Ciclo di convezione sulle pareti con intecapedine

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Ciclo di convezione sulle pareti con intecapedine"

Transcript

1 Clo d ovezoe sulle paret o teapede Dalla tabella delle odubltà terma s ha per l ara l more k, pertato l mglore solameto o la peggore odubltà terma. Putroppo s geerao orret ovettve, he qud trasmetto l alore dalla parete alda a quella redda. Impededo l movmeto dell ara qud s potrebbe otteere u sstema solato modo ottmale. L utlzzo della laa vetro oppoe ressteza al movmeto dell ara. Il buo solameto della laa vetro è dovuto alle sahe d ara he s ormao elle bre d vetro.. Isolameto della estre a vetroamera o ottmale per l ara o gas pesat, preset all tero o possbl orret ovettve.. Parete omposta Possamo dere la ressteza terma s/k T s k 1 1 A ( T T 1 Co u po d alol algebr s rava he La quattà d eerga terma he luse è A s ( T T 1 k1 + s2 k2 A ( T T 1 s k

2 I Est. Est. Materale kal/(m s ºC J/(m s ºC Ara Calestruzzo Malta Mattoe m 2 d areso (substrato malta/alestruzzo s dstaa dalla parete d matto. Suppoamo d saldare la parete o 25 kwh per ua parete da 2.50 m x 1.0 m. A ( T T A ( T T 1 malta + matt ( T T A ( T T I questo aso è la sorgete he utlzzamo (e sarà omogeea sulla supere, peru la supere dstaata e quella o dstaata reverao la stessa quattà d alore per utà d supere. Le ogte sarebbero T (tere, la temperatura estera è ostate. A 1 malta + matt + ara / e semplo le varabl ugual, potremmo ahe Cosderare /At, Watt/m 2. ( T T ( T T malta + matt malta dstao + matt + ara malta + matt + ara ( T ( T T > ( T T T dstao malta + S osserva he la supere all tero he s è dstaata avrà ua temperatura superore alla paret lmtroe dove o s è avuto l dstao. matt Allo stesso modo s può osservare, he se sotto l alestruzzo s trova u materale he odue meglo l alore ovvero more, s avrebbe ua temperatura more.

3 Dettaglo sul gradete d temperatura Predamo ua porzoe tesma lugo l estezoe della barra ome dx Predamo ua areola della sezoe he dhamo o ds srvo ( T T A k s Per dmeso tesmal dm. pole qud dveta d k dt dx ds dt C sarà qud ua pola quattà d alore (d he passa attraverso quest areola.per le proporzo tesmal s ha: d Il Calore va dalla zoa a temperatura pù alta Nella drezoe della zoa a temperatura pù bassa. > T ( x + dx T (x ( x + dx (x > dezoe dx 0 dt dx d > 0 k dt dx ds dt ud è u sego -

4 T 3 T 2 T 1 Gradete d T Il gradete d T, è u vettore ha drezoe, verso e modulo. S può almete dedurre dalle soterme (el grao T 1 < T 2 < T 3. Il gradete d T è ormale alla urva soterma ed è dretto ella drezoe delle soterme a temperatura maggore. Dalle relazoe preedet s osserva he ha l verso opposto del gradete d T, ovvero dalle soterme a T maggore verso quelle a T more. Irraggameto Irraggameto: Trasmssoe dell eerga medate ode elettromagethe. Irarosso da 0.72 a 1.5 μm VICINO Per lughezze d oda superor a 0.72 μm da 1.5 a 5.6 μm MEDIO da 5.6 a 1000 μm LONTANO Le ode elettromagethe hao la stessa velotà, la velotà della lue λν m/s. λ è la lughezza d oda metr. ν è la requeza d osllazoe dell oda.

5 Emssoe d radazoe Legge d Stea-Boltzma: og orpo alla temperatura T emette ua quattà d eerga proporzoale alla quarta poteza della temperatura assoluta. ε σ A T t σ tempo 8 J 2 s m K uattà d eerga trasmessa emttaza 0 1 ostate d Boltzma Supere del orpo Temperatura del orpo U orpo emette solo le radazo he rese ad assorbre. Corpo ero (modello, rproduble laboratoro assorbtore e emetttore peretto ε 1 L emssoe d radazoe d orpo ero Corpo ero assorbtore e emetttore peretto ε 1 ε σ A T t σ A T t La legge d Stea-Boltzma desrve tutta l eerga emessa, seza dstguere la lughezza d oda. Se s msura l eerga emessa per og lughezza d oda s ha lo Spettro d emssoe d orpo ero.. Ad og T s ha ua urva dversa.

6 Assorbmeto ed emssoe Corpo stuato u ambete, l eerga totale assorbta sarà data dalla dereza tra l eerga assorbta dall ambete a meo quella rragata a ass rr a ε σ A T t ε σ A T ass rr a t Assumamo sao orp er ε a ε 1 a σ A ( T T ass rr Esempo del orpo umao T 37 ºC d rote ad ua parete a 10 ºC, uata eerga vee eduta al muto? Assumamo ua supere d 2 m 2. T pers σ A ( T muro 8 T J 2 s m K pers t 310 K T muro K 2 ( 2.00 m [( K ] 60 s 320 J kal adazoe d orpo ero. Legge d Boltzma per u orpo 3,00E+0 2,50E+0 2,00E+0 Poteza / A [W/m 2 ] 1,50E+0 1,00E+0 5,00E+03 0,00E T [K]

7 adazoe d orpo ero. Legge d Boltzma per u orpo 3,00E+0 2,50E+0 2,00E+0 Poteza / A [W/m 2 ] 1,50E+0 1,00E+0 5,00E+03 0,00E T [K] adazoe d orpo ero. Legge d Boltzma per u orpo 3,00E+0 2,50E+0 2,00E+0 Poteza / A [W/m 2 ] 1,50E+0 1,00E+0 5,00E+03 0,00E T [K]

8 adazoe d orpo ero uzoe d λ. Legge d Plak: per desrvere la urva d /At (λ s deve assumere he le ode elettromagethe possoo essere assorbte o emesse modo dsreto (quat. E hν h J s Legge d We dello spostameto. Itestà rspetto a λ rese o a eppo derese. λ max, λ max vara ome 1/T λ max T ostate m K velatore d ode elettromagethe (ua estra: l oho

9 T s ha lampade ad adeseza : λmax μm m Attezoe: urve ormalzzate. U orpo a temperatura ambete ~ 300 K : λ max 10 m K μm 9660 m 300 K T 5800 K s ha (temperatura del sole λmax 0.99 μm 99 m Emssvtà desrve quato s avva u orpo al omportameto peretto del orpo ero Emttaza è deta per u materale reale, va msurata volta per volta, usare tabelle è poo opportuo.

10 Emssvtà Tabelle Come s ota dalla tabella s possoo rportare degl tervall U ohata a materal d ostro teresse. Cotua

Istogrammi e confronto con la distribuzione normale

Istogrammi e confronto con la distribuzione normale Istogramm e cofroto co la dstrbuzoe ormale Suppoamo d effettuare per volte la msurazoe della stessa gradezza elle stesse codzo (es. la massa d u oggetto, la tesoe d ua pla, la lughezza d u oggetto, ecc.):

Dettagli

Apparecchi di sollavamento. Classificazione apparecchi di sollevamento a

Apparecchi di sollavamento. Classificazione apparecchi di sollevamento a Appareh d sollavameto A moto otuo: Nastr trasportator Sollevator a tazze Forze d erza lmtate; trastor d avvameto e arresto poo rlevat A moto dsotuo: Gru a torre Forze d erza rlevat Classfazoe appareh d

Dettagli

RUMORE NEI RICEVITORI. Sia G(f) il guadagno del blocco funzionale che ha in ingresso una resistenza rumorosa a temperatura Ta. G(f) RUMORE IMPULSIVO

RUMORE NEI RICEVITORI. Sia G(f) il guadagno del blocco funzionale che ha in ingresso una resistenza rumorosa a temperatura Ta. G(f) RUMORE IMPULSIVO RUMORE EI RICEVITORI a ) l gadago del blocco zoale che ha gresso a ressteza rmorosa a temperatra Ta Ta R ) d La poteza scta ella bada d è d k Ta d ) + W t () d W t () è la destà spettrale del rmore geerato

Dettagli

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0)

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0) Massm e Mm Fuzo d pù varabl Massm e Mm Dezoe: Sa z = (, ) ua uzoe deta u seme E U puto (, E s dce puto d massmo (rsp mmo) relatvo per (, ) se esste δ > tale che ((, ) B((, ), δ ) E (, ) (, ) (rsp (, )

Dettagli

Variabilità = Informazione

Variabilità = Informazione Varabltà e formazoe Lo studo d u feomeo ha seso solo se esso s preseta co modaltà/testà varabl da u soggetto all altro. Ad esempo, se dobbamo studare l reddto ua certa regoe è ecessaro osservare utà statstche

Dettagli

ALCUNI ELEMENTI DI TEORIA DELLA STIMA

ALCUNI ELEMENTI DI TEORIA DELLA STIMA ALCUNI ELEMENTI DI TEORIA DELLA STIMA Quado s vuole valutare u parametro θ ad esempo: meda, varaza, proporzoe, oeffete d regressoe leare, oeffete d orrelazoe leare, e) d ua popolazoe medate u ampoe asuale,

Dettagli

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che:

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che: Eserctazoe VI: Il teorema d Chebyshev Eserczo La statura meda d u gruppo d dvdu è par a 73,78cm e la devazoe stadard a 3,6. Qual è la frequeza relatva delle persoe che hao ua statura superore o ferore

Dettagli

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,

Dettagli

LEZIONI DI STATISTICA MEDICA

LEZIONI DI STATISTICA MEDICA LEZIONI DI STATISTICA MEDICA A.A. 00/0 - Idc d dspersoe Sezoe d Epdemologa & Statstca Medca Uverstà degl Stud d Veroa La dspersoe o varabltà è la secoda mportate caratterstca d ua dstrbuzoe d dat. Essa

Dettagli

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2012/2013, Fisica

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2012/2013, Fisica Uverstà Poltea delle arhe, Faoltà d Agrara C.d.L. Seze Forestal e Abetal, A.A. 202/203, Fsa Il etro d assa: Due partelle: 0 A A A C B B B C Il etro d assa C dvde l segeto AB part versaete proporzoal alle

Dettagli

Analisi dei Dati. La statistica è facile!!! Correlazione

Analisi dei Dati. La statistica è facile!!! Correlazione Aals de Dat La statstca è facle!!! Correlazoe A che serve la correlazoe? Mettere evdeza la relazoe esstete tra due varabl stablre l tpo d relazoe stablre l grado d tale relazoe stablre la drezoe d tale

Dettagli

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione?

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione? Prma dstrb. Secoda dstrb. Totale Meda 0 5 8 35 85 63 63/5 =3,6 5 5 38 40 45 63 63/5 =3,6 Due dstrbuzo, stessa meda ma quale delle due la meda rappreseta, stetzza meglo la stuazoe? Le mede stetzzao la dstrbuzoe,

Dettagli

Capitolo 2 Errori di misura: definizioni e trattamento

Capitolo 2 Errori di misura: definizioni e trattamento Captolo Error d msura: )Geeraltà defzo e trattameto I cocett d meda, varaza e devazoe stadard s utlzzao ormalmete per otteere formazo sulla botà d ua msura. I geerale, s assume come msura m della gradezza

Dettagli

INDICI DI VARIABILITA

INDICI DI VARIABILITA INDICI DI VARIABILITA Defzoe d VARIABILITA': la varabltà s può defre come l'atttude d u carattere ad assumere dverse modaltà quattatve. La varabltà è la quattà d dspersoe presete e dat. Idc d varabltà

Dettagli

Università di Cassino Esercitazioni di Statistica 1 del 5 Febbraio Dott. Mirko Bevilacqua

Università di Cassino Esercitazioni di Statistica 1 del 5 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 5 Febbrao 00. Dott. Mrko Bevlacqua ESERCIZIO N A partre dalla dstrbuzoe semplce del carattere peso rlevata su 0 studet del corso d Mcroecooma peso: { 4, 59, 65,

Dettagli

Irraggiamento irraggiamento l energia raggiante emessa da un mezzo a causa della sua temperatura

Irraggiamento irraggiamento l energia raggiante emessa da un mezzo a causa della sua temperatura Irraggameto U sstema che s trova ad ua certa temperatura ed è crcodato dal vuoto (per cu o può scambare eerga per cotatto co altr sstem) lascato a sé stesso tede acora a rareddars, dmostrado così che è

Dettagli

MEDIA DI Y (ALTEZZA):

MEDIA DI Y (ALTEZZA): Uverstà d Casso Eserctazo d Statstca del 4 Marzo 0 Dott. Mrko Bevlacqua ESERCIZIO Su u collettvo d dvdu soo stat rlevat caratter X Peso( kg) e Altezza ( cm) otteamo la seguete dstrbuzoe d frequeza coguta:

Dettagli

corrispondenza della generica i-esima modalità. Indicando con #(.) la cardinalità di un insieme, per esse si ha, rispettivamente:

corrispondenza della generica i-esima modalità. Indicando con #(.) la cardinalità di un insieme, per esse si ha, rispettivamente: Corso d Statstca docete: Domeco Vstocco Le requeze cumulate S cosder ua varable qualtatva ordale X Per essa, oltre alle requeze assolute, relatve e ercetual, è ossble calcolare ache le requeze cumulate

Dettagli

A. PARRETTA CORSO DI OTTICA APPLICATA A.A TEORIA DELLE SFERE INTEGRATRICI

A. PARRETTA CORSO DI OTTICA APPLICATA A.A TEORIA DELLE SFERE INTEGRATRICI . PRRTT CORSO D OTTC PPCT.. 0-0 TOR D SFR NTGRTRC TOR D SFR NTGRTRC RDNZ D UN DFFUSOR MBRTNO z e Radaza d u dusore lambertao e 0 e π M π π Dusore lambertao 0 cost 0 cos θ Flusso totale emesso: e π 0 Flusso

Dettagli

CAPITOLO 2. ( ) 10 8 cm 2. μm Basandosi sulla Tabella 2.1, una resistività di 2.6 μω-cm < 1 mω-cm, quindi l alluminio è un conduttore.

CAPITOLO 2. ( ) 10 8 cm 2. μm Basandosi sulla Tabella 2.1, una resistività di 2.6 μω-cm < 1 mω-cm, quindi l alluminio è un conduttore. CPITOLO. Basados sulla Tabella., ua resstvtà d.6 μω- < mω-, qud l allumo è u coduttore.. Basados sulla Tabella., ua resstvtà d 0 5 Ω- > 0 5 Ω-, qud l dossdo d slco è u solate.. I max 0 7 ( 5μm)μm.4 ( )

Dettagli

Lezione 4. La Variabilità. Lezione 4 1

Lezione 4. La Variabilità. Lezione 4 1 Lezoe 4 La Varabltà Lezoe 4 1 Defzoe U valore medo, comuque calcolato, o è suffcete a rappresetare l seme delle osservazo effettuate (o l seme de valor assut dalla varable statstca); è ecessaro qud affacare

Dettagli

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in due gruppi

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in due gruppi Le mede Italo Nofro LE MEDIE Statstca medca Le mede (o valor med) soo dc d tedeza cetrale e costtuscoo u modo semplce ed mmedato per stetzzare u solo valore dat eterogee raccolt el collettvo oggetto d

Dettagli

Lezione 4. Metodi statistici per il miglioramento della Qualità

Lezione 4. Metodi statistici per il miglioramento della Qualità Tecologe Iormatche per la Qualtà Lezoe 4 Metod statstc per l mglorameto della Qualtà Msure d Tedeza Cetrale Ultmo aggorameto: 30 Settembre 2003 Il materale ddattco potrebbe coteere error: la segalazoe

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione Corso d laurea Sceze Motore Corso d Statstca Docete: Dott.ssa Immacolata Scacarello Lezoe 9: Covaraza e correlazoe Altr tp d dpedeza L dce Ch-quadro presetato ella lezoe precedete stablsce l grado d dpedeza

Dettagli

valido se i dati E dato da max(x i )-min(x i )

valido se i dati E dato da max(x i )-min(x i ) Idc d Dspersoe o d Varabltà: Rage e DIQ No basta la coosceza d quale è la poszoe meda de dat statstc, serve ache cooscere quale è la varabltà de dat raccolt attoro al valore medo. Allo scopo d troducoo

Dettagli

Gli indici sintetici Forma. Gli indici sintetici. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma

Gli indici sintetici Forma. Gli indici sintetici. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma Uverstà d Macerata Facoltà d Sceze Poltche - Ao accademco 01-013013 Gl dc d varabltà Crsta Davo Gl dc stetc Qualche cosderazoe Tedeza cetrale Varabltà La scelta dell dce d tedeza cetrale/poszoe dpede dal

Dettagli

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

LA REGRESSIONE LINEARE SEMPLICE

LA REGRESSIONE LINEARE SEMPLICE LA REGRESSIONE LINEARE SEMPLICE L ANALISI DI REGRESSIONE La regressoe è volta alla rcerca d u modello atto a descrvere la relazoe esstete tra ua varable Dpedete e ua varable dpedete (regressoe semplce)

Dettagli

Regressione e Correlazione

Regressione e Correlazione Regressoe e Correlazoe Probabltà e Statstca - Aals della Regressoe - a.a. 4/5 L aals della regressoe è ua tecca statstca per modellare e vestgare le relazo tra due (o pù) varabl. Nella tavola è rportata

Dettagli

Variabili casuali ( ) 1 2 n

Variabili casuali ( ) 1 2 n Varabl casual &. Valore edo. Data ua varable casuale = ( x,x 2, K,x ) (.) cu valor assuoo le rspettve probabltà P = p,p, K,p (.2) s defsce valore edo la quattà ( ) 2 = [ ] T M = M = P = xp (.3) Sgfcato:

Dettagli

Caratterizzazione delle onde: lunghezza d onda, velocità, frequenza, periodo

Caratterizzazione delle onde: lunghezza d onda, velocità, frequenza, periodo Esercizi di acustica Caratterizzazione delle onde: lunghezza d onda, velocità, frequenza, periodo Esercizio 1 La velocità del suono nell aria dipende dalla sua temperatura. Calcolare la velocità di propagazione

Dettagli

Lezione 3. Gruppi risolubili.

Lezione 3. Gruppi risolubili. Lezoe 3 Prerequst: Lezo 1 2 Class d cougo e cetralzzat rupp rsolubl I questo captolo troducamo ua ozoe che come vedremo seguto fuge da raccordo tra la teora de grupp e la teora de camp Defzoe 31 Dato u

Dettagli

Caratteristiche I-V Qualitativamente, la caratteristica di uscita di un MOSFET è la seguente:

Caratteristiche I-V Qualitativamente, la caratteristica di uscita di un MOSFET è la seguente: l sistema MOFE l MOFE è u FE che utilizza come caale la regioe di iversioe che si crea i ua struttura MO opportuamete polarizzata. l cotatto di gate del trasistor coicide co il Metallo della struttura

Dettagli

I percentili e i quartili

I percentili e i quartili I percetl e quartl I percetl soo quelle modaltà che dvdoo la dstrbuzoe ceto part d uguale umerostà. I quartl soo quelle modaltà che dvdoo la dstrbuzoe quattro part d uguale umerostà. Il prmo quartle Q

Dettagli

C a p i t o l o s e t t i m o. Trasmissione del calore per radiazione

C a p i t o l o s e t t i m o. Trasmissione del calore per radiazione C a p i t o l o s e t t i m o Trasmissioe del calore per radiazioe Problema. Si cosideri u corpo ero i uo spazio o assorbete le radiazioi elettromagetiche; se il corpo viee mateuto alla temperatura di

Dettagli

Corrente elettrica. q i t

Corrente elettrica. q i t Correte elettrca La correte elettrca u coduttore metallco chuso è u movmeto ordato d elettro d coduzoe (le sole carche lbere preset all tero d u metallo, o vcolate a rspettv atom) el campo elettrco geerato

Dettagli

Gli indici sintetici Forma. Un caso studio. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma

Gli indici sintetici Forma. Un caso studio. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma Uverstà d Macerata Dpartmeto d Sceze Poltche, della Comucazoe e delle Relaz. Iterazoal Gl dc d varabltà Crsta Davo Gl dc stetc Qualche cosderazoe Tedeza cetrale Varabltà La scelta dell dce d tedeza cetrale/poszoe

Dettagli

Il termine regressione fu introdotto da Francis Galton ( ), antropologo (promotore dell eugenetica).

Il termine regressione fu introdotto da Francis Galton ( ), antropologo (promotore dell eugenetica). Regressoe leare Il terme regressoe fu trodotto da Fracs Galto (8-9), atropologo (promotore dell eugeetca). I u suo famoso studo (877-885), Galto scoprì che, sebbee c fosse ua tedeza de getor alt ad avere

Dettagli

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura Damca Modello damco ello spazo de gut: relazoe tra le coppe d attuazoe a gut ed l moto della struttura smulazoe del moto aals e progettazoe delle traettore progettazoe del sstema d cotrollo progetto de

Dettagli

San Paolo d Argon. Leader Immobiliare. di belle costruzioni ne puoi trovare anche altre ma quante sono inserite in un paesaggio simile?

San Paolo d Argon. Leader Immobiliare. di belle costruzioni ne puoi trovare anche altre ma quante sono inserite in un paesaggio simile? belle costruzo e puo trovare ache altre ma quate soo serte u paesaggo smle? Ipeetssm Blocal e Trlocal a ue pass al cetro, tra colle e vget, area vcolata a parco Sa Paolo Argo Leaer Immoblare Ua casa è

Dettagli

Esercizi su Rappresentazioni di Dati e Statistica

Esercizi su Rappresentazioni di Dati e Statistica Esercz su Rappresetazo d Dat e Statstca Eserczo Esprmete forma percetuale e traducete u aerogramma dat della seguete tabella: Nord Cetro Sud Isole Totale 5 58 866 0 95 36 4 35 30 6 79 56 57 399 08 Soluzoe

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 26 Febbrao 200 Dott. Mrko Bevlacqua ESERCIZIO Cosderado le class d altezza 60 6; 6 70; 70 78; 78 86 per u collettvo d 20 persoe, s può affermare che l ALTEZZA dpede

Dettagli

MISURE E GRANDEZZE FISICHE

MISURE E GRANDEZZE FISICHE R. Campaella Ig. Meccaca v. Peruga Gradezze fsche Rev. 12.02.21 MISRE E GRANDEZZE FICHE 1 Itroduzoe Nella descrzoe de feome la fsca s serve d legg, elle qual tervegoo gradezze fsche qual: la lughezza,

Dettagli

Consentono di descrivere la variabilità all interno della distribuzione di frequenza tramite un unico valore che ne sintetizza le caratteristiche

Consentono di descrivere la variabilità all interno della distribuzione di frequenza tramite un unico valore che ne sintetizza le caratteristiche Metodologa della rcerca pcologa clca - Dott. Luca Flppo Coetoo d decrvere la varabltà all tero della dtrbuzoe d frequeza tramte u uco valore che e tetzza le carattertche Metodologa della rcerca pcologa

Dettagli

Propagazione di errori

Propagazione di errori Propagazoe d error Gl error e dat possoo essere amplfcat durate calcol. Rspetto alla propagazoe degl error s può dstguere: comportameto del problema - codzoameto del problema: vedere come le perturbazo

Dettagli

Teoria dei Fenomeni Aleatori AA 2012/13

Teoria dei Fenomeni Aleatori AA 2012/13 La Legge de Grad Numer Cosderata ua sere d prove rpetute co p par alla probabltà d successo ua sgola prova, l rapporto tra l umero d success K ed l umero d prove tede a p quado tede ad fto: K P p ε per

Dettagli

Indipendenza in distribuzione

Indipendenza in distribuzione Marlea Pllat - Semar d Statstca (SVIC) "Lo studo delle relazo tra due caratter" Aals delle relazo tra due caratter Dpedeza dstrbuzoe s basa sul cofroto delle dstrbuzo codzoate Dpedeza meda s basa sul cofroto

Dettagli

SIMULAZIONE DI ESAME ESERCIZI. Cattedra di Statistica Medica-Università degli Studi di Bari-Prof.ssa G. Serio 1

SIMULAZIONE DI ESAME ESERCIZI. Cattedra di Statistica Medica-Università degli Studi di Bari-Prof.ssa G. Serio 1 SIMULAZIONE DI ESAME ESERCIZI Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero ESERCIZIO. Alcu autor hao studato se la depressoe possa essere assocata a dc serologc d process autommutar

Dettagli

APPUNTI DI GEOMETRIA DELLE MASSE 1

APPUNTI DI GEOMETRIA DELLE MASSE 1 PPUNT D EMETR DELLE ME troduzoe ome oto la rappresetazoe de orp avvee attraverso gl sem d puto materale (el quale può pesars oetrata ua erta quattà d matera e rappreseta la massa putuale) o sstem d put

Dettagli

Geometria delle aree

Geometria delle aree eometra delle aree Lo studo de cocett ase relatv alla eometra delle ree: cosete d trasformare le azo tere sollectazo cosete d valutare l elastctà delle strutture forsce gl strumet per valutare le strutture

Dettagli

frazione 1 n dell ammontare complessivo del carattere A x

frazione 1 n dell ammontare complessivo del carattere A x La Cocetrazoe Il cocetto d cocetrazoe rguarda l modo cu l ammotare totale d u carattere quattatvo trasferble s rpartsce tra utà statstche. Tato pù tale ammotare è addesato u sottoseme d utà, tato pù s

Dettagli

Sommario. Facoltà di Economia. Obiettivo. Quando studiarla? Lezione n 7. X: carattere quantitativo tra le unità statistiche. Quando studiarla?

Sommario. Facoltà di Economia. Obiettivo. Quando studiarla? Lezione n 7. X: carattere quantitativo tra le unità statistiche. Quando studiarla? Corso d Statstca acoltà d Ecooma a.a. - La cocetrazoe Quado studarla? Obettvo Dagramma d Lorez apporto d cocetrazoe rea d cocetrazoe Esemp Sommaro Lezoe 7 Lez7-a.a. - statstca-fracesco mola Quado studarla?

Dettagli

Caso studio 12. Regressione. Esempio

Caso studio 12. Regressione. Esempio 6/4/7 Caso studo Per studare la curva d domada d u bee che sta per essere trodotto sul mercato, s rlevao dat rguardat l prezzo mposto e l umero d pezz vedut 7 put vedta plota, ell arco d ua settmaa. I

Dettagli

2 si da eguale peso alle misure senza tener conto dell incertezza, che in generale possono essere diverse.

2 si da eguale peso alle misure senza tener conto dell incertezza, che in generale possono essere diverse. 5 MEDIE PESTE Come combare msure separate? Esempo, msure Msura d : ± Msura d B: B ± B Se s effettua la meda artmetca: B s da eguale peso alle msure seza teer coto dell certezza, che geerale possoo essere

Dettagli

Appunti di. Elaborazione dei dati sperimentali

Appunti di. Elaborazione dei dati sperimentali Apput d Elaboraoe de dat spermetal Corso d sca er cors d Laurea Igegera Uverstà d adova sura d ua gradea fsca Ua gradea fsca s rappreseta co uo (o pù) umer segut da ua utà d msura. Il umero che quatfca

Dettagli

Definizioni. Unità strutturale. Massa dell unità strutturale (M 0.) = 100 a.m.u. Macromolecola o Catena polimerica

Definizioni. Unità strutturale. Massa dell unità strutturale (M 0.) = 100 a.m.u. Macromolecola o Catena polimerica Defzo Utà strutturale (massa o moomero) assa dell utà strutturale (.) a.m.u acromolecola o Catea polmerca grado d polmerzzazoe (DP) massa molecolare x.p. Luda ateral polmerc 6 Defzo Grado d polmerzzazoe

Dettagli

Elementi di Statistica descrittiva Parte III

Elementi di Statistica descrittiva Parte III Elemet d Statstca descrttva Parte III Paaa Idce d asmmetra (/) Idce d forma che esprme l grado d asmmetra (skewess) d ua dstrbuzoe. Sao u, u,,u osservazo umerche. Chamamo dce d asmmetra l espressoe: c

Dettagli

Capitolo 6 Gli indici di variabilità

Capitolo 6 Gli indici di variabilità Captolo 6 Gl dc d varabltà ommaro. Itroduzoe. -. Il campo d varazoe. - 3. La dffereza terquartle. - 4. Gl scostamet med. -. La varaza, lo scarto quadratco medo e la devaza. - 6. Le dffereze mede. - 7.

Dettagli

Design of experiments (DOE) e Analisi statistica

Design of experiments (DOE) e Analisi statistica Desg of epermets (DOE) e Aals statstca L utlzzo fodametale della metodologa Desg of Epermets è approfodre la coosceza del sstema esame Determare le varabl pù sgfcatve; Determare l campo d varazoe delle

Dettagli

Università della Calabria

Università della Calabria Uverstà della Calabra FACOLTA DI INGEGNERIA Corso d Laurea Igegera per l Ambete e l Terrtoro CORSO DI IDROLOGIA Ig. Daela Bod SCHEDA DIDATTICA N 5 ISOIETE E TOPOIETI A.A. 20-2 Calcolo della precptazoe

Dettagli

Consistenza : se una distribuzione è fatta da termini costanti allora la media deve essere uguale a tale costante

Consistenza : se una distribuzione è fatta da termini costanti allora la media deve essere uguale a tale costante ANALISI DELLE DISTRIBUZIONI STATISTICHE L Aal delle Dtrbuzo Stattche cote ell elaborazoe ateatca de dat tattc. Lo copo è quello d rcavare tutte le orazo tetche pù portat che rguardao dat raccolt. Idc d

Dettagli

Indici di Posizione: Medie Algebriche

Indici di Posizione: Medie Algebriche ANALISI DELLE DISTRIBUZIONI STATISTICHE L Aal delle Dtrbuzo Stattche cote ell elaborazoe ateatca de dat tattc. Lo copo è quello d rcavare tutte le orazo tetche pù portat che rguardao dat raccolt. Idc d

Dettagli

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in Le mede Italo Nofro LE MEDIE Le mede (o valor med) soo dc d tedeza cetrale e costtuscoo u modo semplce ed mmedato per stetzzare u solo valore dat eterogee raccolt u collettvo Statstca medca Le mede Le

Dettagli

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione Artmetca 06/07 Esercz svolt classe Quarta lezoe Rcorreze o lear Sa a c a cq ua rcorreza dove {c }, c C e c 0. Sa P C[λ] l polomo caratterstco della rcorreza. Allora ua soluzoe partcolare della rcorreza

Dettagli

Lezione 13. Anelli ed ideali.

Lezione 13. Anelli ed ideali. Lezoe 3 Prerequst: Aell e sottoaell. Sottogrupp. Rfermet a test: [FdG] Sezoe 5.2; [H] Sezoe 3.4; [PC] Sezoe 4.2 Aell ed deal. Rcordamo la seguete defzoe, data el corso d Algebra : Defzoe 3. S dce aello

Dettagli

LE MEDIE. Le Medie. Medie razionali. Medie di posizione

LE MEDIE. Le Medie. Medie razionali. Medie di posizione LE MEDIE RAZIONALI LE MEDIE Msure stetche trodotte per valutare aspett compless e global d ua dstrbuzoe d u feomeo X medate u solo umero reale costruto modo da dsperdere al mmo le formazo su dat orgar.

Dettagli

GUGLIOTTA CALOGERO. Liceo Scientifico E.Fermi Menfi (Ag.) ENTROPIA

GUGLIOTTA CALOGERO. Liceo Scientifico E.Fermi Menfi (Ag.) ENTROPIA GUGLIOTTA CALOGERO Lceo Scentco E.Ferm Men (Ag.) ENTROIA Il concetto d processo termodnamco reversble d un dato sstema è collegato all dea che s possa passare dallo stato allo stato attraverso una successone

Dettagli

II Principio Termodinamica

II Principio Termodinamica II Prnpo ermodnama I Prnpo: legge d onservazone energa [NON ho lmt sulle trasormazon possbl] II Prnpo: spega perhé ert tp d trasormazon avvengono n una sola drezone uovo ade n un portauovo e s rompe: non

Dettagli

Dott.ssa Marta Di Nicola

Dott.ssa Marta Di Nicola RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quado s cosderao due o pù caratter (varabl) s possoo esamare ache l tpo e l'testà delle relazo che sussstoo tra loro. http://www.bostatstca.uch.tt Nel caso cu per

Dettagli

c n OTTICA GEOMETRICA RIFLESSIONE E RIFRAZIONE INDICE DI RIFRAZIONE

c n OTTICA GEOMETRICA RIFLESSIONE E RIFRAZIONE INDICE DI RIFRAZIONE OTTICA GEOMETRICA U oda e.m. si propaga rettilieamete i u mezzo omogeeo ed isotropo co velocità c v = > si chiama idice di rifrazioe e dipede sia dal mezzo sia dalla lughezza d oda della radiazioe RIFLESSIONE

Dettagli

Parte I (introduzione)

Parte I (introduzione) arte I (trodzoe) Espressoe dell ertezza d msra (UNI CEI 9) L ertezza rappreseta geerale dbbo. Il dbbo ra la valdtà del rsltato d a msrazoe vee espresso medate l ertezza d msra. Iertezza d msra arametro,

Dettagli

APPUNTI di FISICA SPERIMENTALE

APPUNTI di FISICA SPERIMENTALE APPUNTI d FISICA SPERIMENTALE Igegera Elettrca e Meccaca 008-009 premessa: l metodo spermetale msurazoe d gradezze fsche caratterstche degl strumet d msura sstem d utà d msura aals dmesoale aals delle

Dettagli

Numeri complessi Pag. 1 Adolfo Scimone 1998

Numeri complessi Pag. 1 Adolfo Scimone 1998 Numer compless Pag. Adolfo Scmoe 998 NUMERI COMPLESSI Come sappamo, o esstoo el campo de umer real le radc d dce par de umer egatv. Ammettamo pertato l esstea della radce quadrata del umero. Questo uovo

Dettagli

Le onde elettromagnetiche. Origine e natura, spettro delle onde e.m., la polarizzazione

Le onde elettromagnetiche. Origine e natura, spettro delle onde e.m., la polarizzazione Le ode elettromagetiche Origie e atura, spettro delle ode e.m., la polarizzazioe Origie e atura delle ode elettromagetiche: Ua carica elettrica che oscilla geera u campo elettrico E che oscilla e a questo

Dettagli

Le medie. Medie. Medie analitiche. Medie di posizione. Marilena Pillati - Elementi di Statistica e Informatica (SVIC) "Le medie (I parte)"

Le medie. Medie. Medie analitiche. Medie di posizione. Marilena Pillati - Elementi di Statistica e Informatica (SVIC) Le medie (I parte) Marlea Pllat - Elemet d Statsta e Iformata (SVIC) "Le mede (I parte)" Le mede Soo msure stethe he osetoo l passaggo da ua pluraltà d formazo (le modaltà e le rspette frequeze) a ua sola modaltà Nella famgla

Dettagli

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100)

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100) ESERCIZIO Il Moblty Maager d u azeda ha rlevato l umero d chlometr percors settmaalmete da 60 mpegat. I dat soo rportat ello schema successvo. 67 4 93 58 66 87 5 53 86 8 7 47 56 70 54 86 48 43 60 58 5

Dettagli

L OCCHIO. L OCCHIO: Proprietà Ottiche

L OCCHIO. L OCCHIO: Proprietà Ottiche L OCCHIO La truttura dell cch può esser trvata svarat test, put fdametal per quat rguarda l str teresse: studad l spettr Elettr-Magetc s s trvat due ftrecettr c (per l rss, l blu ed l verde) bastcell (vse

Dettagli

Elettricità e Fisica Moderna

Elettricità e Fisica Moderna Esercizi di fisica per Medicina C.Patrignani, Univ. Genova (rev: 9 Ottobre 2003) 1 Elettricità e Fisica Moderna 1) Una candela emette una potenza di circa 1 W ad una lunghezza d onda media di 5500 Å a)

Dettagli

Esercitazione 5 del corso di Statistica (parte 1)

Esercitazione 5 del corso di Statistica (parte 1) Eserctazoe 5 del corso d Statstca (parte 1) Dott.ssa Paola Costat 8 Novembre 011 I alcue crcostaze s poe u maggor teresse sullo studo della varabltà tra le sgole utà statstche, puttosto che lo studo della

Dettagli

L irraggiamento termico

L irraggiamento termico L irraggiamento termico Trasmissione del Calore - 42 Il calore può essere fornito anche mediante energia elettromagnetica; ciò accade perché quando un fotone, associato ad una lunghezza d onda compresa

Dettagli

1. L irraggiamento è la trasmissione di energia termica per opera delle onde elettromagnetiche.

1. L irraggiamento è la trasmissione di energia termica per opera delle onde elettromagnetiche. Il poblema del copo eo: etae el meito pe capie G.L. Michelutti IRRAGGIAMNO. L iaggiameto è la tasmissioe di eegia temica pe opea delle ode elettomagetiche.. Quado ua caica q subisce u acceleazioe a, essa

Dettagli

Algoritmi e Strutture Dati. Alberi Binari di Ricerca

Algoritmi e Strutture Dati. Alberi Binari di Ricerca Algortm e Strutture Dat Alber Bar d Rcerca Alber bar d rcerca Motvazo gestoe e rcerche grosse quattà d dat lste, array e alber o soo adeguat perché effcet tempo O) o spazo Esemp: Matemeto d archv DataBase)

Dettagli

Laboratorio di Fisica I: laurea in Ottica e Optometria. Misura di una resistenza con il metodo VOLT-AMPEROMETRICO

Laboratorio di Fisica I: laurea in Ottica e Optometria. Misura di una resistenza con il metodo VOLT-AMPEROMETRICO Laboratoro d Fsca I: laurea Ottca e Optoetra Msura d ua ressteza co l etodo OLTMPEOMETICO descrzoe s sura ua ressteza utlzzado u voltetro e u llaperoetro sfruttado la relazoe : Per coduttor ohc è dpedete

Dettagli

L assorbimento e lo strippaggio

L assorbimento e lo strippaggio assorbmeto e lo strppaggo Coloa a stad d ulbro (coloa a patt Il calcolo d ua coloa d assorbmeto/strppaggo d questo tpo parte dal blaco d matera. Chamado e le portate d lqudo A e d gas C relatve a due compoet

Dettagli

3. Conduttori. Nei conduttori alcuni elettroni sono liberi di muoversi lungo tutto il cristallo sotto l effetto di un campo elettrico

3. Conduttori. Nei conduttori alcuni elettroni sono liberi di muoversi lungo tutto il cristallo sotto l effetto di un campo elettrico 4/3/ 3. 3. oduttor Propretà de coduttor Ne coduttor alcu elettro soo lber d muovers lugo tutto l crstallo sotto l effetto d u campo elettrco I codzo statche o c può essere u campo elettrco all tero d u

Dettagli

DI IDROLOGIA TECNICA PARTE II

DI IDROLOGIA TECNICA PARTE II FACOLTA DI INGEGNERIA Laurea Specalstca Igegera Cvle NO Guseppe T Aroca CORSO DI IDROLOGIA TECNICA PARTE II Aals e prevsoe statstca delle varabl drologche Lezoe X: Scelta d u modello probablstco Aals e

Dettagli

Analisi di dati vettoriali. Direzioni e orientazioni

Analisi di dati vettoriali. Direzioni e orientazioni Aals d dat vettoral Drezo e oretazo I tal caso, dat soo msurat term d agol e spesso soo rfert al ord geografco (statstca crcolare) Soo rappresetat su ua crcofereza Dat d drezoe: flusso ua specfca drezoe,

Dettagli

1. (Punti 8) Deteminare modulo e argomento delle soluzioni della seguente equazione nel campo complesso. 1 x = 0. x 2 e 8.

1. (Punti 8) Deteminare modulo e argomento delle soluzioni della seguente equazione nel campo complesso. 1 x = 0. x 2 e 8. Corso di Laurea i Igegeria Biomedia ANALISI MATEMATICA Prova sritta del giugo 7 Fila. Esporre il proedimeto di risoluzioe degli eserizi i maiera ompleta e leggibile.. Puti 8) Detemiare modulo e argometo

Dettagli

Le strutture in cemento armato. Ipotesi di calcolo

Le strutture in cemento armato. Ipotesi di calcolo Le trutture emeto armato Ipote d alolo Prova d ua trave.a. Feurazoe Servameto ollao 11.118 5 Dagramma Curvatura-ometo Fae III ometo (knm) 15 kn? m 1 5 Fae II Fae I V? 4.56 5.5.5.1.15.? 3.731? 1? 4? Curvatura

Dettagli

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione IV

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione IV Uverstà degl Stud d Napol Partheope Facoltà d Sceze Motore a.a. 011/01 Statstca Lezoe IV E-mal: paolo.mazzocch@upartheope.t Webste: www.statmat.upartheope.t Fuzoe d regressoe Attraverso la fuzoe d regressoe

Dettagli

Caso studio 2. Le medie. Esercizio. La media aritmetica. Esempio

Caso studio 2. Le medie. Esercizio. La media aritmetica. Esempio 8/02/20 Caso studo 2 U vesttore sta valutado redmet d due ttol del settore Petrolo e Gas aturale. Sulla base de redmet goraler della settmaa passata vuole cercare d prevedere l redmeto per la prossma settmaa

Dettagli

6. LA CONCENTRAZIONE

6. LA CONCENTRAZIONE UNIVERSITA DEGLI STUDI DI PERUGIA DIPARTIMENTO DI FILOSOFIA SCIENZE SOCIALI UMANE E DELLA FORMAZIONE Corso d Laurea Sceze per l'ivestgazoe e la Scurezza 6. LA CONCENTRAZIONE Prof. Maurzo Pertchett Statstca

Dettagli

Lezione 24. Campi finiti.

Lezione 24. Campi finiti. Lezoe 4 Prerequst: Lezo 0,,, 3 Rfermet a test: [FdG] Sezoe 86; [H] Sezoe 79; [PC] Sezoe 63; Cam ft Nelle lezo recedet abbamo vsto dvers esem d cam ft: ess erao tutt del to oure [ x ]/( f ( x )), dove f

Dettagli

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI Uverstà degl Stud d Mlao Bcocca CdS ECOAMM Corso d Metod Statstc per l Ammstrazoe delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI 1. Carta d cotrollo per frazoe d o coform (carta U resposable d produzoe,

Dettagli

FAM. T 1) α ν. (e α ν T 1) 2. (con l ipotesi ν > 0) si ottiene

FAM. T 1) α ν. (e α ν T 1) 2. (con l ipotesi ν > 0) si ottiene Serie 42: Soluzioni FAM C. Ferrari Esercizio 1 Corpo nero 1. Abbiamo: Sole λ max = 500nm - spettro visibile (giallo); Sirio B λ max = 290nm - ultravioletto; corpo umano λ max = 9300nm - infrarosso. 2.

Dettagli

Corso di Statistica. Test per differenza tra medie e proporzioni. Prof.ssa T. Laureti a.a

Corso di Statistica. Test per differenza tra medie e proporzioni. Prof.ssa T. Laureti a.a Corso di Statistica Test per differeza tra medie e proporzioi Prof.ssa T. Laureti a.a. -3 Corso di Statistica a.a. -3 DEIM, Uiv.TUSCIA - Prof.ssa Laureti Test basati su campioi idipedeti proveieti da due

Dettagli

Associazione tra due variabili quantitative

Associazione tra due variabili quantitative Esempo (1) Assocazoe tra due varabl quattatve Suppoamo che u professore vogla dmostrare che eserctars a casa aut gl studet el superameto dell esame. esame. A tal fe regstra la votazoe de compt a casa e

Dettagli

CORSO DI STATISTICA I (Prof.ssa S. Terzi) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI. Esercitazione n 3

CORSO DI STATISTICA I (Prof.ssa S. Terzi) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI. Esercitazione n 3 ORSO I STTISTI I (Prof.ssa S. Terz) STUIO ELLE ISTRIUZIONI SEMPLII Eserctazoe 3 3. ata la seguete dstrbuzoe de reddt: lass d reddto Reddter Reddto medo 6.500-7.500 4 6.750 7.500-8.500 7.980 8.500-9.500

Dettagli

TERMOLOGIA & TERMODINAMICA II

TERMOLOGIA & TERMODINAMICA II TERMOLOGIA & TERMODINAMICA II 1 TRASMISSIONE DEL CALORE Il calore può essere trasmesso attraverso tre modalità: conduzione: il trasporto avviene per contatto, a causa degli urti fra le molecole dei corpi,

Dettagli

CRISI DELLA FISICA CLASSICA e FISICA DEI QUANTI Esercitazione

CRISI DELLA FISICA CLASSICA e FISICA DEI QUANTI Esercitazione ! ISTITUTO LOMBARDO ACCADEMIA DI SCIENZE E LETTERE Ciclo formativo per Insegnanti di Scuola Superiore - anno scolastico 2017-2018 Prima lezione - Milano, 10 ottobre 2017 CRISI DELLA FISICA CLASSICA e FISICA

Dettagli