Spostamento virtuale

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Spostamento virtuale"

Transcript

1 Spostameto virtuae Dato u sistema comuque vicoato, si dice spostameto virtuae (e si idica co δ) uo spostameto ifiitesimo coforme ai vicoi fissati aʼistate t. I statica i vicoi soo fissi; i diamica possoo essere mobii. I vicoo si dice mobie quado a posizioe dei puti dipede o soo dae coordiate, ma ache da tempo. er cacoare o spostameto virtuae dobbiamo fissare i vicoo a u certo istate. Dato δ, se -δ è possibie (virtuae), o spostameto virtuae si dice reversibie; se -δ è impossibie (o virtuae), δ si dice irreversibie. ESEMI ) uto vicoato a iea fissa δ Questo spostameto virtuae (tagete aa iea), è reversibie. o esiste u soo spostameto virtuae, tutti gi spostameti ifiitesimi tageti aa iea soo virtuai. ) uto vicoato a ua superficie fissa Cosideriamo per sempicità u piao fisso. δ δ δt I puto è vicoato a stare sua superficie o a staccarsi e semispazio superiore. o può passare e semispazio iferiore. δt è reversibie. δ è irreversibie. δ che cotiee ua compoete ormae è irreversibie.

2 3) uto vicoato a iea mobie d δ t+dt t er cacoare o spostameto virtuae occorre fissare a iea a tempo t. Lo spostameto virtuae δ è tagete. Lo spostameto effettivo de puto durate i movimeto, risete de trasciameto dea iea, per cui ha ache ua compoete ormae. Lo idichiamo co d. Se i vicoi soo fissi tra gi ifiiti spostameti virtuai esiste queo effettivo. Se i vicoi soo mobii o spostameto effettivo o è virtuae. Si defiisce veocità virtuae v ʼ a gradezza: v ʼ = δ dove δt è u tempo campioe, che si assume uguae per tutti i puti de δt # # sistema. Chiariamo co esempi a differeza tra veocità virtuae ed effettiva. ESEMIO : aeio vicoato a uʼasta che gira attoro aa ceriera fissa O. # # Usiamo coordiate poari. i θ ρ ϑ i ρ v = ρ iρ + ρ ϑ iθ veocità effettiva er avere a veocità virtuae fisso ϑ. δ = δρ i ρ δρ v ʼ = δt i ρ

3 ESEMIO uto vicoato a ua circofereza di raggio variabie e tempo R = R(t). j i R(t) # (t) = R(t) cos ϑ i + R(t) se ϑ j # x(t) = R(t) cos ϑ # y(t) = R(t) se ϑ R(t+dt) # x = Rʼ(t) cos ϑ - R(t) se ϑ ϑ # y = Rʼ(t) se ϑ + R(t) cos ϑ ϑ v = x i + y j δ = - R( t ) se ϑ δ ϑ i + R( t ) cos ϑ δ ϑ j δ δϑ v ʼ = = (- R( t ) se ϑ i + R( t ) cos ϑ j ) δt δt _ Abbiamo fissato i raggio ad u istate t e così abbiamo cacoato spostameto virtuae e veocità virtuae v ʼ. 3

4 Rappresetazioe aaitica deo spostameto virtuae. Se ho dee coordiate geerai xk (k=,m) e posizioi dei puti soo date da i = i (x,..., xm, t) se i vicoo è mobie. Soo date da i = i (x,..., xm) se i vicoi soo fissi. _ er avere o spostameto virtuae devo fissare i tempo ad u istate t e ho: m δi δi = δxk k δxk Le coordiate possoo essere egate tra oro da vicoi. Se e reazioi tra e coordiate soo fiite (cioè o cotegoo derivate) i vicoi si dicoo ooomi. I caso diverso aooomi. e caso di vicoo ooomo si possoo itrodurre coordiate ibere qk i u umero =m-r, dove r è i umero dee reazioi di vicoo. Le coordiate ibere soo tate quati i gradi di ibertà de sistema. I vicoi fiiti soo espressi da reazioi agebriche. Facciamo u esempio sempice: uto vicoato a ua circofereza fissa R y x ϑ Reazioe di vicoo x² + y² = R² Differeziado abbiamo x δx + y δy = 0 Iotre y = ± R² - x² Abbiamo u soo grado di ibertà. Eʼ più comodo ricorrere aʼuica coordiata ibera ϑ. x = R cos ϑ, y = R se ϑ, (t) = x i + y j Se si hao tate coordiate ibere, aora e caso geerae di vicoi mobii abbiamo i = i (q₁,..., q t ) er avere o spostameto virtuae fissiamo t e abbiamo: δi δi = δqk k δqk Le δqk soo idipedeti tra di oro. La veocità virtuae è data da: δi δi δqk v iʼ = = δt k δqk δt La veocità effettiva è data da: di i v i = = qk + dt k qk t 4

5 Lo spostameto effettivo è dato da: i di = vi dt = dqk + dt k qk t DIAMICA DEI SISTEMI Cosideriamo u sistema di puti materiai ₁, ₂,...,, comuque vicoati. ) e cacoo de movimeto si trattao i puti come iberi, pur di aggiugere ae forze attive e reazioi vicoari esercitate dai vicoi. ) Se u sistema è soggetto a vicoi ideai, a poteza dee reazioi vicoari, per ogi atto di moto virtuae, o è mai egativa. Se ʼatto di moto è reversibie, a poteza dee reazioi vicoari è ua. Questi soo due postuati ESEMI ) uto vicoato a iea iscia (fissa o mobie) Si cosidera a iea fissata a queʼistate, per cui a veocità virtuae v ʼ è tagete aa iea. Φ v ʼ Φ (reazioe vicoare) è ormae aa iea per cui Φ v ʼ = 0 ) Cosideriamo u esempio di vicoo iscio uiatero: u puto che o può muoversi esteramete a ua sfera iscia. - Se i puto è itero, Φ = 0 e quidi a poteza virtuae π ʼ è ua. - Se i puto si trova sua superficie, Φ è ormae ad essa e rivota verso ʼitero. Aora si hao due casi: a) v ʼ tagete aa sfera (v ʼ reversibie) e aora Φ v ʼ = 0 b) v ʼ rivoto verso ʼitero dea sfera (v ʼ irreversibie) e aora Φ v ʼ > 0 v ʼ (a) Φ Φ (b) 5

6 RELAZIOE ED EQUAZIOE SIMBOLICA DELLA DIAMICA Se su puto i di massa m i ed acceerazioe a i, agiscoo F i, risutate dee forze attive, e Φ i, risutate dee reazioi vicoari, abbiamo: mi ai = Fi + Φi Fi - mi ai = - Φi (Fi - mi ai) vi ʼ = - Φi vi ʼ er i postuato, per vicoi ideai, abbiamo # # # i (Fi - mi ai) vi ʼ 0# () perché Φi vi ʼ 0 i Questa () si dice Reazioe simboica dea Diamica. Se ʼatto di moto è reversibie, essedo abbiamo i Φi vi ʼ = 0 i i (Fi - mi ai) vi ʼ = 0# () La () si dice Equazioe simboica dea Diamica. δi I termii di spostameto virtuae, scriviamo, poiché vi ʼ =, δt (Fi - mi ai) δi 0# i (Fi - mi ai) δi = 0# i e caso dea statica a i = 0 ed abbiamo: (ʼ) (ʼ) # # # # # δ*l = i Fi δi 0 (3) δ*l si dice avoro virtuae. La (3) si chiama reazioe simboica dea diamica ed esprime i ricipio dei avori virtuai. Codizioe ecessaria e sufficiete per ʼequiibrio di u sistema soggetto a vicoi ideai, è che i avoro dee forze attive, per ogi spostameto virtuae, o sia mai positivo. 6

7 TRATTAZIOE AALITICA DEL.LL.VV. EL CASO DI SISTEMI OLOOMI e caso di sistemi ooomi i vicoi soo reversibii. Aora: # # δ*l = i Fi δi = 0 ## () dove è i umero dei puti di appicazioe dee forze attive Fi δi è dato da: # # i # # δi = k δqk = 0# qk # () dove è i umero dee coordiate ibere (umero dei gradi di ibertà de sistema). Otteiamo i # # δ*l = i Fi k δqk = 0 qk Le sommatorie soo su umero fiito di termii (o soo serie), per cui posso scambiare ʼordie: ( ) i # # k i Fi δqk = 0 qk La sommatoria itera dà u risutato dipedete soo daʼidice K. oiamo i # # Qk = i Fi (k =,,...,) qk # # # # δ*l = k Qk δqk = 0 Le quatità Q k si dicoo forze geeraizzate secodo Lagrage, o compoeti Lagragiae dea soecitazioe attiva. oiché e δqk soo idipedeti, posso scegiere δq 0 δqk =... δq = 0 aora δ*l = Q δq = 0 da cui deduciamo Q = 0. Aaogamete per e atre Qk si ottiee # # Qk = 0## # (k =,,...,) che soo tate equazioi pure quati i gradi di ibertà de sistema. 7

8 ESEMIO k x A x ϑ G y p B F Lʼasta AB è omogeea di peso e ughezza, a forza orizzotae F è costate. er a moa# # Fx = - k x # # # δxa = δx er i peso # Fy = yg = se ϑ δyg = cos ϑ δϑ er a forza F # Fx = F xb = x + cos ϑ # δxb = δx - se ϑ δϑ er i sistema δ*l è dato da δ*l = - k x δx + cos ϑ δϑ + F (δx - se ϑ δϑ) = 0 δ*l = (- k x + F) δx + ( cos ϑ - F se ϑ) δϑ = 0 # Qx = - k x + F = 0 # Qϑ = cos ϑ - F se ϑ = 0 da cui si deduce F # x = ; tg ϑ = k F 8

9 TEOREMA DI STAZIOARIETAʼ DEL OTEZIALE e caso che e forze attive siao coservative, esiste i poteziae U = U(q k ) e abbiamo: δ*l = δu U δ*l = k Qk δqk = δu = k δqk qk U da cui Qk = # # # (k =,,...,) qk U i equiibrio# = 0# # (k =,,...,) qk δu = 0, cioè U è stazioario ea posizioe di equiibrio. I teorema si formua così: Le cofigurazioi di equiibrio di u sistema ooomo soo quee che auao e derivate parziai de poteziae rispetto a tutte e coordiate ibere. Esse coicidoo quidi co i puti di stazioarietà de poteziae. e caso deʼesempio precedete, i poteziae è dato da: # # U = - k x² + se ϑ + F (x + cos ϑ) da cui U # = - k x + F = 0 x U # = cos ϑ - F se ϑ = 0 ϑ F x = ; k p tg ϑ = F 9

10 osizioi di equiibrio i u caso coservativo: ESEMIO GRAFICO I q * abbiamo u massimo, i q* u miimo, i q* 3 u puto di fesso a tagete orizzotae. Lʼequiibrio può essere stabie o istabie, discuteremo questo puto i seguito. 0

Carichi critici aste compresse

Carichi critici aste compresse Carichi critici aste compresse I carico critico Eueriao si scrive come P E Dove è a ughezza ibera di ifessioe χ χ α Coefficiete adimesioae che rifette ifueza dei vicoi α è a più piccoa radice de equazioe

Dettagli

Inflessione nelle travi

Inflessione nelle travi Ifessioe ee travi Caso dea trave icastrata ad u estremità Data a trave a mesoa AB di ughezza, sottoposta a azioe de carico cocetrato F appicato a estremo ibero B, questa risuta soecitata, i ogi sezioe,

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57 Tracce di soluzioi di alcui esercizi di matematica - gruppo 42-57 4. Limiti di successioi Soluzioe dell Esercizio 42.. Osserviamo che a = a +6 e duque la successioe prede valori i {a,..., a 6 } e ciascu

Dettagli

Applicazioni a problemi piani di deformazione

Applicazioni a problemi piani di deformazione Appicazioi a probemi piai di deformazioe Probemi piai di deformazioe (Leoe Corradi III pag 59) I moti casi o è facie determiare ua souzioe sia staticamete che ciematicamete ammissibie Ci si accoteta di

Dettagli

Poiché ricerchiamo metodi A-stabili si considera la l,l sotto l'ulteriore ipotesi che f sia di classe cl in B e che risulti f'(y) < O per ogni y e B.

Poiché ricerchiamo metodi A-stabili si considera la l,l sotto l'ulteriore ipotesi che f sia di classe cl in B e che risulti f'(y) < O per ogni y e B. - 3 - Se V è di casse C i B. V è detta fuzioe di Liapuov. I teorema sussiste formamete idetico ache per u sistema diamico discreto P purché a vega sostituita daa ' V(p(y < V(y per ogi y t, per ogi > O..

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

Precorso di Matematica, aa , (IV)

Precorso di Matematica, aa , (IV) Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe

Dettagli

Programma (orientativo) secondo semestre 32 ore - 16 lezioni

Programma (orientativo) secondo semestre 32 ore - 16 lezioni Programma (orietativo) secodo semestre 32 ore - 6 lezioi 3 lezioi: successioi e serie 4 lezioi: itegrali 2-3 lezioi: equazioi differeziali 4 lezioi: sistemi di equazioi e calcolo vettoriale e matriciale

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.matefilia.it ORDINAMENTO 1 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Due osservatori si trovao ai lati opposti di u grattacielo, a livello del suolo. La cima dell edificio dista 16 metri dal primo

Dettagli

La dinamica dei sistemi - intro

La dinamica dei sistemi - intro La diamica dei sistemi - itro Il puto materiale rappreseta ua schematizzazioe utile o solo per descrivere situazioi di iteresse diretto ma è ache il ecessario presupposto alla meccaica dei sistemi materiali

Dettagli

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

Introduzione all Analisi di Fourier. Prof. Luigi Landini Ing. Nicola Vanello. (presentazione a cura di N. Vanello)

Introduzione all Analisi di Fourier. Prof. Luigi Landini Ing. Nicola Vanello. (presentazione a cura di N. Vanello) Itroduzioe all Aalisi di Prof. Luigi Ladii Ig. Nicola Vaello (presetazioe a cura di N. Vaello) ANALII DI FOURIER egali tempo cotiui: egali periodici egali aperiodici viluppo i serie di Itroduzioe alla

Dettagli

3. Calcolo letterale

3. Calcolo letterale Parte Prima. Algera 1) Moomi Espressioe algerica letterale 42 Isieme di umeri relativi, talui rappresetati da lettere, legati fra loro da segi di operazioi. Moomio Espressioe algerica che o cotiee le operazioi

Dettagli

1 + 1 ) n ] n. < e nα 1 n

1 + 1 ) n ] n. < e nα 1 n Esercizi preparati e i parte svolti martedì 0.. Calcolare al variare di α > 0 Soluzioe: + ) α Per α il ite è e; se α osserviamo che da + /) < e segue che α + ) α [ + ) ] α < e α Per α > le successioi e

Dettagli

3.1 Rappresentazione dello stato tensionale nel piano di Mohr: circoli di Mohr.

3.1 Rappresentazione dello stato tensionale nel piano di Mohr: circoli di Mohr. DIDATTICA DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA MODULO TRE I CONCETTI FONDAMENTALI NELL ANALISI DELLA TENSIONE PARTE B) MODULO PER LO SPECIALIZZANDO Modulo. Rappresetazioe dello stato

Dettagli

Cenni di topologia di R

Cenni di topologia di R Cei di topologia di R. Sottoisiemi dei umeri reali Studieremo le proprietà dei sottoisiemi dei umeri reali, R, che hao ad esempio la forma: = (, ) (,) 6 8 = [,] { ;6;8} { } = (, ) (,) [, + ) Defiizioe:

Dettagli

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA IPSAA U. Patrizi Città di Castello (PG) Classe A Tecico Agrario Lezioe di martedì 0 ovembre 0 (4 e ora) Disciplia: MATEMATICA La derivata della fuzioe composta Fuzioe composta Df(g())f (g())g () Questa

Dettagli

Stima della media di una variabile X definita su una popolazione finita

Stima della media di una variabile X definita su una popolazione finita Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe

Dettagli

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI RISOLUZIONE MODERNA DI PROBLEMI ANTICHI L itelletto, duque, che o è la verità, o comprede mai la verità i modo così preciso da o poterla compredere (poi acora) più precisamete, all ifiito, perché sta alla

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f ( x; ϑ) θ = costate icogita Qual è il valore di θ? E verosimile

Dettagli

Significato fisico di derivate e integrali per la formulazione delle leggi termodinamiche

Significato fisico di derivate e integrali per la formulazione delle leggi termodinamiche Corso di Laurea i Biologia Molecolare Elisabetta Collii, Ottobre 215 Sigificato fisico di derivate e itegrali per la formulazioe delle leggi termodiamiche Nel corso dei primi giori di lezioe di Chimica

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli

Principio di induzione: esempi ed esercizi

Principio di induzione: esempi ed esercizi Pricipio di iduzioe: esempi ed esercizi Pricipio di iduzioe: Se ua proprietà P dipedete da ua variabile itera vale per e se, per ogi vale P P + allora P vale su tutto Variate del pricipio di iduzioe: Se

Dettagli

Precorso di Matematica. Parte IV : Funzioni e luoghi geometrici

Precorso di Matematica. Parte IV : Funzioni e luoghi geometrici Facoltà di Igegeria Precorso di Matematica 1. Equazioi e disequazioi Parte IV : Fuzioi e luoghi geometrici Richiamiamo brevemete la ozioe di fuzioe, che sarà utilizzato i quest ultima parte del precorso.

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma 1 Serie di poteze È stato dimostrato che la serie geometrica x (1.1) coverge se e solo se la ragioe x soddisfa la disuguagliaza 1 < x < 1. I realtà c è covergeza assoluta i ] 1, 1[. Per x 1 la serie diverge

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 21 Misura della dipedeza di u carattere

Dettagli

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii)

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii) Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi : Riferimeti: R.Adams, Calcolo Differeziale. -Si cosiglia vivamate di fare gli esercizi del testo. Cap. 9.5 - Serie di poteze,

Dettagli

Unità Didattica N 32 Grandezze geometriche omogenee e loro misura

Unità Didattica N 32 Grandezze geometriche omogenee e loro misura Uità Didattica N 3 Uità Didattica N 3 01) Classi di gradezze omogeee 0) Multipli e sottomultipli di ua gradezza geometrica 03) Gradezze commesurabili ed icommesurabili 04) Rapporto di due gradezze 05)

Dettagli

Materiale didattico relativo al corso di Matematica generale Prof. G. Rotundo a.a.2009/10

Materiale didattico relativo al corso di Matematica generale Prof. G. Rotundo a.a.2009/10 Materiale didattico relativo al corso di Matematica geerale Prof. G. Rotudo a.a.2009/10 ATTENZIONE: questo materiale cotiee i lucidi utilizzati per le lezioi. NON sostituisce il libro, che deve essere

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioi di Matematica 1 - I modulo Luciao Battaia 4 dicembre 2008 L. Battaia - http://www.batmath.it Mat. 1 - I mod. Lez. del 04/12/2008 1 / 28 -2 Sottosuccessioi Grafici Ricorreza Proprietà defiitive Limiti

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

APPLICAZIONI INDUSTRIALI ELETTRICHE Esercitazione 13

APPLICAZIONI INDUSTRIALI ELETTRICHE Esercitazione 13 ALCAZON NDUSTRAL ELETTRCHE Esercitazioe 3 ) E immediato verificare che e uteze moofasi U e U soo fra oro idetiche. fatti, co a tesioe di aimetazioe di 38, uteza U assorbe e segueti poteze: cos ϕ = = 46W

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2010

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PROBLEMA Sia ABCD u quadrato di lato, P u puto di

Dettagli

Analisi Matematica I

Analisi Matematica I Uiversità di Pisa - orso di Laurea i Igegeria Edile-rchitettura alisi Matematica I Pisa, febbraio Domada La derivata della fuzioe f) log ) si è ) log )si B) log )cos ) log ) si cos loglog ) + si ) log

Dettagli

1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ;

1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ; . Serie umeriche Esercizio. Studiare il carattere delle segueti serie: ;! ;! ;!. Soluzioe.. Serie a termii positivi; cofrotiamola co la serie +, che è covergete: + + + 0. Pertato, per il criterio del cofroto

Dettagli

Richiami sulle potenze

Richiami sulle potenze Richiami sulle poteze Dopo le rette, le fuzioi più semplici soo le poteze: Distiguiamo tra: - poteze co espoete itero - poteze co espoete frazioario (razioale) - poteze co espoete reale = Domiio delle

Dettagli

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con Calcolo Combiatorio Adolfo Scimoe pag 1 Calcolo combiatorio Cosideriamo u isieme di oggetti di atura qualsiasi. Idicheremo questi oggetti co a1 a2... a. Co questi oggetti si voglioo formare dei gruppi

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

Cosa vogliamo imparare?

Cosa vogliamo imparare? Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come

Dettagli

Università del Salento

Università del Salento Uiversità del Saleto FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea i Fisica I N T R O D U Z I O N E A L L A F I S I C A M O D E R N A R O S A R I O A N T O N I O L E O Ao Accademico

Dettagli

16 - Serie Numeriche

16 - Serie Numeriche Uiversità degli Studi di Palermo Facoltà di Ecoomia CdS Statistica per l Aalisi dei Dati Apputi del corso di Matematica 6 - Serie Numeriche Ao Accademico 03/04 M. Tummiello, V. Lacagia, A. Cosiglio, S.

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO 0. Itroduzioe Oggetto del calcolo combiatorio è quello di determiare il umero dei modi mediate i quali possoo essere associati, secodo prefissate regole, gli elemeti di uo stesso

Dettagli

Laboratorio di Fisica per Scienze Naturali Esperienza n 1. Verifica della legge di Hooke Misura dei coefficiente di elasticità di molle di acciaio.

Laboratorio di Fisica per Scienze Naturali Esperienza n 1. Verifica della legge di Hooke Misura dei coefficiente di elasticità di molle di acciaio. Scopo dell'esperieza Laboratorio di isica per Scieze aturali Esperieza Verifica della legge di Hooe Misura dei coefficiete di elasticità di molle di acciaio. ) verifica del fatto che l allugameto di ua

Dettagli

Studio di funzione. Rappresentazione grafica di una funzione: applicazioni

Studio di funzione. Rappresentazione grafica di una funzione: applicazioni Studio di fuzioe Tipi di fuzioi Le fuzioi si possoo raggruppare i alcue tipologie di base: Razioali: se le operazioi che vi si effettuao soo addizioe, sottrazioe, prodotto, divisioe ed elevameto a poteza

Dettagli

Lezione 10 - Tensioni principali e direzioni principali

Lezione 10 - Tensioni principali e direzioni principali Lezioe 10 - Tesioi pricipali e direzioi pricipali ü [A.a. 2011-2012 : ultima revisioe 23 agosto 2011] I questa lezioe si studiera' cio' che avviee alla compoete ormale di tesioe s, al variare del piao

Dettagli

Diottro sferico. Capitolo 2

Diottro sferico. Capitolo 2 Capitolo 2 Diottro sferico Si idica co il termie diottro sferico ua calotta sferica che separa due mezzi co idice di rifrazioe diverso. La cogiugete il cetro di curvatura C della calotta co il vertice

Dettagli

Comportamento dei gas da un punto di vista macroscopico

Comportamento dei gas da un punto di vista macroscopico GAS Può essere compresso facilmete Esercita ua pressioe sul recipiete No ha forma propria è volume proprio Occupa tutto il volume dispoibile Due gas diffodoo facilmete uo ell altro Tutti i gas hao basse

Dettagli

Esercizi svolti su successioni e serie di funzioni

Esercizi svolti su successioni e serie di funzioni Esercizi svolti su successioi e serie di fuzioi Esercizio. Calcolare il limite putuale di f ) = 2 +, [0, + ). Dimostrare che o si ha covergeza uiforme su 0, + ), metre si ha covergeza uiforme su [a, +

Dettagli

min z wz sub F(z) = y (3.1)

min z wz sub F(z) = y (3.1) 37 LA FUNZIONE DI COSTO 3.1 Miimizzazioe dei costi Riprediamo il problema della massimizzazioe dei profitti del capitolo precedete e suppoiamo ora che l'impresa coosca il livello di output che deve produrre;

Dettagli

Immaginario Un numero immaginario si ottiene moltiplicando un numero reale per i, dove si intende con i la radice quadrata di meno uno.

Immaginario Un numero immaginario si ottiene moltiplicando un numero reale per i, dove si intende con i la radice quadrata di meno uno. Immagiario U umero immagiario si ottiee moltiplicado u umero reale per i, dove si itede co i la radice quadrata di meo uo. Immagie Data ua fuzioe y=f(x) di domiio A e codomiio B si chiama immagie di x

Dettagli

n 1 = n b) {( 1) n } = c) {n!} In questo caso la successione è definita per ricorrenza: a 0 = 1, a n = n a n 1 per ogni n 1.

n 1 = n b) {( 1) n } = c) {n!} In questo caso la successione è definita per ricorrenza: a 0 = 1, a n = n a n 1 per ogni n 1. Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi 0: Riferimeti: R.Adams, Calcolo Differeziale - Si cosiglia vivamete di fare gli esercizi del testo. Successioi umeriche:

Dettagli

Elementi di calcolo combinatorio

Elementi di calcolo combinatorio Appedice A Elemeti di calcolo combiatorio A.1 Disposizioi, combiazioi, permutazioi Il calcolo combiatorio si occupa di alcue questioi iereti allo studio delle modalità secodo cui si possoo raggruppare

Dettagli

Sviluppi di Taylor. Andrea Corli 1 settembre Notazione o 1. 3 Formula di Taylor 3. 4 Esempi ed applicazioni 5

Sviluppi di Taylor. Andrea Corli 1 settembre Notazione o 1. 3 Formula di Taylor 3. 4 Esempi ed applicazioni 5 Sviluppi di Taylor Adrea Corli settembre 009 Idice Notazioe o Liearizzazioe di ua fuzioe 3 Formula di Taylor 3 4 Esempi ed applicazioi 5 I questo capitolo aalizziamo l approssimazioe di ua fuzioe regolare

Dettagli

q V C dipende solo dalla geometria dei piatti e ci dice quanta carica serve ad un dato condensatore per portarlo ad una DV fissata.

q V C dipende solo dalla geometria dei piatti e ci dice quanta carica serve ad un dato condensatore per portarlo ad una DV fissata. I codesatori codesatore è u dispositivo i grado di immagazziare eergia, sottoforma di eergia poteziale, i u campo elettrico Ogi volta che abbiamo a che fare co due coduttori di forma arbitraria detti piatti

Dettagli

Calcolo differenziale e integrale

Calcolo differenziale e integrale Calcolo differeziale e itegrale fuzioi di ua variabile reale Gabriele H. Greco Dipartimeto di Matematica Uiversità di Treto 385 POVO Treto Italia www.sciece.uit.it/ greco a.a. 5-6: Apputi del corso di

Dettagli

Una raccolta di esercizi

Una raccolta di esercizi Corso di Aalisi matematica per Fisici (aa 007-08) (prof Alfoso Villai) Ua raccolta di esercizi (aggiorameto: maggio 008) Risolvere le segueti equazioi ell icogita : a) ( + ) = ( ); b) ( 8) = 9; c) 4 =

Dettagli

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri.

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri. Laboratorio di Matematica, A.A. 009-010; I modulo; Lezioi II e III - schema. Limiti e isiemi aperti; SB, Cap. 1 Successioi di vettori; SB, Par. 1.1, pp. 3-6 Itori sferici aperti. Nell aalisi i ua variabile

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

Prova scritta di Analisi Matematica I 15/09/2010

Prova scritta di Analisi Matematica I 15/09/2010 Prova scritta di Aalisi Matematica I VO 5/09/00 ) Data la fuzioe f ( ) + a) disegare il grafico illustrado i passaggi fodametali b) Euciare e dimostrare il Teorema di Rolle e se possibile applicarlo a

Dettagli

Esercizi sui limiti di successioni

Esercizi sui limiti di successioni AM0 - AA 03/4 ALFONSO SORRENTINO Esercizi sui iti di successioi Esercizio svolto a) Usado la defiizioe di ite, dimostare che: + 3 si π cos e ) e b) 0 Soluzioe Comiciamo da a) Vogliamo dimostrare che: ε

Dettagli

a) la funzione costante k. Sia k un numero reale e consideriamo la funzione che ad ogni numero reale x associa k: x R k

a) la funzione costante k. Sia k un numero reale e consideriamo la funzione che ad ogni numero reale x associa k: x R k ALCUNE FUNZIONI ELEMENTARI ( E NON) E LORO GRAFICI (*) a) la fuzioe costate k. Sia k u umero reale e cosideriamo la fuzioe che ad ogi umero reale x associa k: x R k Tale fuzioe è detta fuzioe costate k;

Dettagli

Studio matematico dei sistemi di controllo

Studio matematico dei sistemi di controllo Studio matematico dei sistemi di cotrollo Studio di u sistema fisico x(t segale di igresso (eccitazioe SISTEMA FISIO y(t segale di uscita (risosta y(t è legata a x(t da u equazioe differeziale che diede

Dettagli

Paolo Perfetti, Dipartimento di matematica, II Università degli Studi di Roma, facoltà di Ingegneria

Paolo Perfetti, Dipartimento di matematica, II Università degli Studi di Roma, facoltà di Ingegneria Esercizi svolti a lezioe e o proveieti dal Marcellii Sbordoe La preseza della lettera C idica u esercizio da fare a casa. La capacità di svolgere tali esercizi è parte del bagaglio ecessario i sede di

Dettagli

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4 Quarto Compito di Aalisi Matematica Corso di laurea i Iformatica, corso B 5 Luglio 016 Soluzioi Esercizio 1 Determiare tutti i umeri complessi z tali che z = 3 4 i. Soluzioe. Scrivedo z = a + bi, si ottiee

Dettagli

Solidi e volumi Percorso: Il problema della misura

Solidi e volumi Percorso: Il problema della misura Solidi e volumi Percorso: Il problema della misura Abilità Coosceze Nuclei Collegameti esteri Calcolare perimetri e aree Equivaleza el piao ed Spazio e figure Fisica di poligoi. equiscompoibilità tra Disego

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO Che cosa sigifica cotare Tutti coosciamo la successioe dei umeri iteri Naturali N = {0, 1,,, } si tratta di ua struttura metale fodametale, chiaramete presete alla ostra ituizioe che

Dettagli

Aritmetica 2016/2017 Esercizi svolti in classe Seconda lezione

Aritmetica 2016/2017 Esercizi svolti in classe Seconda lezione Aritmetica 06/07 Esercizi svolti i classe Secoda lezioe Dare ua formula per 3 che o coivolga sommatorie Dato che sappiamo che ( + e ( + ( + 6 vogliamo esprimere 3 mediate, e poliomi i U idea possibile

Dettagli

Approfondimento 2.1 Scaling degli stimoli mediante il metodo del confronto a coppie

Approfondimento 2.1 Scaling degli stimoli mediante il metodo del confronto a coppie Approfodimeto 2.1 Scalig degli stimoli mediate il metodo del cofroto a coppie Il metodo del cofroto a coppie di Thurstoe (Thurstoe, 1927) si basa sull assuzioe che la valutazioe di u oggetto o di uo stimolo

Dettagli

Radicali. Esistenza delle radici n-esime: Se n è pari: ogni numero reale non negativo (cioè positivo o nullo) ha esattamente una radice n-esima in R.

Radicali. Esistenza delle radici n-esime: Se n è pari: ogni numero reale non negativo (cioè positivo o nullo) ha esattamente una radice n-esima in R. Radicali Radici quadrate Si dice radice quadrata di u umero reale a, e si idica co a, il umero reale positivo o ullo (se esiste) che, elevato al quadrato, dà come risultato a. Esisteza delle radici quadrate:

Dettagli

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni A Alcui cocetti di statistica: medie, variaze, covariaze e regressioi Esistoo svariati modi per presetare gradi quatità di dati. Ua possibilità è presetare la cosiddetta distribuzioe, raggruppare cioè

Dettagli

Istituzioni di Matematiche (CH-CI-MT) V o foglio di esercizi

Istituzioni di Matematiche (CH-CI-MT) V o foglio di esercizi Istituzioi di Matematiche (CH-CI-MT) V o foglio di esercizi ESERCIZIO. Si determiio le soluzioi dell equazioe x x + 5 = 0. Idicata co z 0 la soluzioe co parte immagiaria positiva, si disegi el piao di

Dettagli

La base naturale dell esponenziale

La base naturale dell esponenziale La base aturale dell espoeziale Beiamio Bortelli 7 aprile 007 Il problema I matematica, ci è stato detto, la base aturale della fuzioe espoeziale è il umero irrazioale: e =, 7888... Restao, però, da chiarire

Dettagli

Corso di Informatica

Corso di Informatica Corso di Iformatica Codifica dell Iformazioe Sistemi Numerici Per rappresetare ua certo quatità di oggetti è ecessaria ua covezioe o sistema umerico che faccia corrispodere ad ua sequeza di ua o più cifre,

Dettagli

Diagramma polare e logaritmico

Diagramma polare e logaritmico Diagramma polare e aritmico ariatori discotiui del moto di taglio Dalla relazioe π D c si ota che la velocità di taglio dipede, oltre che dal umero di giri del madrio, ache dal diametro dell elemeto rotate

Dettagli

Università del Salento

Università del Salento Uiversità del Saleto FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea i Fisica I N T R O D U Z I O N E A L L A F I S I C A M O D E R N A R O S A R I O A N T O N I O L E O Ao Accademico

Dettagli

Stimatori, stima puntuale e intervalli di confidenza Statistica L-33 prof. Pellegrini

Stimatori, stima puntuale e intervalli di confidenza Statistica L-33 prof. Pellegrini Lezioe 3 Stimatori, stima putuale e itervalli di cofideza Statistica L-33 prof. Pellegrii Oggi studiamo le proprietà della stima che ricaviamo da u campioe. Si chiama teoria della stima. La stima statistica

Dettagli

RAPPRESENTAZIONE ANALITICA DEI PUNTALI OGIVALI PER PROIETTILI

RAPPRESENTAZIONE ANALITICA DEI PUNTALI OGIVALI PER PROIETTILI M. G. BUSATO RAPPRESENTAZIONE ANALITIA DEI PUNTALI OGIVALI PER PROIETTILI mgbstudio.et SOMMARIO I umerose applicazioi balistiche, ed i particolare per calcolare la resisteza aerodiamica di u proiettile,

Dettagli

Facoltà di Architettura Corso di Laurea in Architettura UE 1 I NUMERI E LE FUNZIONI REALI. Istituzioni di Matematica 1 (Canale A-L) a.a.

Facoltà di Architettura Corso di Laurea in Architettura UE 1 I NUMERI E LE FUNZIONI REALI. Istituzioni di Matematica 1 (Canale A-L) a.a. Facoltà di Architettura Corso di Laurea i Architettura UE Istituzioi di Matematica (Caale A-L) a.a. 200-20 http://www.dmmm.uiroma.it/persoe/capitaelli I NUMERI E LE FUNZIONI REALI Itroduzioe al corso.

Dettagli

C2. Congruenza. C2.1 Figure congruenti. C2.2 Relazione di equivalenza. C2.3 Esempi di relazioni di equivalenza

C2. Congruenza. C2.1 Figure congruenti. C2.2 Relazione di equivalenza. C2.3 Esempi di relazioni di equivalenza 2. ogrueza 2.1 igure cogrueti ue figure geometriche soo cogrueti se soo sovrappoibili perfettamete. Il simbolo di cogrueza è. cco alcui esempi di figure cogrueti: ue quadrati co i lati della stessa lughezza

Dettagli

1 I sistemi di equazioni

1 I sistemi di equazioni 1.1 Le equazioi lieari i due icogite 1 I sistemi di equazioi Ua equazioe lieare i due icogite x, y R, i cui cioè le due icogite compaioo solo al primo grado, può essere scritta ella forma ormale: ax +

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

PROPRIETA DELLE FUNZIONI ARMONICHE

PROPRIETA DELLE FUNZIONI ARMONICHE CAPITOLO PROPRIETA DELLE FUNZIONI ARMONICHE - Defiizioi ed esempi Le fuzioi armoiche vegoo defiite ello spazio euclideo; i questa tesi sarà cosiderato u umero itero positivo maggiore di metre Ω sarà u

Dettagli

Definizione 1. Data una successione (a n ) alla scrittura formale. 1) a 1 + a a n +, si dà il nome di serie.

Definizione 1. Data una successione (a n ) alla scrittura formale. 1) a 1 + a a n +, si dà il nome di serie. SERIE NUMERICHE Defiizioe. Data ua successioe (a ) alla scrittura formale ) a + a 2 + + a +, si dà il ome di serie. I umeri a, a 2,, a, rappresetao i termii della serie, i particolare a è il termie geerale

Dettagli

Traccia delle soluzioni degli esercizi del fascicolo 6

Traccia delle soluzioni degli esercizi del fascicolo 6 Traccia delle soluzioi degli esercizi del fascicolo 6 Esercizio Vegoo geerati umeri casuali tra 0 e, co distribuzioe uiforme. Quati umeri è ecessario geerare affiché la probabilità che la somma di essi

Dettagli

Matematica 5. Dipartimento di Matematica. ITIS V.Volterra San Donà di Piave. Versione [12/13][S-All]

Matematica 5. Dipartimento di Matematica. ITIS V.Volterra San Donà di Piave. Versione [12/13][S-All] Matematica 5 Dipartimeto di Matematica ITIS V.Volterra Sa Doà di Piave Versioe [/3][S-All] Idice I Itegrazioe Itegrazioe impropria. Geeralità............................................. Criteri di itegrabilità......................................

Dettagli

Programma dettagliato del Corso di Analisi 1

Programma dettagliato del Corso di Analisi 1 Programma dettagliato del Corso di Aalisi Ig. per l Ambiete e il Territorio, Ig. Civile, Ig. dei Trasporti a.a. 2006-2007 http://www.dmmm.uiroma.it/persoe/capitaelli I NUMERI E LE FUNZIONI REALI Itroduzioe

Dettagli

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA FACOLTÀ DI SOCIOLOGIA a. a. 9 Esame del -6- Statistica ESERCIZIO Relazioi tra Variabili (totale puti: ) Ad ua riuioe del circolo Amati dell acquario, i soci preseti

Dettagli

6. Corrente elettrica

6. Corrente elettrica 6. Correte elettrica 6. Cosideriamo due coduttori, uo carico e l altro scarico e colleghiamoli co u filo coduttore La carica passa attraverso il filo Dopo u tempo τ il flusso di carica si arresta Defiiamo

Dettagli

I materiali. I materiali. Informatica Grafica per le arti. I materiali. I materiali. I materiali. I materiali

I materiali. I materiali. Informatica Grafica per le arti. I materiali. I materiali. I materiali. I materiali Iformatica Grafica per e arti L'esatto coore di u puto suo schermo viee determiato daa combiazioe dee proprieta' dee uci e degi oggetti iumiati. Le proprieta' di rifessioe dea uce da parte degi oggetti

Dettagli

ISTITUZIONI DI ANALISI SUPERIORE Esercizi di metà corso

ISTITUZIONI DI ANALISI SUPERIORE Esercizi di metà corso ISTITUZIONI DI ANALISI SUPEIOE 2-2 Esercizi di metà corso Silvia Ghiassi 22 ovembre 2 Esercizio Diamo u esempio di fuzioe u: tale che u 6, u 6, u 6. se x

Dettagli

Esercizi di econometria: serie 2

Esercizi di econometria: serie 2 Esercizi di ecoometria: serie Esercizio Per quali delle segueti uzioi di desità cogiuta le variabili casuali ed soo idipedeti?......3.4.5..5 (a) (b) 3 4....3.6.9..4...5..5 3.. 3.8..4.6 (c) (d) Nel caso

Dettagli

Corso di Istituzioni di Matematiche I, Facoltà di Architettura (Roma Tre) Roma, 3 Novembre Le successioni. Versione preliminare

Corso di Istituzioni di Matematiche I, Facoltà di Architettura (Roma Tre) Roma, 3 Novembre Le successioni. Versione preliminare Corso di Istituzioi di Matematiche I, Facoltà di Architettura (Roma Tre) Roma, 3 Novembre 2005 Le successioi Versioe prelimiare Uo dei cocetti fodametali dell aalisi modera é il cocetto di limite. Per

Dettagli

SULLE PARTIZIONI DI UN INSIEME

SULLE PARTIZIONI DI UN INSIEME Claudia Motemurro Ricordiamo la SULLE PRTIZIONI DI UN INSIEME Defiizioe: Ua partizioe di u isieme è ua famiglia { sottoisiemi o vuoti di X tali che: - X è l uioe degli isiemi X i (i I ), cioè X = U i X

Dettagli

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA Politecico di Torio 7 Fuzioi Radice FUNZIONI RADICE RICHIAMI DI TEORIA f ( x) = x dom f Im f grafici. = = =7 =9. dispari R R -. - -. - - -. Grafici di fuzioi radici co pari pari [,+ ) [,+ ).. = = =6 =8

Dettagli

1. DISUGUAGLIANZE GEOMETRICHE

1. DISUGUAGLIANZE GEOMETRICHE . DISUGUAGLIANZE GEOMETRICHE (SOLUZIONI) POTENZE E RADICI Siao m, N, a b 0, allora valgoo: a m b m, b m a m, e si ha l uguagliaza se e solo se a = b oppure m = 0. Esercizio. Dimostra che per ogi coppia

Dettagli

Analisi Matematica 1. Anno Accademico Roberto Monti. Versione del 31 Ottobre 2013

Analisi Matematica 1. Anno Accademico Roberto Monti. Versione del 31 Ottobre 2013 Aalisi Matematica Ao Accademico 203-204 Roberto Moti Versioe del 3 Ottobre 203 Cotets Chapter. Numeri aturali e reali 5. Numeri aturali e pricipio di iduzioe 5 2. Numeri reali 7 3. R come spazio metrico

Dettagli