premess Si [, [, fissto. Voglimo cpire cos signific: w dw perché l funzione integrnd è illimitt. Se considerimo, per b [, [,

Dettagli

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento Questionrio Risolvi quttro degli otto quesiti: L Città dello sport è un struttur sportiv progettt dll rchitetto Sntigo Cltrv e mi complett, situt sud di Rom Rispetto l sistem di riferimento indicto in

Dettagli

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi SUGLI INSIEMI 1.Insiemi e operzioni su di essi Il concetto di insieme è primitivo ed è sinonimo di clsse, totlità. Si A un insieme di elementi qulunque. Per indicre che è un elemento di A scriveremo A.

Dettagli

INTERVALLI NELL INSIEME R

INTERVALLI NELL INSIEME R INTEVALLI NELL INSIEME Lo studio dell topologi (1) (dl greco "nlysis situs" ossi "studio del luogo") dell'insieme è di fondmentle importnz per gli rgomenti e i prolemi di nlisi infinitesimle. Il "luogo"

Dettagli

U.D. N 15 Funzioni e loro rappresentazione grafica

U.D. N 15 Funzioni e loro rappresentazione grafica 54 Unità Didttic N 5 Funzioni e loro rppresentzione grfic U.D. N 5 Funzioni e loro rppresentzione grfic ) Le coordinte crtesine ) L distnz tr due punti 3) Coordinte del punto medio di un segmento 4) Le

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

8. Calcolo integrale.

8. Calcolo integrale. Politenio di Milno - Foltà di Arhitettur Corso di Lure in Edilizi Istituzioni di Mtemtihe - Appunti per le lezioni - Anno Ademio 200/20 26 8 Clolo integrle 8 Signifito geometrio dell integrle definito

Dettagli

Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 PROBLEMA ) L prbol di equzione V ' (0,0). y h sse di simmetri prllelo ll sse delle ordinte e vertice in L prbol di equzione

Dettagli

Teorema della Divergenza (di Gauss)

Teorema della Divergenza (di Gauss) eorem dell ivergenz (di Guss) i un dominio tridimensionle regolre, l cui frontier è un superficie chius orientt con cmpo normle unitrionˆ uscente d. e F(,,z) F (,,z) i F (,,z) j F (,,z) k è un cmpo vettorile

Dettagli

Campi. Una funzione F di n variabili reali e a valori in R n è detta campo di vettori. Nel seguito considereremo F : A R n con A aperto di R n.

Campi. Una funzione F di n variabili reali e a valori in R n è detta campo di vettori. Nel seguito considereremo F : A R n con A aperto di R n. Cmpi Ultimo ggiornmento: 18 febbrio 217 Un funzione F di n vribili reli e vlori in R n è dett cmpo di vettori. Nel seguito considereremo F : A R n con A perto di R n. 1. Integrli curvilinei di second specie

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

DISPENSE DI ANALISI MATEMATICA. Indice

DISPENSE DI ANALISI MATEMATICA. Indice DISPENSE DI ANALISI MATEMATICA ANNAMARIA MONTANARI Indice. Integrle di Riemnn.. Proprietà elementri dell integrle di Riemnn 5.2. Teorem fondmentle del clcolo integrle. Primitive 6.3. Integrle generlizzto

Dettagli

ipotenusa cateto adiacente ad α cateto opposto ad α ipotenusa cateto adiacente ad α ipotenusa cateto adiacente ad α

ipotenusa cateto adiacente ad α cateto opposto ad α ipotenusa cateto adiacente ad α ipotenusa cateto adiacente ad α Trigonometri I In quest prim prte dell trigonometri denimo le funzioni trigonometriche seno, coseno e tngente e le loro funzioni inverse. Vedremo nche come utilizzrle nell risoluzione dei tringoli. Comincimo

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.mtefili.it PNI 2005 - SESSIONE SUPPLETIVA QUESITO È dto un trpezio rettngolo, in cui le bisettrici degli ngoli dicenti l lto obliquo si intersecno in un punto del lto perpendicolre lle bsi. Dimostrre

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

In questo capitolo svilupperemo la teoria dell integrazione secondo Riemann per funzioni di una variabile reale.

In questo capitolo svilupperemo la teoria dell integrazione secondo Riemann per funzioni di una variabile reale. Cpitolo 1 Integrle di Riemnn In questo cpitolo svilupperemo l teori dell integrzione secondo Riemnn per funzioni di un vribile rele. 1.1 Motivzioni Considerimo i seguenti problemi. 1. Clcolo di un re.

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes I Teoremi di Green, dell divergenz o di Guss e di Stokes In R Si un sottoinsieme limitto di R semplice rispetto d entrmbi gli ssi crtesini con costituit dll unione di un numero finito di sostegni di curve

Dettagli

Serie di Potenze. Introduciamo il concetto di convergenza puntuale ed uniforme per successioni. { 0 se 1 < x < 1

Serie di Potenze. Introduciamo il concetto di convergenza puntuale ed uniforme per successioni. { 0 se 1 < x < 1 Serie di Potenze Introducimo il concetto di convergenz puntule ed uniforme per successioni di funzioni. Definizione 1 Si I un intervllo di R. Si dt l vrire di n N l funzione f n : I R. Dicimo che l successione

Dettagli

Soluzione. Si consideri la figura sottostante che raffigura la geometria del problema: = =

Soluzione. Si consideri la figura sottostante che raffigura la geometria del problema: = = Sessione suppletiv LS_ORD 00 di De Ros Nicol PROBLEMA Del tringolo ABC si nno le seguenti informzioni: ABcm; ACcm; CAB 60. Si trcci l isettrice di CAB e se ne indici con D lintersezione con il lto BC.

Dettagli

MATEMATICA Classe Prima

MATEMATICA Classe Prima Liceo Clssico di Treiscce Esercizi per le vcnze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri nturli Primi ogni pgin del cpitolo Cpitolo Numeri nturli Primi ogni pgin del cpitolo Per gli llievi promossi

Dettagli

Il calcolo letterale

Il calcolo letterale Progetto Mtemtic in Rete Il clcolo letterle Finor imo studito gli insiemi numerici (espressioni numeriche). Ν, Ζ, Q, R ed operto con numeri In mtemtic però è molto importnte sper operre con le lettere

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita 86 Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di

Dettagli

2 Numeri reali. M. Simonetta Bernabei & Horst Thaler

2 Numeri reali. M. Simonetta Bernabei & Horst Thaler 2 Numeri reli M. Simonett Bernei & Horst Thler Numeri interi positivi o Nturli 0 1 2 3 4 Con i numeri Nturli è sempre possiile fre l ddizione e l moltipliczione p.es.: 5+2 = 7; 3*4 = 12; m non sempre l

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Corso di : FISICA MEDICA A.A. 015 /016 Docente: Dott. Chiucchi Riccrdo il:rchiucchi@unite.it Medicin Veterinri: CFU 5 (corso

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE.

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE. L prol In figur è trccito il grfico di un prol con sse di simmetri verticle. Si vede suito dl grfico ce: l curv è simmetric rispetto l suo sse di simmetri il suo punto più in sso è il vertice il vertice

Dettagli

Anno 1. Numeri reali: proprietà e applicazioni di uso comune

Anno 1. Numeri reali: proprietà e applicazioni di uso comune Anno Numeri reli: proprietà e ppliczioni di uso comune Introduzione L insieme dei numeri rzionli è composto d numeri che si ottengono dl rpporto tr due numeri interi. Tle rpporto, o frzione, è sempre ssociile

Dettagli

RAPPRESENTAZIONE GRAFICA DELLA PARABOLA a ( ) { } f con, è la parabola di equazione y = ax + bx + c. Vogliamo disegnarla. 2

RAPPRESENTAZIONE GRAFICA DELLA PARABOLA a ( ) { } f con, è la parabola di equazione y = ax + bx + c. Vogliamo disegnarla. 2 APPENDICE 1 AL CAPITOLO 3: RAPPRESENTAZIONE GRAFICA DELLA PARABOLA Per 0 l insieme,y / y = + + c, grfico dell funzione f = + + c { } f con, è l prol di equzione y = + + c Voglimo disegnrl non è difficile

Dettagli

Integrazione numerica. I(f) := Non sempre si riesce a trovare la forma esplicita della primitiva.

Integrazione numerica. I(f) := Non sempre si riesce a trovare la forma esplicita della primitiva. Approssimzione numeric di: Motivzioni. Integrzione numeric I(f) = f(x)dx. Non sempre si riesce trovre l form esplicit dell primitiv. Vlutzione costos dell primitiv. L funzione d integrre può essere dt

Dettagli

II-8 Integrale di Riemann

II-8 Integrale di Riemann II-8 INTEGRALE DI RIEMANN DEFINIZIONE DI INTEGRALE DI RIEMANN II-8 Integrle di Riemnn Indice Definizione di integrle di Riemnn Condizioni di esistenz dell integrle di Riemnn 3 3 Proprietà dell integrle

Dettagli

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico Second prov mturit 06 soluzione secondo problem di mtemtic scientifico Skuol.net June, 06 Primo Problem Le tre funzioni proposte sono f () ( ) k f () 6 + 9k + f () cos( π k ). Punto Affinche l funzione

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

INTEGRALE INDEFINITO. Saper calcolare l integrale indefinito di una funzione utilizzando i diversi metodi

INTEGRALE INDEFINITO. Saper calcolare l integrale indefinito di una funzione utilizzando i diversi metodi INTEGRLE INDEFINITO OIETTIVI MINIMI: Sper definire l integrle indefinito di un funzione. onoscere le proprietà dell integrle indefinito. Sper clcolre l integrle indefinito di un funzione utilizzndo i diversi

Dettagli

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A.

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A. 88 Roberto Turso - Anlisi 2 Osservimo che per trovre le costnti A e B possimo nche rgionre così: se moltiplichimo l equzione + ( + 2)( + 3) = A + 2 + B + 3 per + 2, dopo ver semplificto, ottenimo + + 3

Dettagli

Ellisse riferita al centro degli assi

Ellisse riferita al centro degli assi Appunti delle lezioni tenute in clsse: ellisse e iperole Ellisse riferit l centro degli ssi Dti due punti F ed F detti fuochi, l ellisse è il luogo geometrico dei punti P del pino per cui è costnte l somm

Dettagli

Calcolo integrale per funzioni di una variabile

Calcolo integrale per funzioni di una variabile Cpitolo 10 Clcolo integrle per funzioni di un vribile 10.1 Funzioni primitive Abbimo studito il problem di dedurre d un dt funzione l su derivt. Voglimo or occuprci del problem inverso: dt un funzione

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

Integrali curvilinei (integrali di densità) Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Integrali curvilinei (integrali di densità) Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milno orso di Anlisi e Geometri 1 Federico Lstri federico.lstri@polimi.it Integrli curvilinei di prim specie (integrli di densità) 15 Dicembre 215 Indice 1 Integrli di line di prim specie

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

1 Il calcolo differenziale

1 Il calcolo differenziale 1 Il clcolo differenzile 1.1 Funzione rele di vriile rele Un funzione f: A B si dice funzione rele di vriile rele qundo si il dominio ce il codominio sono sottoinsiemi di R. In questo cso l funzione può

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI Esponenzili e logritmi ESPONENZIALI E LOGARITMI Potenze Fino d or si sono definite le potenze d esponenete intero e rzionle (si positivi che negtivi). Ripssimo le definizioni e i concetti che li rigurdno:

Dettagli

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le Sched Sei ESPONENZIALI E LOGARITMI L funzione esponenzile Assegnto un numero rele >0, si dice funzione esponenzile in bse l funzione Grfici dell funzione esponenzile Se = l funzione esponenzile è costnte:

Dettagli

Calcolo letterale. 1) Operazioni con i monomi. a) La moltiplicazione. b) La divisione. c) Risolvi le seguenti espressioni con i monomi.

Calcolo letterale. 1) Operazioni con i monomi. a) La moltiplicazione. b) La divisione. c) Risolvi le seguenti espressioni con i monomi. Clcolo letterle. ) Operzioni con i monomi. ) L moltipliczione. ) L divisione. c) Risolvi le seguenti espressioni con i monomi. ) I polinomi. ) Clcol le seguenti somme di polinomi. ) Applic l proprietà

Dettagli

Micol Amr ANALISI MATEMATICA I - 999/000 rispettivmente, hnno entrmbe come sostegno l circonferenz unitri di centro l'origine, m sono due curve distin

Micol Amr ANALISI MATEMATICA I - 999/000 rispettivmente, hnno entrmbe come sostegno l circonferenz unitri di centro l'origine, m sono due curve distin CURVE IN IR N. Denizione e prime propriet. Si I un intervllo contenuto in IR. Dt un N-pl di funzioni f i : I! IR, i =;:::;N, indicheremo con f : I! IR N l funzione che d ogni punto x I ssoci l N-pl fx)

Dettagli

Meccanica dei Solidi. Vettori

Meccanica dei Solidi. Vettori Meccnic dei Solidi Prof. Ing. Stefno Avers Università di Npoli Prthenope.. 2005-06 Lezione 2 Vettori Definizione: Un grndezz vettorile (o un vettore) è un grndezz fisic crtterizzt oltre che d un numero

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

Unità 3 Metodi particolari per il calcolo di reti

Unità 3 Metodi particolari per il calcolo di reti Unità 3 Metodi prticolri per il clcolo di reti 1 Cos c è nell unità Metodi prticolri per il clcolo di reti con un solo genertore Prtitore di tensione Prtitore di corrente Metodi di clcolo di reti con più

Dettagli

5. Funzioni elementari trascendenti

5. Funzioni elementari trascendenti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 5. Funzioni elementri trscendenti A. A. 2013-2014 1 FUNZIONI ESPONENZIALI Le più semplici funzioni esponenzili sono le funzioni f: R R definite

Dettagli

Risoluzione verifica di matematica 3C del 17/12/2013

Risoluzione verifica di matematica 3C del 17/12/2013 Problem 1 Risoluzione verific di mtemtic C del 17/1/01 Si clcolno le intersezioni tr le rette generiche del fscio proprio y x y 1, risolvendo il sistem: x y 1 y mx Si ottengono i punti di coordinte espresse

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

Teoremi sulle funzioni derivabili

Teoremi sulle funzioni derivabili Teoremi sulle unzioni derivili Inizimo con l deinizione di punto di mssimo o minimo reltivo di un unzione. Deinizione: D è un punto di mssimo reltivo se esiste un intorno I tle che : I Deinizione: D è

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione ordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione ordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Sessione ordinri Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA In un pino, riferito d un sistem

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

Moto in due dimensioni

Moto in due dimensioni INGEGNERIA GESTIONALE corso di Fisic Generle Prof. E. Puddu LEZIONE DEL 24 SETTEMBRE 2008 Moto in due dimensioni Spostmento e velocità Posizione e spostmento L posizione di un punto mterile nel pino è

Dettagli