3 Domanda e offerta aggregata nel lungo periodo I

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "3 Domanda e offerta aggregata nel lungo periodo I"

Transcript

1 3 Domada e offerta aggregata el lugo periodo I Il primo passo da compiere è costruire la curva di offerta aggregata el lugo periodo. I primo luogo costruiremo tale curva ell ipotesi che il mercato dei bei e quello del lavoro siao perfettamete cocorreziali. I seguito preseteremo l aalisi i ua situazioe più realistica e più geerale, i cui tato i mercati dei bei quato quello del lavoro soo imperfettamete cocorreziali. La ragioe di partire co il modo di cocorreza perfetta, pur ella covizioe che si tratti di u caso particolare e o troppo rilevate, è che la coosceza dei risultati macroecoomici i tale modo ideale cosete di misurare la distaza esistete tra modo reale e modo ideale; capire le ragioi di tale distaza e, se possibile, idividuare le azioi capaci di ridurle. Prima di etrare el modello che cosete di costruire la curva AS el caso di cocorreza perfetta, è opportua u avverteza che riguarda tato questo modello quato quello di cocorreza imperfetta che preseteremo successivamete. Abbiamo detto elle lezioi precedeti che la AS di lugo periodo preseta il livello di PIL corrispodete al tred i quel periodo. Tale livello del PIL è otteuto co ua capacità produttiva dispoibile. Poiché el periodo di tempo rilevate per lo studio delle fluttuazioi tale capacità produttiva varia di poco, ipotizzeremo che essa sia costate, così come abbiamo già detto che assumiamo costate il livello dei tred del PIL. Ache i questo caso, abbiamo a che fare co u ipotesi o rigorosa e o assulatamete realistica. Ma poiché vogliamo illumiare al meglio i feomei più rilevati per lo studio delle fluttuazioi, corriamo il rischio di lasciare i ombra quelli che appaioo, ivece, come meo rilevati (sebbee rilevatissimi per lo studio della crescita). I sitesi, metre ello studio della crescita si fa riferimeto a ua fuzioe aggregata di produzioe del tipo: Y = f(n, K, H...) dove N rappreseta il lavoro, K rappreseta il capitale fisico e H rappreseta il capitale umao, el corso dello studio delle fluttuazioi ipotizzeremo K e H come costati ( K, H) e quidi ua fuzioe di produzioe co u solo argometo, il lavoro: Y = f(n) (3.1)

2 26 3. Domada e offerta aggregata el lugo periodo I 3.1 U modello classico di cocorreza perfetta Il puto di parteza è ua fuzioe di produzioe aggregata del tipo appea descritto (3.1), co le segueti proprietà stadard: f 0 > 0; f 00 < 0. U esempio di tale fuzioe è la cui trasformazioe loglieare è: Y = N α 0 <α<1 (3.2) y = α (3.3) Dalla (3.2) si ottiee per derivazioe il prodotto margiale del lavoro (PML): Y 0 = αn α 1 (3.4) Come è oto dalla microecoomia, l impresa perfettamete cocorreziale massimizza il suo profitto domadado lavoro fio al puto i cui il salario reale W = PML,comesivedeelgrafico seguete. P Y (a) W P N (b) N FIGURE 3.1. Possiamo liearizzare ei logaritmi la (3.4), otteedo: l PML = y 0 =la +(a 1)

3 3. Domada e offerta aggregata el lugo periodo I 27 edefiedo l α = x e (α 1) = d, possiamo riscrevere il logaritmo del prodotto margiale come: y 0 = x d che sarà ua retta decrescete, essedo α<1. La fuzioe (iversa) di domada di lavoro è quidi, i termii loglieari: w p = x d (3.5) y (a) ω=w-p (b) FIGURE 3.2. Quato all offerta di lavoro, dalla Microecoomia sappiamo che la curva di offerta è decrescete el salario reale. La fuzioe di utilità da cui partiamo può essere: U = Y N β (3.6) le cui proprietà soo: U Y =1 U N = βn b 1 β>1 La codizioe del primo ordie per la massimizzazioe dell utilità è: U = W, quidi el caso della fuzioe (3.6) otteiamo: U y P βn b 1 = W P I termii loglieari questa codizioe diviee immediatamete la fuzioe iversa di offerta di lavoro: w p = l(β)+(β 1)

4 28 3. Domada e offerta aggregata el lugo periodo I e chiamado l(β) =b e (β 1) = c tale fuzioe può essere riscritta come: w p = b + c (3.7) Si tratta di ua retta crescete ello spazio salario reale - lavoro, come si vede el seguete grafico. ω=w-p -b FIGURE 3.3. La soluzioe del sistema di equazioi costituito da ( ) corrispode a trovare il puto di icotro delle due curve: b + c = x d b + c + d = x (c + d) =x + b Eifie, risolvedo per : = x + b (3.8) c + d Iseredo la (3.8) ella (3.3) si ottiee il corrispodete valore dell offerta aggregata: y = a x + b (3.9) c + d Come si può vedere y è del tutto idipedete da p. Nellospaziop, y, abbiamo ua retta verticale. La spiegazioe di questo risultato ha due facce.

5 3. Domada e offerta aggregata el lugo periodo I 29 ω=w-p ω * -b * FIGURE 3.4. I primo luogo, possiamo dire che sia D che S dipedoo solo dal salario reale w p, quidi se w p rimae costate rimae ivariato e, di cosegueza, y. I secodo luogo i preseza di eccessi di domada e d offerta il salario reale si muove i modo tale da riequilibrare il mercato del lavoro: se D > S il salario reale sale, se D < S il salario reale ivece scede. Possiamo quidi chiederci i preseza di u aumeto di p. A tale fie è utile riscrivere la (3.7) e la (3.5) i termii di salari omiali: w = b + p + c w = x + p d U aumeto di p fa aumetare ella stessa misura l itercetta di etrambe le curve disegate ello spazio (w, ). Il loro icotro avverrà i corrispodeza del valore origiario di, cioè. Naturalmete, il salario moetario sarà aumetato i misura tale da mateere costate il salario reale. Quidi, i preseza di perfetta flessibilità dei salari moetari, variazioi del livello geerale dei prezzi o hao iflueza sul livello di occupazioe e, perciò, di produzioe aggregata.

6 30 3. Domada e offerta aggregata el lugo periodo I w-p w FIGURE Gli effetti di shoks omiali e reali Nel grafico seguete è descritto l effetto di u aumeto della domada aggregata (spostameto verso ord-est della AD), tato che sia determiato da u aumeto di a, quato da u aumeto della quatità di moeta m. I etrambi i casi il risultato è u aumeto del livello dei prezzi e u uguale aumeto dei salari moetari, che determiaao u salario reale ivariato (leggibile come differeza tra w e p sull asse delle ascisse del quadrate 2). La spiegazioe del doppio movimeto delle curve di domada e offerta di lavoro el quadrate 3 è spiegabile co il fatto che, a parità di salario moetario (la variabile che compare i ascissa el quadrate 3), all aumetare di p le imprese soo disposte a domadare più lavoro (il salario reale si riduce), metre i lavoratori desiderao (per lo stesso motivo) offrire meo lavoro. L aumeto dei prezzi riduce la quatità reale di moeta (m p) e questo riporta la domada aggregata (via riduzioe dei cosumi e riduzioe degli ivestimeti) al livello precedete (movimeto verso ord-ovest lugo la AD). La coclusioe è che el lugo periodo variazioi della domada aggregata o hao alcu effetto sull output aggregato (PIL) ma solo sul livello dei prezzi. Rimae, duque, cofermata l ituizioe che il livello di tred del PIL è determiato iteramete dal lato dell offerta. Shocks che colpiscao l offerta, ivece, avrao effetti reali, come mostra il grafico seguete,

7 3. Domada e offerta aggregata el lugo periodo I 31 (2) p AS (1) p (w-p=cost.) p w 45 y * AD 1 AD 2 y (3) * (4) w= p FIGURE 3.6. i cui si presetao gli effetti di uo shock tecologico positivo (costituito da u aumeto di produttività). U aumeto della produttività farà aumetare l icliazioe della fuzioe di produzioe (più y aparitàdi), cosicché aumeterà la domada di lavoro. L aumeto dell offerta di bei e servizi provocherà ua riduzioe del livello geerale dei prezzi e questa, a sua volta, idurrà ua maggiore offerta di lavoro a parità di salario moetario. Nella uova situazioe di equilibrio, il livello dei prezzi sarà più basso di quello iiziale e il salario reale più elevato, così come il livello di output aggregato (rappresetato dalla AS 2 ). I effetti, la uova situazioe di equilibrio o esprime iet altro che u uovo valore del PIL di tred. Prima di chiudere questa sezioe è opportuo mettere isieme le varie parti del modello esamiato fi qui e rivedere la logica di soluzioe del modello stesso. Le equazioi che compogoo il modello i forma log-lieare soo le segueti: AD: y = µ 1 a + µ 2 (m p) F.d.P.: y = α offerta di lavoro: ω w p = b + c domada di lavoro: ω w p = x d

8 32 3. Domada e offerta aggregata el lugo periodo I (2) p AS 1 AS 2 (1) (w-p) 0 p w (w-p) 1 y 1 * y 2 * AD 1 y (3) * (4) FIGURE 3.7. Per la soluzioe del modello si può procedere i più stadi. 1) Il primo cosiste ell uguagliare domada e offerta di lavoro per otteere : = x + b c + d 2) Sostituedo il valore trovato di o ell equazioe relativa all offerta o i quella relativa alla domada di lavoro si ottiee il salario reale di equilibrio: ω xc bd = β α 3) Sostituedo ella fuzioe di produzioe si trova il valore del PIL di equilibrio: y = α x + b c + d Co questo passaggio è termiato il calcolo delle variabili reali del modello. I passaggi successivi cosetoo di determiare le variabili omiali (livello dei prezzi e salari omiali) i fuzioe di a e della quatità omiale di moeta (m) che soo variabili esogee e quidi ote, così come soo ote le elasticità µ 1 e µ 2 :

9 3. Domada e offerta aggregata el lugo periodo I 33 4) Sostituedo y ella AD e risolvedo per p, otteiamo: p = µ 1 µ 2 a + m 1 µ 2 y 5) Cooscedo ω e p è possibile ricavare ifie il salario omiale compatibile co il salario reale e il livello dei prezzi di equilibrio: w = xc bd β α + µ 1 µ 2 a + m 1 µ 2 y Uavoltaotiivaloriumericideivariparametriedellevariabiliesogee,ilcalcolodeirisultati,seguedoivaripassiappeaeumerati,è molto semplice, così come semplice è l aalisi di statica comparata. 3.3 La disoccupazioe di equilibrio Qualche defiizioe Prima di itrodurre l argometo è ecessario presetare alcue defiizioi: Popolazioe (P ) - (aziai + studeti + casalighe)=forza lavoro (L) L occupati (N)=disoccupati (U)=L N = U Tasso di disoccupazioe= u = U L 100 = L N L Tasso di partecipazioe alla forza lavoro (pop)= 100 = l 1 L POP 100 I Italia il tasso di partecipazioe è tra i più bassi dei paesi sviluppati (meo del 40%), cotro il 67% degli USA, metre il tasso di disoccupazioe è tra i + elevati, ma da qualche ao è i dimiuzioe (el % cotro 5.6 % degli USA, oggi 8,7% cotro 6,1% degli USA) Disoccupazioe e rigidità del salario L equilibrio sul mercato del lavoro che si determia i u ecoomia perfettamete cocorreziale el lugo periodo o implica ecessariamete che tutti i compoeti della forza lavoro siao occupati. Normalmete, si avrà <l. Si avrà, cioè u certo tasso di disoccupazioe: u = l. Tale tasso di disoccupazioe viee defiito tasso di disoccupazioe ormale o aturale, i quato corrispodete al valore di tred della produzioe aggregata. Bisoga otare che il tasso aturale di disoccupazioe - i u modo di cocorreza perfetta, come quello esamiato fi qui - corrispode i realtà a u equilibrio paretiaamete efficiete. I lavoratori vedoo 1 Si ricordio la proprietà dei logaritmi, che cosete di scrivere il tasso di disoccupazioecomediffereza tra il logaritmo della forza lavoro e il logaritmo dell occupazioe.

10 34 3. Domada e offerta aggregata el lugo periodo I esattamete la quatità di lavoro che desiderao vedere al salario reale vigete, metre le imprese acquistao esattamete la quatità di lavoro che desiderao acquistare al salario reale vigete. I corrispodeza di u,chi o lavora o desidera lavorare. I u (o,ilcheèlostesso,i )tutti i soggetti ecoomici soo soddisfatti e o cambierebbero le loro scelte: qualsiasi altra combiazioe di e ω sarebbe socialmete meo efficiete. ω=w-p ω * u * -β * l l,, u FIGURE 3.8. Si è ache visto sopra che see il salario reale è perfettamete flessibile è sempre possibile raggiugere, purché aturalmete s e d si icotrio el quadrate positivo. Nel cotesto esamiato fiqui,allora,soltato l imposizioe di u salario (reale) miimo superiore a quello di equilibrio ( ω >ω ) può implicare u tasso di disoccupazioe superiore a quello aturale (u >u ). I corrispodeza di ω, ifatti, la domada di lavoro sarà miore che i corrispodeza di ω ; si avrà quidi u eccesso dell offerta sulla domada di lavoro. Ma l impossibilità di ridurre ω a causa delle orme sul salario miimo iibisce il meccaismo di aggiustameto basato sulla flessibilità dei salari su cui si foda la covergeza verso il tasso aturale di disoccupazioe di cui abbiamo parlato i precedeza Il lavoro, i realtà, o è omogeeo e il salario miimo è u vicolo effettivo solo per i meo qualificati e i meo esperti.

11 3. Domada e offerta aggregata el lugo periodo I 35 ω=w-p ω ω * u * -β * u l l,, u FIGURE 3.9. No sempre il salario miimo fissato per legge è però superiore a ω. E quado è iferiore è ovviamete iifluete sul raggiugimeto della situazioe di equilibrio aturale. No appare quidi realistico attribuire l esisteza di u elevato tasso di disoccupazioe di lugo periodo alle leggi sul salario miimo. Ma, al di là di tali leggi, ci possoo essere ragioi che spiegao l esisteza di u salario reale superiore a quello di equilibrio aturale, seza che le forze della domada e dell offerta siao i grado di agire su di esso. Tali ragioi risiedoo, essezialmete, elle imperfezioi dei mercati dei bei e del lavoro, che aalizzeremo el prossimo capitolo. 3.4 Esercizi Esercizio 1 L ecoomia el lugo periodo è descritta dal seguete modello AD-AS i logaritmi: y = 2 a +2(m p) 3 y =0, 8 ω = 10 + ω =50 2

12 36 3. Domada e offerta aggregata el lugo periodo I a) Determiate i valori di equilibrio delle variabili reali e omiali ell ipotesi che a =6e m =10. b) Se la forza lavoro è pari a 22 qual è il tasso aturale di disoccupazioe? c) Qual è l effetto macroecoomico di uo shock tecologico che faccia aumetare la produttività del 5%? d) Qual è l effetto sui prezzi e sui salari moetari di u aumeto della quatità di moeta del 20%? Esercizio 2 Il mercato del lavoro è descritto dalle segueti equazioi log-lieari: ω =18+2 ω =78 l =21 a) Calcolate il livello aturale di occupazioe e il tasso aturale di disoccupazioe. b) Quale sarebbe il tasso di disoccupazioe i preseza di u salario reale miimo pari a 65? c) Se il govero decidesse di accoppiare al salario reale miimo ua politica moetaria espasiva che risultato macroecoomico otterrebbe? Esercizio 3 L ecoomia el lugo periodo è descritta dal seguete modello AD-AS i logaritmi: y = a +2(m p) y =0, 75 ω =18+2 ω =78 a) Determiate i valori di equilibrio delle variabili reali e omiali ell ipotesi che a =10e m =20. b) Quale effetto ha sul PIL u aumeto del 50% dell elasticità del PIL stesso rispetto alla quatità reale di moeta? c) Quale effetto ha sull occupazioe u aumeto del 25% dell elasticità dell offerta di lavoro rispetto al salario reale?

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni A Alcui cocetti di statistica: medie, variaze, covariaze e regressioi Esistoo svariati modi per presetare gradi quatità di dati. Ua possibilità è presetare la cosiddetta distribuzioe, raggruppare cioè

Dettagli

2T(n/2) + n se n > 1 T(n) = 1 se n = 1

2T(n/2) + n se n > 1 T(n) = 1 se n = 1 3 Ricorreze Nel caso di algoritmi ricorsivi (ad esempio, merge sort, ricerca biaria, ricerca del massimo e/o del miimo), il tempo di esecuzioe può essere descritto da ua fuzioe ricorsiva, ovvero da u equazioe

Dettagli

STUDIO DEL LANCIO DI 3 DADI

STUDIO DEL LANCIO DI 3 DADI Leoardo Latella STUDIO DEL LANCIO DI 3 DADI Il calcolo delle probabilità studia gli eveti casuali probabili, cioè quegli eveti che possoo o o possoo verificarsi e che dipedoo uicamete dal caso. Tale studio

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

min z wz sub F(z) = y (3.1)

min z wz sub F(z) = y (3.1) 37 LA FUNZIONE DI COSTO 3.1 Miimizzazioe dei costi Riprediamo il problema della massimizzazioe dei profitti del capitolo precedete e suppoiamo ora che l'impresa coosca il livello di output che deve produrre;

Dettagli

Lezione 10 - Tensioni principali e direzioni principali

Lezione 10 - Tensioni principali e direzioni principali Lezioe 10 - Tesioi pricipali e direzioi pricipali ü [A.a. 2011-2012 : ultima revisioe 23 agosto 2011] I questa lezioe si studiera' cio' che avviee alla compoete ormale di tesioe s, al variare del piao

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

Programma (orientativo) secondo semestre 32 ore - 16 lezioni

Programma (orientativo) secondo semestre 32 ore - 16 lezioni Programma (orietativo) secodo semestre 32 ore - 6 lezioi 3 lezioi: successioi e serie 4 lezioi: itegrali 2-3 lezioi: equazioi differeziali 4 lezioi: sistemi di equazioi e calcolo vettoriale e matriciale

Dettagli

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge.

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge. Le successioi A parole ua successioe é u isieme ifiito di umeri disposti i u particolare ordie. Piú rigorosamete, ua successioe é ua legge che associa ad ogi umero aturale u altro umero (ache o aturale):

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

Politecnico di Milano - Anno Accademico Statistica Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo

Politecnico di Milano - Anno Accademico Statistica Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo Politecico di Milao - Ao Accademico 010-011 Statistica 086449 Docete: Alessadra Guglielmi Esercitatore: Stefao Baraldo Esercitazioe 8 14 Giugo 011 Esercizio 1. Sia X ua popolazioe distribuita secodo ua

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

1 + 1 ) n ] n. < e nα 1 n

1 + 1 ) n ] n. < e nα 1 n Esercizi preparati e i parte svolti martedì 0.. Calcolare al variare di α > 0 Soluzioe: + ) α Per α il ite è e; se α osserviamo che da + /) < e segue che α + ) α [ + ) ] α < e α Per α > le successioi e

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli

Tutorato di Probabilità 1, foglio I a.a. 2007/2008

Tutorato di Probabilità 1, foglio I a.a. 2007/2008 Tutorato di Probabilità, foglio I a.a. 2007/2008 Esercizio. Siao A, B, C, D eveti.. Dimostrare che P(A B c ) = P(A) P(A B). 2. Calcolare P ( A (B c C) ), sapedo che P(A) = /2, P(A B) = /4 e P(A B C) =

Dettagli

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5.

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5. 60 Roberto Tauraso - Aalisi Calcolare la somma della serie Soluzioi + 3 R La serie può essere riscritta el modo seguete: + 4 3 9 Il umero può essere raccolto fuori dal sego di sommatoria: + 4 3 9 Si tratta

Dettagli

(1 2 3) (1 2) Lezione 10. I gruppi diedrali.

(1 2 3) (1 2) Lezione 10. I gruppi diedrali. Lezioe 0 Prerequisiti: Simmetrie di poligoi regolari. Gruppi di permutazioi. Cetro di u gruppo. Cetralizzate di u elemeto di u gruppo. Riferimeto al testo: [PC] Sezioe 5.4 I gruppi diedrali. Ogi simmetria

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioi di Matematica 1 - I modulo Luciao Battaia 4 dicembre 2008 L. Battaia - http://www.batmath.it Mat. 1 - I mod. Lez. del 04/12/2008 1 / 28 -2 Sottosuccessioi Grafici Ricorreza Proprietà defiitive Limiti

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

Cosa vogliamo imparare?

Cosa vogliamo imparare? Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come

Dettagli

Intervalli di Fiducia

Intervalli di Fiducia di Fiducia Itroduzioe per la media Caso variaza ota per la media Caso variaza o ota per i coefficieti di regressioe per la risposta media i per i coefficieti i di regressioe multilieare - Media aritmetica

Dettagli

Sommando le (8-13), (8-14), (8-19), (8-20), (8-21), (8-22) e uguagliando a zero si ottiene: V g

Sommando le (8-13), (8-14), (8-19), (8-20), (8-21), (8-22) e uguagliando a zero si ottiene: V g Correti a superficie libera 5 F p (8-) La proiezioe su s della forza di ierzia è ivece pari a: d ρ A ds ρ A ds + (8-) dt Sommado le (8-3), (8-4), (8-9), (8-0), (8-), (8-) e uguagliado a zero si ottiee:

Dettagli

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c)

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c) SERIE NUMERICHE Esercizi risolti. Calcolare la somma delle segueti serie telescopiche: a) b). Verificare utilizzado la codizioe ecessaria per la covergeza) che le segueti serie o covergoo: a) c) ) log

Dettagli

Anemia. Anemia - percentuali

Anemia. Anemia - percentuali 1 emia emoglobia 1-13 Data la distribuzioe dell emoglobia i u gruppo di pazieti maschi sottoposti a trattameto: - Circa u paziete su 3 era fortemete aemico (emogl. meo di 1) - La mediaa era fra 13 e 14

Dettagli

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA IPSAA U. Patrizi Città di Castello (PG) Classe A Tecico Agrario Lezioe di martedì 0 ovembre 0 (4 e ora) Disciplia: MATEMATICA La derivata della fuzioe composta Fuzioe composta Df(g())f (g())g () Questa

Dettagli

Pompa di calore a celle di Peltier. ( 3 ) Analisi dei dati

Pompa di calore a celle di Peltier. ( 3 ) Analisi dei dati Pompa di calore a celle di Peltier ( 3 ) Aalisi dei dati Scuola estiva di Geova 2 6 settembre 2008 1 Primo esperimeto : riscaldameto per effetto Joule Come descritto ella guida, misuriamo tesioe di alimetazioe

Dettagli

Richiami sulle potenze

Richiami sulle potenze Richiami sulle poteze Dopo le rette, le fuzioi più semplici soo le poteze: Distiguiamo tra: - poteze co espoete itero - poteze co espoete frazioario (razioale) - poteze co espoete reale = Domiio delle

Dettagli

1 Congruenze. Definizione 1.1. Siano a, b, n Z con n 2, definiamo a b (mod n) se n a b.

1 Congruenze. Definizione 1.1. Siano a, b, n Z con n 2, definiamo a b (mod n) se n a b. 1 Cogrueze Defiizioe 1.1. Siao a, b, Z co 2, defiiamo a b (mod ) se a b. Proposizioe 1.2. 2 la cogrueza mod è ua relazioe di equivaleza su Z. a a () perché a a a b () b a () a b () b c () a b b c a c =

Dettagli

Risoluzione del compito n. 2 (Gennaio 2017/2)

Risoluzione del compito n. 2 (Gennaio 2017/2) Risoluzioe del compito. (Geaio 017/ PROBLEMA 1 Trovate tutte le soluzioi (z, w, co z, w C,del sistema { i z + w =0 z + z + w +1=0;. Dalla prima equazioe, w = i z e quidi w = iz, che sostituito ella secoda

Dettagli

ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE 1

ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE 1 ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE ESERCIZIO. Si vuole verificare l ipotesi, a livello di sigificatività α, che la media μ di ua variabile aleatoria X abbia u valore fissato μ. Si effettuao

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

La formula del binomio

La formula del binomio La formula del biomio Ua spiegazioe elemetare Riccardo Dossea 7 dicembre 5 I questo articolo vogliamo presetare ua dimostrazioe elemetare, che eviti espliciti riferimeti di carattere combiatorio, della

Dettagli

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4 Quarto Compito di Aalisi Matematica Corso di laurea i Iformatica, corso B 5 Luglio 016 Soluzioi Esercizio 1 Determiare tutti i umeri complessi z tali che z = 3 4 i. Soluzioe. Scrivedo z = a + bi, si ottiee

Dettagli

16 - Serie Numeriche

16 - Serie Numeriche Uiversità degli Studi di Palermo Facoltà di Ecoomia CdS Statistica per l Aalisi dei Dati Apputi del corso di Matematica 6 - Serie Numeriche Ao Accademico 03/04 M. Tummiello, V. Lacagia, A. Cosiglio, S.

Dettagli

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma 1 Serie di poteze È stato dimostrato che la serie geometrica x (1.1) coverge se e solo se la ragioe x soddisfa la disuguagliaza 1 < x < 1. I realtà c è covergeza assoluta i ] 1, 1[. Per x 1 la serie diverge

Dettagli

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto Calcolo I - Corso di Laurea i Fisica - Geaio 08 Soluzioi Scritto Data la fuzioe f = 8 + / a Calcolare il domiio, puti di o derivabilità ed asitoti; b Calcolare, se esistoo, estremi relativi ed assoluti.

Dettagli

2.5 Convergenza assoluta e non

2.5 Convergenza assoluta e non .5 Covergeza assoluta e o Per le serie a termii complessi, o a termii reali di sego o costate, i criteri di covergeza si qui visti o soo applicabili. L uico criterio geerale, rozzo ma efficace, è quello

Dettagli

1 Congruenze. Definizione 1.1. a, b, n Z n 2, allora definiamo a b (mod n) se n a b.

1 Congruenze. Definizione 1.1. a, b, n Z n 2, allora definiamo a b (mod n) se n a b. 1 Cogrueze Defiizioe 1.1. a, b, Z 2, allora defiiamo a b (mod ) se a b. Proposizioe 1.2. 2 la cogrueza mod è ua relazioe di equivaleza su Z. a a () perché a a a b () b a () a b () b c () a b b c a c =

Dettagli

Costo manutenzione (euro)

Costo manutenzione (euro) Esercitazioe 05 maggio 016 ESERCIZIO 1 Ua società di servizi possiede u parco auto di diverse età. I dirigeti ritegoo che il costo degli iterveti di mautezioe per le auto più vecchie sia geeralmete più

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57 Tracce di soluzioi di alcui esercizi di matematica - gruppo 42-57 4. Limiti di successioi Soluzioe dell Esercizio 42.. Osserviamo che a = a +6 e duque la successioe prede valori i {a,..., a 6 } e ciascu

Dettagli

PROPRIETA DELLE FUNZIONI ARMONICHE

PROPRIETA DELLE FUNZIONI ARMONICHE CAPITOLO PROPRIETA DELLE FUNZIONI ARMONICHE - Defiizioi ed esempi Le fuzioi armoiche vegoo defiite ello spazio euclideo; i questa tesi sarà cosiderato u umero itero positivo maggiore di metre Ω sarà u

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f ( x; ϑ) θ = costate icogita Qual è il valore di θ? E verosimile

Dettagli

1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ;

1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ; . Serie umeriche Esercizio. Studiare il carattere delle segueti serie: ;! ;! ;!. Soluzioe.. Serie a termii positivi; cofrotiamola co la serie +, che è covergete: + + + 0. Pertato, per il criterio del cofroto

Dettagli

Paolo Perfetti, Dipartimento di matematica, II Università degli Studi di Roma, facoltà di Ingegneria

Paolo Perfetti, Dipartimento di matematica, II Università degli Studi di Roma, facoltà di Ingegneria Esercizi svolti a lezioe e o proveieti dal Marcellii Sbordoe La preseza della lettera C idica u esercizio da fare a casa. La capacità di svolgere tali esercizi è parte del bagaglio ecessario i sede di

Dettagli

Titolo della lezione. Dal campione alla popolazione: stima puntuale e per intervalli

Titolo della lezione. Dal campione alla popolazione: stima puntuale e per intervalli Titolo della lezioe Dal campioe alla popolazioe: stima putuale e per itervalli Itroduzioe Itrodurre il cocetto di itervallo di cofideza Stima di parametri per piccoli e gradi campioi Stimare la proporzioe

Dettagli

Analisi Matematica I

Analisi Matematica I Uiversità di Pisa - orso di Laurea i Igegeria Edile-rchitettura alisi Matematica I Pisa, febbraio Domada La derivata della fuzioe f) log ) si è ) log )si B) log )cos ) log ) si cos loglog ) + si ) log

Dettagli

Stima della media di una variabile X definita su una popolazione finita

Stima della media di una variabile X definita su una popolazione finita Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe

Dettagli

RENDIMENTO DEI TRASFORMATORI

RENDIMENTO DEI TRASFORMATORI RENDIMENTO DEI TRASFORMATORI Il redimeto di u trasformatore è defiito come rapporto tra poteza resa e poteza assorbita: poteza resa redimeto poteza assorbita poteza resa poteza resa perdite Sebbee il redimeto

Dettagli

3. Calcolo letterale

3. Calcolo letterale Parte Prima. Algera 1) Moomi Espressioe algerica letterale 42 Isieme di umeri relativi, talui rappresetati da lettere, legati fra loro da segi di operazioi. Moomio Espressioe algerica che o cotiee le operazioi

Dettagli

La correlazione e la regressione. Antonello Maruotti

La correlazione e la regressione. Antonello Maruotti La correlazioe e la regressioe Atoello Maruotti Outlie 1 Correlazioe 2 Associazioe tra caratteri quatitativi Date due distribuzioi uitarie secodo caratteri quatitativi X e Y x 1 x 2 x y 1 y 2 y associate

Dettagli

Titolo della lezione. Campionamento e Distribuzioni Campionarie

Titolo della lezione. Campionamento e Distribuzioni Campionarie Titolo della lezioe Campioameto e Distribuzioi Campioarie Itroduzioe Itrodurre le idagii campioarie Aalizzare il le teciche di costruzioe dei campioi e di rilevazioe Sviluppare il cocetto di distribuzioe

Dettagli

Corso di Statistica. Test per differenza tra medie e proporzioni. Prof.ssa T. Laureti a.a

Corso di Statistica. Test per differenza tra medie e proporzioni. Prof.ssa T. Laureti a.a Corso di Statistica Test per differeza tra medie e proporzioi Prof.ssa T. Laureti a.a. -3 Corso di Statistica a.a. -3 DEIM, Uiv.TUSCIA - Prof.ssa Laureti Test basati su campioi idipedeti proveieti da due

Dettagli

1 Esponenziale e logaritmo.

1 Esponenziale e logaritmo. Espoeziale e logaritmo.. Risultati prelimiari. Lemma a b = a b Lemma Disuguagliaza di Beroulli per ogi α e per ogi ln a k b k. k=0 + α + α Teorema Disuguagliaza delle medie Per ogi ln, per ogi upla {a

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Trieale i Matematica Calcolo delle Probabilità I doceti G. Nappo, F. Spizzichio Prova di martedì luglio tempo a disposizioe: 3 ore. Scrivere su ogi foglio NOME e COGNOME. Le risposte devoo

Dettagli

Il candidato risolva uno dei due problemi e 4 quesiti del questionario. la sua primitiva tale che ( 1) f ( 1)

Il candidato risolva uno dei due problemi e 4 quesiti del questionario. la sua primitiva tale che ( 1) f ( 1) Sessioe ordiaria all estero caledario australe 005 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ E DELLA RICERCA SCUOLE ITALIANE ALL ESTERO ESAMI DI STATO DI LICEO SCIENTIFICO Sessioe Ordiaria 005 Caledario

Dettagli

3.1 Rappresentazione dello stato tensionale nel piano di Mohr: circoli di Mohr.

3.1 Rappresentazione dello stato tensionale nel piano di Mohr: circoli di Mohr. DIDATTICA DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA MODULO TRE I CONCETTI FONDAMENTALI NELL ANALISI DELLA TENSIONE PARTE B) MODULO PER LO SPECIALIZZANDO Modulo. Rappresetazioe dello stato

Dettagli

5. INDICI DI VARIABILITA'

5. INDICI DI VARIABILITA' UNIVERSITA DEGLI STUDI DI PERUGIA DIPARTIMENTO DI FILOSOFIA SCIENZE SOCIALI UMANE E DELLA FORMAZIONE Corso di Laurea i Scieze per l'ivestigazioe e la Sicurezza. INDICI DI VARIABILITA' Prof. Maurizio Pertichetti

Dettagli

Selezione avversa e razionamento del credito

Selezione avversa e razionamento del credito Selezioe avversa e razioameto del credito Massimo A. De Fracesco Dipartimeto di Ecoomia politica e statistica, Uiversità di Siea May 3, 013 1 Itroduzioe I questa lezioe presetiamo u semplice modello del

Dettagli

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii)

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii) Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi : Riferimeti: R.Adams, Calcolo Differeziale. -Si cosiglia vivamate di fare gli esercizi del testo. Cap. 9.5 - Serie di poteze,

Dettagli

PROPRIETÀ DELLE POTENZE IN BASE 10

PROPRIETÀ DELLE POTENZE IN BASE 10 PROPRIETÀ DELLE POTENZE IN BASE Poteze i base co espoete itero positivo Prediamo u umero qualsiasi che deotiamo co la lettera a e u umero itero positivo che deotiamo co la lettera Per defiizioe (cioè per

Dettagli

Elettrotecnica II. 1 Materiale didattico

Elettrotecnica II. 1 Materiale didattico Politecico di Torio Elettrotecica Materiale didattico Trasformatore Si cosideri il seguete circuito magetico: Sia S la sezioe del materiale ferromagetico. Si facciao le segueti ipotesi: ) asseza di flussi

Dettagli

Radicali. Esistenza delle radici n-esime: Se n è pari: ogni numero reale non negativo (cioè positivo o nullo) ha esattamente una radice n-esima in R.

Radicali. Esistenza delle radici n-esime: Se n è pari: ogni numero reale non negativo (cioè positivo o nullo) ha esattamente una radice n-esima in R. Radicali Radici quadrate Si dice radice quadrata di u umero reale a, e si idica co a, il umero reale positivo o ullo (se esiste) che, elevato al quadrato, dà come risultato a. Esisteza delle radici quadrate:

Dettagli

n 1 = n b) {( 1) n } = c) {n!} In questo caso la successione è definita per ricorrenza: a 0 = 1, a n = n a n 1 per ogni n 1.

n 1 = n b) {( 1) n } = c) {n!} In questo caso la successione è definita per ricorrenza: a 0 = 1, a n = n a n 1 per ogni n 1. Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi 0: Riferimeti: R.Adams, Calcolo Differeziale - Si cosiglia vivamete di fare gli esercizi del testo. Successioi umeriche:

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioi di Statistica Itervalli di cofideza Prof. Livia De Giovai statistica@dis.uiroma1.it Esercizio 1 La fabbrica A produce matite colorate. Ua prova su 100 matite scelte a caso ha idicato u peso

Dettagli

LA INTERPOLAZIONE Appartamenti venduti nel 2006 da un agenzia immobiliare di Treviso.

LA INTERPOLAZIONE Appartamenti venduti nel 2006 da un agenzia immobiliare di Treviso. LA INTERPOLAZIONE Appartameti veduti el 006 da u agezia immobiliare di Treviso. superficie (mq) prezzo (k ) segue 10 160 45 70 80 95 85 110 64 98 106 140 10 170 50 80 100 150 90 15 115 165 140 165 98 145

Dettagli

Precorso di Matematica. Parte IV : Funzioni e luoghi geometrici

Precorso di Matematica. Parte IV : Funzioni e luoghi geometrici Facoltà di Igegeria Precorso di Matematica 1. Equazioi e disequazioi Parte IV : Fuzioi e luoghi geometrici Richiamiamo brevemete la ozioe di fuzioe, che sarà utilizzato i quest ultima parte del precorso.

Dettagli

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA Politecico di Torio 7 Fuzioi Radice FUNZIONI RADICE RICHIAMI DI TEORIA f ( x) = x dom f Im f grafici. = = =7 =9. dispari R R -. - -. - - -. Grafici di fuzioi radici co pari pari [,+ ) [,+ ).. = = =6 =8

Dettagli

Lezioni di Ricerca Operativa

Lezioni di Ricerca Operativa Lezioi di Riera Operativa Corso di Laurea i Iformatia Uiversità di Salero - Problema del trasporto Prof. Cerulli Dott.ssa Getili Dott. Carrabs Problema del Flusso a osto Miimo FORMULAZIONE mi ( i, j) A

Dettagli

Materiale didattico relativo al corso di Matematica generale Prof. G. Rotundo a.a.2009/10

Materiale didattico relativo al corso di Matematica generale Prof. G. Rotundo a.a.2009/10 Materiale didattico relativo al corso di Matematica geerale Prof. G. Rotudo a.a.2009/10 ATTENZIONE: questo materiale cotiee i lucidi utilizzati per le lezioi. NON sostituisce il libro, che deve essere

Dettagli

Esercizi sul principio di induzione

Esercizi sul principio di induzione Esercitazioi di Aalisi I, Uiversità di Trieste, lezioe del 0/0/008 Esercizi sul pricipio di iduzioe Esercizio Dimostrare per iduzioe che + + + ( + ), Risoluzioe Le dimostrazioi di ua proprietà P() per

Dettagli

n=400 X= Km; s cor =9000 Km Livello di confidenza (1-α)=0,95 z(0,05)=1,96

n=400 X= Km; s cor =9000 Km Livello di confidenza (1-α)=0,95 z(0,05)=1,96 STATISTICA A K (60 ore Marco Riai mriai@uipr.it http://www.riai.it : stima della percorreza media delle vetture diesel di u certo modello al primo guasto 400 X34.000 Km; s cor 9000 Km Livello di cofideza

Dettagli

In linguaggio analitico parlare di tre tagli equivale ad individuare le equazioni di tre rette che intersecano il triangolo in questione.

In linguaggio analitico parlare di tre tagli equivale ad individuare le equazioni di tre rette che intersecano il triangolo in questione. Tre tagli... sette parti Dividere u triagolo dato o tre tagli rettiliei i sette parti di ui quattro siao triagoli (e le rimaeti tre, petagoi). Ua delle parti triagolari è limitata dai tre tagli, iasua

Dettagli

Calcolo delle Probabilità 2012/13 Foglio di esercizi 3

Calcolo delle Probabilità 2012/13 Foglio di esercizi 3 Calcolo delle Probabilità 01/13 Foglio di esercizi 3 Probabilità codizioale e idipedeza. Esercizio 1. Sia B u eveto fissato di uo spazio di probabilità (Ω, A, P), co P(B) > 0. Si mostri che P( B) è l uica

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2005/06

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2005/06 PROVE SCRITTE DI MTEMTIC PPLICT, NNO 5/6 Esercizio 1 Prova scritta del 14/1/5 Sia X ua successioe I.I.D. di variabili aleatorie co distribuzioe uiforme cotiua, X U(, M), ove M = umero lettere del cogome.

Dettagli

07.XII Laboratorio integrato 3 - Valutazione economica del progetto - Clamarch - Prof. E. Micelli - Aa

07.XII Laboratorio integrato 3 - Valutazione economica del progetto - Clamarch - Prof. E. Micelli - Aa Elemeti di matematica fiaziaria 07.XII.2011 La matematica fiaziaria e l estimo Nell ambito di umerosi procedimeti di stima si rede ecessario operare co valori che presetao scadeze temporali differeziate

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 21 Misura della dipedeza di u carattere

Dettagli

La base naturale dell esponenziale

La base naturale dell esponenziale La base aturale dell espoeziale Beiamio Bortelli 7 aprile 007 Il problema I matematica, ci è stato detto, la base aturale della fuzioe espoeziale è il umero irrazioale: e =, 7888... Restao, però, da chiarire

Dettagli

Sviluppi di Taylor. Andrea Corli 1 settembre Notazione o 1. 3 Formula di Taylor 3. 4 Esempi ed applicazioni 5

Sviluppi di Taylor. Andrea Corli 1 settembre Notazione o 1. 3 Formula di Taylor 3. 4 Esempi ed applicazioni 5 Sviluppi di Taylor Adrea Corli settembre 009 Idice Notazioe o Liearizzazioe di ua fuzioe 3 Formula di Taylor 3 4 Esempi ed applicazioi 5 I questo capitolo aalizziamo l approssimazioe di ua fuzioe regolare

Dettagli

Ricerca del saggio di capitalizzazione nel mercato immobiliare

Ricerca del saggio di capitalizzazione nel mercato immobiliare AESTIMUM 59, Dicembre 2011: 171-180 Marco Simootti Dipartimeto di Igegeria civile, ambietale e aerospaziale Uiversità degli Studi di Palermo e-mail: m.simootti@ti.it Parole chiave: procedimeto di capitalizzazioe,

Dettagli

Statistica. Lezione 5

Statistica. Lezione 5 Uiversità degli Studi del Piemote Orietale Corso di Laurea i Ifermieristica Corso itegrato i Scieze della Prevezioe e dei Servizi saitari Statistica Lezioe 5 a.a 2011-2012 Dott.ssa Daiela Ferrate daiela.ferrate@med.uipm.it

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO 0. Itroduzioe Oggetto del calcolo combiatorio è quello di determiare il umero dei modi mediate i quali possoo essere associati, secodo prefissate regole, gli elemeti di uo stesso

Dettagli

Definizione 1. Data una successione (a n ) alla scrittura formale. 1) a 1 + a a n +, si dà il nome di serie.

Definizione 1. Data una successione (a n ) alla scrittura formale. 1) a 1 + a a n +, si dà il nome di serie. SERIE NUMERICHE Defiizioe. Data ua successioe (a ) alla scrittura formale ) a + a 2 + + a +, si dà il ome di serie. I umeri a, a 2,, a, rappresetao i termii della serie, i particolare a è il termie geerale

Dettagli

,5 882,5 894,5 906,5 918,5 930,5 942,5 954,5

,5 882,5 894,5 906,5 918,5 930,5 942,5 954,5 Il 16 dicembre 015 ero a Napoli. Ad u agolo di Piazza Date mi soo imbattuto el "matematico di strada", come egli si defiisce, Giuseppe Poloe immerso el suo armametario di tabelle di umeri. Il geiale persoaggio

Dettagli

Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice

Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice Esercitazioe 12 Alfoso Iodice D Eza iodicede@uicas.it Uiversità degli studi di Cassio () 1 / 15 Outlie 1 () 2 / 15 Outlie 1 2 () 2 / 15 Outlie 1 2 3 () 2 / 15 Outlie 1 2 3 4 () 2 / 15 Outlie 1 2 3 4 5

Dettagli

Esame di Probabilità e Statistica del 9 luglio 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Probabilità e Statistica del 9 luglio 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Probabilità e Statistica del 9 luglio 27 Corso di Laurea Trieale i Matematica, Uiversità degli Studi di Padova). Cogome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto fiale Attezioe: si cosegao

Dettagli

Analisi di bilancio per indici

Analisi di bilancio per indici Esercitazioi svolte 2015 Scuola Duemila 1 Esercitazioe. 9 Aalisi di bilacio per idici Laura Mottii COMPETENZE ABILITÀ CONOSCENZE Compredere i dati del bilacio d esercizio attraverso l aalisi degli idici

Dettagli

Capitolo 4 - Parte I Sistemi regolari a dimensioni finite lineari tempo-continui

Capitolo 4 - Parte I Sistemi regolari a dimensioni finite lineari tempo-continui Apputi di Teoria dei sistemi apitolo 4 - Parte I Sistemi regolari a dimesioi fiite lieari tempo-cotiui Itroduzioe... Sistemi (diamici) a dimesioi fiite... Esempio: sistema idraulico... 3 Esempio: Ritardo

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria aalitica: rette e piai Coordiate polari Cambiameti di riferimeto el piao Cambiameti di riferimeto i geerale Isometrie Simmetrie Isometrie el piao Isometrie ello spazio 2 2006 Politecico di Torio

Dettagli

Università di Napoli Federico II, DISES, A.a , CLEC, Corso di Statistica (L-Z) Lezione 22 La verifica delle ipotesi. Corso di Statistica (L-Z)

Università di Napoli Federico II, DISES, A.a , CLEC, Corso di Statistica (L-Z) Lezione 22 La verifica delle ipotesi. Corso di Statistica (L-Z) Uiversità di Napoli Federico II, DISES, A.a. 215-16, CLEC, Corso di Statistica (L-Z) Corso di laurea i Ecoomia e Commercio (CLEC) Ao accademico 215-16 Corso di Statistica (L-Z) Maria Mario Lezioe: 22 Argometo:

Dettagli

15 - Successioni Numeriche e di Funzioni

15 - Successioni Numeriche e di Funzioni Uiversità degli Studi di Palermo Facoltà di Ecoomia CdS Statistica per l Aalisi dei Dati Apputi del corso di Matematica 15 - Successioi Numeriche e di Fuzioi Ao Accademico 2013/2014 M Tummiello, V Lacagia,

Dettagli

a'. a' e b n y se e solo se x, y, divisi per n danno lo stesso resto.

a'. a' e b n y se e solo se x, y, divisi per n danno lo stesso resto. E.5. Cogrueze Nella sezioe D. (esempio (d)) abbiamo itrodotto la relazioe di cogrueza modulo : dati due umeri iteri x, y e u umero itero positivo diciamo che x è cogruo a y modulo (i formula x y se è u

Dettagli

Appunti di STATISTICA

Appunti di STATISTICA Apputi di STATISTICA! Distribuzioe espoeziale X v.a. cotiua, R X = (0,+ ) Si dice che X ha distribuzioe espoeziale a parametro f X = >0 E (X) = 1/ Var (X) = 1/ e - x x>0 0 altrove (umero reale) se la p.d.f.

Dettagli

Esercizi svolti su successioni e serie di funzioni

Esercizi svolti su successioni e serie di funzioni Esercizi svolti su successioi e serie di fuzioi Esercizio. Calcolare il limite putuale di f ) = 2 +, [0, + ). Dimostrare che o si ha covergeza uiforme su 0, + ), metre si ha covergeza uiforme su [a, +

Dettagli

L INFORMAZIONE E LE CODIFICHE

L INFORMAZIONE E LE CODIFICHE L INFORMAZIONE E LE CODIFICE UN PO DI STORIA - La Teoria dell iformazioe è ata ella secoda metà del 900, sebbee il termie iformazioe sia atico (dal latio mettere i forma) - I omi più importati soo Nyquist,

Dettagli

17. Funzioni implicite

17. Funzioni implicite 17. Fuzioi implicite 17.a Fuzioi defiite implicitamete Sia data l equazioe lieare implicita i R 2 ax + by = 0. Se b 0, si puo ricavare la variabile y i fuzioe della x come y = ( a/b)x. Equivaletemete possiamo

Dettagli