UNIVERSITA DI FIRENZE Facoltà di Ingegneria. Fisica Tecnica G. Grazzini. L'irraggiamento

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "UNIVERSITA DI FIRENZE Facoltà di Ingegneria. Fisica Tecnica G. Grazzini. L'irraggiamento"

Transcript

1 UNIVERSI DI FIRENZE L'irrggimento L'esperienz mostr che un sistem tempertur mggiore di quell mbiente, nche se è circondto dl vuoto (vle dire che non può scmbire energi per conttto con ltri sistemi tende rffreddrsi, dimostrndo così che è possibile il flusso di energi termic nche in ssenz di conduzione e convezione: il meccnismo con cui tle flusso di energi h luogo nche nel vuoto prende il nome di irrggimento. Per spiegre il fenomeno occorre vvlersi dell teori ondultori elettromgnetic e dell teori dei qunti. Si ricord che l rppresentzione sotto form di onde permette di trttre grndezze vribili secondo leggi di tipo sinusoidle che richiedono l'uso delle seguenti vribili: - mpiezz ; è l metà dell'escursione totle del vlore dell grndezz (mx-min/ - Lunghezz d'ond λ; distnz interpost tr due vlori eguli dell grndezz rggiunti ed venti l stess derivt - Periodo θ; tempo intercorrente tr due vlori eguli dell grndezz rggiunti ed venti l stess derivt pg. -9

2 UNIVERSI DI FIRENZE - Frequenz ν; qunte volte nell'unità di tempo si hnno vlori eguli dell grndezz rggiunti ed venti l stess derivt - Velocità; per le onde elettromgnetiche si us il simbolo c e si h c λ ν; nel vuoto bbimo per definizione c m/s vlore estto Spettro delle onde elettromgnetiche Un corpo che si trov d un cert tempertur irrdi, sotto form di onde elettromgnetiche di vri frequenz, un quntità di energi che, per l teori quntistic, può essere solo un multiplo dell'energi ssocit l qunto corrispondente ll frequenz stess, ossi (equzione di Einstein pg. -9

3 UNIVERSI DI FIRENZE E h ν dove h6, erg s 6, J s è l costnte di Plnck. L rdizione termic interess l prte di spettro tr 0, e 00 µm; in ess rientr l bnd del visibile, situt tr 0. e 0.7 µm. lunghezze d ond superiori (frequenze minori si h il cmpo dell infrrosso, che si estende sino circ 00 µm. Oltre tle lunghezz d ond si h il cmpo delle microonde e poi delle onde rdio. lunghezze d ond inferiori (frequenze mggiori è il cmpo dell ultrvioletto che prte d 0. µm. l di sotto di tle vlore inizi il cmpo dei rggi X. G r G t G G Considerimo or cos succede d un rdizione G qundo incide su di un superficie. Un frzione "r" viene rifless, un frzione "" viene ssorbit e se l superficie è trsprente ll rdizione, un frzione "t" viene trsmess. pg. 3-9

4 UNIVERSI DI FIRENZE Per il principio di conservzione dell'energi dovrà essere: r + + t Un corpo si dice opco se h t 0, in tl cso r + ; se è nullo nche r, ossi, viene detto corpo nero. In generle r, t, non dipendono solo dl mterile, m dll'interzione di questo con l rdizione e quindi sono funzioni dell lunghezz d'ond e dell'ngolo di incidenz. L riflessione è influenzt dlle crtteristiche superficili dell oggetto. Se l dimensione dell rugosità è grnde rispetto ll lunghezz d ond dell luce incidente, l riflessione è diffus in tutte le direzioni. In cso contrrio si h un riflessione speculre. In prtic il comportmento è intermedio tr questi due csi limite G λ G λ θ θ pg. -9

5 UNIVERSI DI FIRENZE Per definizione il corpo nero h un potere ssorbente unitrio ( per qulsisi frequenz e ngolo d'incidenz. Il corpo nero non è solo un ssorbente perfetto, m è nche il corpo che d un determint tempertur è in grdo di emettere l mssim energi; esso può essere pprossimto nell reltà con un foro relizzto sull prete di un cvità mntenut tempertur uniforme. L rdizione entrnte nel foro subisce un serie di riflessioni multiple ed ll fine è prticmente ssorbit del tutto. L rdizione uscente dl foro è indipendente dll direzione e dipende solo dll tempertur dell cvità. L' energi irrdit per unità di tempo, di superficie e di lunghezz d'ond è chimt emissione monocromtic o potere emissivo monocromtico o specifico ed il grfico dei suoi vlori lle vrie lunghezze d'ond costituisce lo spettro di emissione del corpo considerto. Si definisce emissività ε di un superficie il rpporto tr il suo potere emissivo monocromtico e quello di un corpo nero prità di tempertur. Pertnto un corpo nero possiede pg. 5-9

6 UNIVERSI DI FIRENZE ε Sperimentlmente si ottengono spettri diversi l vrire dell tempertur del corpo e, solo ll fine dello scorso secolo, M. Plnck riuscì correlre il potere emissivo specifico di un corpo nero ll lunghezz d'ond ed ll tempertur introducendo l teori dei qunti; l relzione ottenut è dett legge di Plnck. e λ, n 5 λ e πhc hc kλ ove h è l costnte di Plnck e k J/K è l costnte di oltzmn Lo spettro è crtterizzto d un mssimo del potere emissivo monocromtico che si spost in funzione dell tempertur secondo l legge di Wien che fornisce il vlore dell lunghezz d'ond per cui si h il suddetto mssimo λ mx. 898 µm K pg. 6-9

7 UNIVERSI DI FIRENZE Emissioni di corpo nero.e+.e+3.e+.e+.e+0 e [W/m3].E+09.E+08.E+07.E+06.E+05.E+0.E+03.E+0.E K 3000 K 000 K 500 K 73 K 00 K.E λ [m*e6] pg. 7-9

8 UNIVERSI DI FIRENZE e/e λmx K 000 K 000 K 500 K 300 K 73 K 00 K λ [m*e+6] pg. 8-9

9 UNIVERSI DI FIRENZE Se definimo potere emissivo integrle q (emissione globle o potere emissivo emisferico totle l quntità di energi irrggit dll'unità di superficie nell'unità di tempo, integrndo l legge di Plnck, vremo l legge di Stefn- oltzmnn che fornisce q in funzione di hc q En π dλ σ 0 hc 5 kλ λ e dove σ 5, W/m K. In un intervllo di lunghezze d ond tr 0 e λ, si h un frzione dell potenz rdinte emess dt d: F λ λ λ e λ,n 0, λ d λ 0 5 d ond. eλ,nd 0 σ σ ( le frzione è tbult in funzione di λ e permette di clcolre per differenz l rdizione emess in qulsisi intervllo di lunghezze pg. 9-9

10 UNIVERSI DI FIRENZE Se considerimo l potenz irrdit in un ngolo solido, possimo definire un potere emissivo ngolre : i dq/dω quindi per un sorgente puntiforme che irrdi in tutto π q lo spzio: i dω 0 mentre un superficie estes irrdierà in un semispzio e quindi q π idω 0 Definimo poi l'intensità di rdizione I (intensità dell'emissione globle come l potenz emess per unità di superficie e di ngolo solido nell direzione dell'sse dell'ngolo stesso vlutt su un pino normle ll'sse dell'ngolo solido; vremo: Idq/(dΩ cosθi / cosθ. pg. 0-9

11 UNIVERSI DI FIRENZE pg. -9

12 UNIVERSI DI FIRENZE Ovvimente possimo definire un intensità monocromtic ed un potere emissivo ngolre monocromtici riferendoci d un bnd di lunghezze d'ond infinitesim. L'energi monocromtic emess in totle dll superficie nel semispzio srebbe quindi: e π π λ 0 0 e quindi: e π π λ 0 0 I I λ λ cosθdω sinθcosθdθdφ ricordndo l definizione di ngolo solido e di sterdinte si h: d cui dω sinθdθdφ Se l intensità non vri con l direzione si prl di emissione diffus, quindi, essendo I λ costnte, si può integrre l espressione del potere emissivo ottenendo: e λ π I λ Definendo poi l intensità totle I ottenut per integrzione su tutto lo spettro, si h: q E d r n 0 e λ dλ pg. -9

13 UNIVERSI DI FIRENZE qeπ I In modo nlogo si può definire l irrdinz come il flusso di energi proveniente d tutte le direzioni e incidente sull unità di re: G G λ 0 π 0 G λ π 0 I dλ λ sinθcosθdθdφ su bse monocromtic su bse totle [W/m ] nche in questo cso, nel cso di rdizione diffus, si h G λ π I λ su bse monocromtic e G π I su bse totle. Per il corpo nero l'intensità I non dipende dll direzione, ossi l rdizione del corpo nero è isotrop. Essendo pertnto I I n i n si h l legge di Lmbert: i I n cosθ ccettbile con buon pprossimzione nche per superfici non metlliche che sono considerbili d emissione diffus. pg. 3-9

14 UNIVERSI DI FIRENZE pg. -9

15 UNIVERSI DI FIRENZE Se introducimo un oggetto in un cvità isoterm ed ll stess tempertur, per l conservzione dell'energi, regime dovrnno essere eguli l'energi ssorbit e quell emess. Se l'oggetto e l cvità sono corpi neri, l'energi incidente G srà completmente ssorbit ed vremo q G q. Se invece l oggetto non è un corpo nero l'energi ssorbit srà un frzione di quell incidente ossi q' G; d'ltr prte il bilncio dell'energi continu d esser vlido per cui nche l potenz emess srà un frzione di quell irrdit dl corpo nero q' e ε q quindi q' q' e G ε q ε e se i coefficienti fossero funzione dell lunghezz G λ e λ d'ond, per ciscun di esse si potrebbe fre lo stesso rgionmento e quindi l'eguglinz è vlid indipendentemente dll ntur dell superficie e d quello dell tempertur di equilibrio. Quest relzione esprime l legge di Kirchoff. I corpi reli presentno notevoli vrizioni del coefficiente di ssorbimento lle diverse lunghezze d'ond, per ciscun restndo vlid l legge di Kirchoff con λ ε λ <, per cui lo spettro di emissione dell superficie è diverso d quello del corpo nero. pg. 5-9

16 UNIVERSI DI FIRENZE orn utile llor definire un nuov superficie idele dett corpo grigio che si differenzi dl corpo nero solo perchè possiede coefficiente di ssorbimento < ; quindi: I ε In ; q π ε In ε σ nche per i corpi reli è utile l'ide del corpo grigio perchè si può pprossimre in questo modo il loro comportmento per bnde ristrette di lunghezze d'ond. Scmbio di energi tr superfici pine Fccimo il cso di due preti e, infinite per evitre effetti di bordo, pine e prllele seprte d un mezzo perfettmente trsprente, con l tempertur mggiore di. Indichimo con G l potenz incidente; quindi G è l potenz che incide per unità di superficie (irrdizione specific o rdiosità di su con pg. 6-9

17 UNIVERSI DI FIRENZE coefficiente di ssorbimento ; in condizioni di regime stzionrio il clore scmbito dll superficie S di srà: Q S (q - G Per unità di superficie esprimeremo le potenze incidenti come G q + ( - G e G q + ( - G d cui essendo per l legge di Stefn-oltzmnn q ; q si può ricvre q e G, ottenendo dto che ε ( Nel cso di corpi neri il denomintore risult pri ll'unità. È interessnte notre l'effetto di uno schermo interposto tr le due preti come in figur; supponendo di poterlo considerre un corpo grigio isotermo con q, σ ε + ε S pg. 7-9

18 UNIVERSI DI FIRENZE coefficiente di ssorbimento Sε S, dl suo bilncio energetico in condizioni stzionrie, si ricv per il clore scmbito tr le due superfici e : q, σ + ε ε ( + ε E se vessimo tutti corpi neri il flusso dimezzerebbe. S Superfici cilindriche Considerimo un cilindro posto ll'interno dell'ltro come in figur; nche in questo cso ssumimo sino di lunghezz infinit e >. Le superfici ffccite sono diverse e le considerzioni svolte fornirnno per il clore scmbito le due espressioni, essendo Q'S G Q Q - Q' Q - Q' pg. 8-9

19 UNIVERSI DI FIRENZE Indichimo con F, il rpporto tr l potenz che prtendo d rggiunge e tutt l potenz, emess e rifless, che lsci ( volte denomint rdiosità, con F, il suo complemento, ossi F, - F,, cioè l potenz che d v su ; vremo quindi: Q' F, [ Q + ( - Q' ] Q' Q + ( - Q' + F, [Q + ( - Q' ] Risolvendo il sistem composto d queste due equzioni si può ricvre Q', Q' ed essendo: Q S σ ; Q S σ ottenere: Q ( S σ F +, F, S ( pg. 9-9

20 pg. 0-9 Fisic ecnic G. Grzzini UNIVERSI DI FIRENZE Quest espressione si riduce l cso precedente delle superfici pine se si pone S S e quindi F,. Il rpporto F, può essere clcolto considerndo che se, Q deve essere ugule zero, per cui F, S /S indipendentemente dll form delle superfici e dlle loro crtteristiche. Si ottiene llor: F S Q ( ( (, + + σ che può essere riscritt nell form ( ( ( (, S F S S Q I + + σ σ

21 UNIVERSI DI FIRENZE Dove ciscuno dei termini l denomintore può essere interpretto come un resistenz termic; vremo quindi due resistenze dovute lle crtteristiche superficili ed un dovut l fttore di vist. Risult così pplicbile nche ll'irrggimento l similitudine elettric. Il termine F, prende il nome di fttore di vist ed in generle, nel cso di superfici finite, è funzione dell form delle superfici e degli ngoli sotto cui ognun delle superfici vede le ltre. Si considerino due superfici nere di ree e, temperture uniformi e. Su di esse si individuno due elementi di re d e d, distnti R. Sino β e β gli ngoli tr R e le normli gli elementi di re e dω e dω gli ngoli solidi sotto cui ciscun elemento vede l ltro. L potenz emess su tutto lo spettro dll elemento d e incidente su d è dt dq I d cos dω d: d n Ove I n è l intensità di rdizione emess d d. Ricordndo l definizione di ngolo solido, si h poi: En d d cosβ cosβ dqd d π d β R pg. -9

22 UNIVERSI DI FIRENZE Integrndo sulle superfici, si h quindi q d d E π n d d cos R β cos β L frzione dell potenz totle emess d che incide su, cioè il Fttore di vist: F, q d d E n π dipende solo d fttori geometrici. d d cosβ cosβ R pg. -9

23 UNIVERSI DI FIRENZE pg. 3-9

24 UNIVERSI DI FIRENZE llor l energi emess dll superficie verso l è: nlogmente per l superficie verso l è: Q Q F,En F,En Pertnto lo scmbio termico netto tr le due superfici è: Poiché lo scmbio termico deve essere nullo qundo le superfici hnno ugule tempertur, in tl cso dev essere: Pertnto deve nche essere: teorem di reciprocità dei fttori di vist. ( ( llor: Q, F, σ F, σ, F, En F,E n quindi il problem del clcolo dello scmbio termico si riduce l problem geometrico dell determinzione dei fttori di vist. Q F, En F, En e En En F, F, pg. -9

25 UNIVERSI DI FIRENZE Il risultto può essere generlizzto N superfici formnti un cvità chius, per ciscun delle quli srà: N In tl cso dovrà essere: Q σf N j F i, j i j i, j j ( i PER L CONSERVZIONE DELL'ENERGI j I vlori dei fttori di vist per lcuni csi semplici sono mostrti nelle figure seguenti pg. 5-9

26 UNIVERSI DI FIRENZE Fisic ecnic G. Grzzini pg. 6-9

27 UNIVERSI DI FIRENZE Si dice selettiv un superficie t λ che present un comportmento significtivmente diverso nei diversi cmpi di lunghezz d ond. Esempio clssico è il vetro, che è trsprente lle rdizioni visibili e opco quelle infrrosse: tle comportmento origin il cosiddetto effetto serr. Comportmenti nloghi si hnno nell'ssorbimento, prticmente tutti i mterili possono considerrsi selettivi. Prticolrmente interessnti sono i rivestimenti selettivi che hnno lto ssorbimento dell energi solre (visibile e ridott emissione nelle elevte lunghezze d ond crtteristiche λ [µm] pg. 7-9

28 UNIVERSI DI FIRENZE dell irrggimento bss tempertur. li mterili sono importnti nel cmpo dei sistemi d energi solre. pg. 8-9

29 pg. 9-9 Fisic ecnic G. Grzzini UNIVERSI DI FIRENZE Linerizzzione Nello scmbio termico tr due corpi bbimo scritto: ( ( ( (, S F S S Q I + + σ σ m in molte situzioni per semplificre i clcoli si preferisce utilizzre un relzione linere introducendo il coefficiente di irrggimento, imponendo cioè: ( ( i h Q I σ d cui ( ( i h I σ Fre ttenzione ll trsprenz dei mezzi interposti.

Ottica ondulatoria. Interferenza e diffrazione

Ottica ondulatoria. Interferenza e diffrazione Ottic ondultori Interferenz e diffrzione Interferenz delle onde luminose Sorgenti coerenti: l differenz di fse rest costnte nel tempo Ond luminos pin che giunge su uno schermo contenente due fenditure

Dettagli

Meccanica dei Solidi. Vettori

Meccanica dei Solidi. Vettori Meccnic dei Solidi Prof. Ing. Stefno Avers Università di Npoli Prthenope.. 2005-06 Lezione 2 Vettori Definizione: Un grndezz vettorile (o un vettore) è un grndezz fisic crtterizzt oltre che d un numero

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A.

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A. 88 Roberto Turso - Anlisi 2 Osservimo che per trovre le costnti A e B possimo nche rgionre così: se moltiplichimo l equzione + ( + 2)( + 3) = A + 2 + B + 3 per + 2, dopo ver semplificto, ottenimo + + 3

Dettagli

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi.

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi. Corso di Anlisi: Algebr di Bse ^ Lezione Rdicli. Proprietà dei rdicli. Equzioni irrzionli. Disequzioni irrzionli. Allegto Esercizi. RADICALI : Considerto un numero rele ed un numero intero positivo n,

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale.

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale. 1 Integrli dipendenti d un prmetro e derivzione sotto il segno di integrle. Considerimo l funzione f(x, t) : A [, b] R definit nel rettngolo A [, b], essendo A un sottoinsieme perto di R e [, b] un intervllo

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

Moto in due dimensioni

Moto in due dimensioni INGEGNERIA GESTIONALE corso di Fisic Generle Prof. E. Puddu LEZIONE DEL 24 SETTEMBRE 2008 Moto in due dimensioni Spostmento e velocità Posizione e spostmento L posizione di un punto mterile nel pino è

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

Sorgenti di campo magnetico. Esempio 1. Soluzione 1. Campo magnetico generato da un lungo filo rettilineo percorso da corrente

Sorgenti di campo magnetico. Esempio 1. Soluzione 1. Campo magnetico generato da un lungo filo rettilineo percorso da corrente Cmpo mgnetico generto d un lungo filo rettilineo percorso d corrente Sorgenti di cmpo mgnetico Ingegneri Energetic Docente: Angelo Crone Il cmpo mgnetico dovuto d un filo rettilineo è inversmente proporzionle

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y Differenzile Considerimo l vrizione finit, dell vriile indipendente cui corrisponde un vrizione finit dell funzione f, f y Δf 1 Δ 2 L vrizione dell vriile dipendente puo' essere molto piccol, infinitesim

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

Fisica Tecnica Ambientale

Fisica Tecnica Ambientale Università degli Studi di Perugi Sezione di Fisic Tecnic Fisic Tecnic Ambientle Lezione del 11 mrzo 2015 Ing. Frncesco D Alessndro dlessndro.unipg@cirif.it Corso di Lure in Ingegneri Edile e Architettur

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

2. Teoremi per eseguire operazioni con i limiti in forma determinata

2. Teoremi per eseguire operazioni con i limiti in forma determinata . Teoremi per eseguire operzioni con i iti in form determint Vedimo dunque i teoremi che consentono il clcolo dei iti, ttrverso i quli si riconducono le situzioni rticolte semplici operzioni lgebriche

Dettagli

FUNZIONI IPERBOLICHE

FUNZIONI IPERBOLICHE FUNZIONI IPERBOLICHE Umberto Mrconi Diprtimento di Mtemtic Pur e Applict Pdov Premess Si [, [, fissto. Voglimo cpire cos signific: w dw perché l funzione integrnd è illimitt. Se considerimo, per b [, [,

Dettagli

Matematica I, Funzione integrale

Matematica I, Funzione integrale Mtemtic I, 24.0.2. Funzione integrle Definizione Sino f : A R, funzione continu su A intervllo, e c in A. L funzione che ssoci d ogni in A l integrle di f sull intervllo [c, ], viene dett funzione integrle

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

Area del Trapezoide. f(x) A f(a) f(b) f(x)

Area del Trapezoide. f(x) A f(a) f(b) f(x) Are del Trpezoide y o A f() trpezoide h B f() f() L're del trpezoide S puo' essere pprossimt dll're del trpezio AB. Per vere un migliore pprossimzione possimo suddividere il trpezio in trpezi piu' piccoli.

Dettagli

4.7 RETICOLO RECIPROCO

4.7 RETICOLO RECIPROCO 4.7 RETICOLO RECIPROCO L teori clssic dell elettromgnetismo mostr che qundo un ond elettromgnetic (e.m.) di un dt lunghezz d ond λ incontr un ostcolo di dimensioni confrontbili con λ si verific il fenomeno

Dettagli

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo Integrli ll integrle deinito ll integrle indeinito Indice dell lezione Integrle Deinito Rettngoloide Integrle deinito come re del rettngoloide Esempi e propriet Primitiv Teorem ondmentle del clcolo integrle

Dettagli

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi SUGLI INSIEMI 1.Insiemi e operzioni su di essi Il concetto di insieme è primitivo ed è sinonimo di clsse, totlità. Si A un insieme di elementi qulunque. Per indicre che è un elemento di A scriveremo A.

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Corso di : FISICA MEDICA A.A. 015 /016 Docente: Dott. Chiucchi Riccrdo il:rchiucchi@unite.it Medicin Veterinri: CFU 5 (corso

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

Modulo o "valore assoluto" Proprietà del Valore Assoluto. Intervalli

Modulo o valore assoluto Proprietà del Valore Assoluto. Intervalli Modulo o "vlore ssoluto" Dto x definimo modulo o vlore ssoluto di x il numero rele positivo x se x 0 x = x se x < 0 Es. 5 è 5. 2.34 è 2.34 Dl punto di vist geometrico x rppresent l distnz di x d 0. x x

Dettagli

Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 PROBLEMA ) L prbol di equzione V ' (0,0). y h sse di simmetri prllelo ll sse delle ordinte e vertice in L prbol di equzione

Dettagli

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Integrali impropri cap10.pdf 1

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Integrali impropri cap10.pdf 1 INTEGRALI IMPROPRI c Pol Gervsio - Anlisi Mtemtic - A.A. 6/7 Integrli impropri cp.pdf Abbimo visto che l integrle di Riemnn è definito per funzioni limitte e su intervlli limitti. Si or I R un intervllo

Dettagli

Il calcolo letterale

Il calcolo letterale Progetto Mtemtic in Rete Il clcolo letterle Finor imo studito gli insiemi numerici (espressioni numeriche). Ν, Ζ, Q, R ed operto con numeri In mtemtic però è molto importnte sper operre con le lettere

Dettagli

COLPO D ARIETE: MANOVRE DI CHIUSURA

COLPO D ARIETE: MANOVRE DI CHIUSURA Università degli studi di Rom Tor Vergt Corso di Idrulic. Prof. P. Smmrco COLPO D ARIETE: MANOVRE DI CHIUSURA Appunti integrtivi l testo E. Mrchi, A. Rubtt - Meccnic dei Fluidi dlle lezioni del prof. P.

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

Sistemi principali di normali ad una varietà giacenti nel suo o 2. Nota di

Sistemi principali di normali ad una varietà giacenti nel suo o 2. Nota di Sistemi principli di normli d un vrietà gicenti nel suo o 2. Not di Giuseppe Vitli Pdov. In un mio recente lvoro *) ho considerto, per ogni superficie il cui j si di 2 k dimensioni (k 2, 3), un sistem

Dettagli

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI Elis Gonizzi N mtricol: 3886 Lezione del -- :3-:3 IRRAGGIAMENO: APPLICAZIONI ED EERCIZI E utile l fine di comprendere meglio le ppliczioni e gli esercizi ricordre cos si intend con i termini CORPI NERI

Dettagli

Integrale definito. Introduzione: il problema delle aree

Integrale definito. Introduzione: il problema delle aree Integrle definito Introduzione: il prolem delle ree Il prolem delle ree è uno dei tre grndi prolemi che ci sono stti trmndti dgli ntichi, che lo definivno come il prolem dell qudrtur del cerchio: trovre,

Dettagli

FORMULE DI AGGIUDICAZIONE

FORMULE DI AGGIUDICAZIONE Mnule di supporto ll utilizzo di Sintel per stzione ppltnte FORMULE DI AGGIUDICAZIONE gin 1 di 18 Indice AZIENDA REGIONALE CENTRALE ACQUISTI - ARCA S.p.A. 1 INTRODUZIONE... 3 1.1 Mtrice modlità offert/modlità

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenzili e ritmi ESPONENZIALI Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z Sono definite: ( ) ( ) ( ) 7 7 Non sono definite:

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

Lo spettro di un segnale numerico

Lo spettro di un segnale numerico Lo spettro di un segnle numerico Abbimo visto che le prestzioni (P b (e) in funzione di E b /N 0 ) di un costellzione dipendono solo dll disposizione dei suoi segnli nello spzio Euclideo, non dlle forme

Dettagli

C A 10 [HA] C 0 > 100 K

C A 10 [HA] C 0 > 100 K Soluzioni Tmpone Le soluzioni tmpone sono soluzioni in cui sono presenti un cido debole e l su bse coniugt sotto form di sle molto solubile. Hnno l crtteristic di mntenere il ph qusi costnte nche se d

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

{ 3 x y=4. { x=2. Sistemi di equazioni

{ 3 x y=4. { x=2. Sistemi di equazioni Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto

Dettagli

Strumenti Matematici per la Fisica

Strumenti Matematici per la Fisica Strumenti Mtemtici per l Fisic Strumenti Mtemtici per l Fisic Approssimzioni Notzione scientific (o esponenzile) Ordine di Grndezz Sistem Metrico Decimle Equivlenze Proporzioni e Percentuli Relzioni fr

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.mtefili.it PNI 2005 - SESSIONE SUPPLETIVA QUESITO È dto un trpezio rettngolo, in cui le bisettrici degli ngoli dicenti l lto obliquo si intersecno in un punto del lto perpendicolre lle bsi. Dimostrre

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Trasmissione di calore per radiazione

Trasmissione di calore per radiazione Trasmissione di calore per radiazione Sia la conduzione che la convezione, per poter avvenire, presuppongono l esistenza di un mezzo materiale. Esiste una terza modalità di trasmissione del calore: la

Dettagli

Unità 3 Metodi particolari per il calcolo di reti

Unità 3 Metodi particolari per il calcolo di reti Unità 3 Metodi prticolri per il clcolo di reti 1 Cos c è nell unità Metodi prticolri per il clcolo di reti con un solo genertore Prtitore di tensione Prtitore di corrente Metodi di clcolo di reti con più

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione ordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione ordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Sessione ordinri Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA In un pino, riferito d un sistem

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

Verifica di Fisica 04/12/2014 Argomenti trattati durante il corso:

Verifica di Fisica 04/12/2014 Argomenti trattati durante il corso: Liceo Scientifico Augusto Righi, Cesen Corso di Fisic Generle, AS 2014/15, Clsse 1C Verific di Fisic 04/12/2014 Argomenti trttti durnte il corso: Grndezze fisiche: fondmentli e derivte Notzione scientific

Dettagli

P8 Ponti radio terrestri e satellitari

P8 Ponti radio terrestri e satellitari P8 Ponti rdio terrestri e stellitri P8.1 Un collegmento in ponte rdio 11 GHz impieg due ntenne prboliche uguli venti gudgno G 40 db ed efficienz η 0,5. Gli pprti di ricetrsmissione sono collegti lle rispettive

Dettagli

8. Prodotto scalare, Spazi Euclidei.

8. Prodotto scalare, Spazi Euclidei. 8. Prodotto sclre, Spzi Euclidei. Ricordimo l definizione di prodotto sclre di due vettori del pino VO 2 (vle in modo del tutto nlogo nche in VO 3 ). Definizione: Sino v, w VO 2 e si θ l ngolo convesso

Dettagli

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S Sessione ordinri 996 Liceo di ordinmento Soluzione di De Ros Nicol ) In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le prbole di equzione:, dove è un numero rele positivo.

Dettagli

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata Cpitolo 5 Integrli 5.1 Integrli di funzioni grdint Un concetto molto semplice m di fondmentle importnz per l trttzione dell integrle di Riemnn è quello di divisione di un intervllo [, b]. In sostnz si

Dettagli

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010)

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010) Ingegneri dei Sistemi Elettrici_2 (ultim modific 08/03/2010) Prim di definire le grndee di bse e le costnti universli del modello elettromgnetico per poter sviluppre i vri temi dell elettromgnetismo, si

Dettagli

Convezione Conduzione Irraggiamento

Convezione Conduzione Irraggiamento Sommario Cenni alla Termomeccanica dei Continui 1 Cenni alla Termomeccanica dei Continui Dai sistemi discreti ai sistemi continui: equilibrio locale Deviazioni dalle condizioni di equilibrio locale Irreversibilità

Dettagli

BREVE APPENDICE SULLE UNITA' LOGARITMICHE

BREVE APPENDICE SULLE UNITA' LOGARITMICHE BREVE APPENDICE SULLE UNITA' LOGARITMICHE Per esprimere gudgni e ttenuzioni, nonché cifre di rumore e rpporti segnle-rumore si usno frequentemente le unità logritmiche. Come risultto, l grndezz in questione

Dettagli

Superfici di Riferimento (1/4)

Superfici di Riferimento (1/4) Superfici di Riferimento (1/4) L definizione di un superficie di riferimento nsce dll necessità di vere un supporto mtemtico su cui sviluppre il rilievo eseguito sull superficie terrestre. Tle superficie

Dettagli

Risoluzione verifica di matematica 3C del 17/12/2013

Risoluzione verifica di matematica 3C del 17/12/2013 Problem 1 Risoluzione verific di mtemtic C del 17/1/01 Si clcolno le intersezioni tr le rette generiche del fscio proprio y x y 1, risolvendo il sistem: x y 1 y mx Si ottengono i punti di coordinte espresse

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE

PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE Nel pino di lvoro sono indicte con i numeri d 1 5 le competenze di bse che ciscun unit' didttic concorre sviluppre, secondo l legend riportt di seguito.

Dettagli

dr Valerio Curcio Le affinità omologiche Le affinità omologiche

dr Valerio Curcio Le affinità omologiche Le affinità omologiche 1 Le ffinità omologiche 2 Tringoli omologici: Due tringoli si dicono omologici se le rette congiungenti i punti omologhi dei due tringoli si incontrno in un medesimo punto. Principio dei tringoli omologici

Dettagli

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, }

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, } Lezione 01 Aritmetic Pgin 1 di 1 I numeri nturli I numeri nturli sono: 0,1,,,4,5,6,7,8,,10,11,1, L insieme dei numeri nturli viene indicto col simbolo. } { 0,1,,, 4,5,6,7,8,,10,11,1, } L insieme dei numeri

Dettagli

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI Considerimo un funzione f : I R, dove I è un intervllo di R. Si c un punto interno I in cui f è discontinu. Diremo che c è un punto di discontinuità di prim

Dettagli

Calcolo integrale. Capitolo Primitive ed integrale inde nito

Calcolo integrale. Capitolo Primitive ed integrale inde nito Cpitolo 9 Clcolo integrle 9.1 Primitive ed integrle inde nito De nizione 9.1 Assegnt un funzione f : A! R, si de nisce primitiv di f un qulunque funzione F : A! R derivbile, tle che F 0 (x) = f(x), per

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Teori in sintesi ESPONENZIALI Potenze con esponente rele Esponenzili e ritmi L potenz è definit: se, per ogni R se, per tutti e soli gli R se, per tutti e soli gli Z. Sono definite: 7 7. Non sono definite:.

Dettagli

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0 Equzioni letterli di II grdo Un equzione letterle di II grdo è un equzione che contiene, oltre l letter che rppresent l incognit dell equzione, ltre lettere, dette prmetri, che rppresentno numeri ben determinti,

Dettagli

1 Espressioni polinomiali

1 Espressioni polinomiali 1 Espressioni polinomili Un monomio è un espressione letterle in un vribile x che contiene un potenz inter (non negtiv, cioè mggiori o uguli zero) di x moltiplict per un numero rele: x n AD ESEMPIO: sono

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Anlisi e Geometri Esercizi sugli integrli Integrli propri. Clcolre i seguenti integrli immediti: I = I = I 5 = ln e e d I = e + e + 6e + e d I = rtg ln ( + ln ) d I 6 = e e + d d rtg + ( + ) ( + ( + )

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Prof Emnuele ANDRISANI Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se 0, per ogni R se 0, per tutti e soli gli R se 0, per tutti e soli gli Z Esponenzili e ritmi Sono definite:

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anlitic Domnde, Risposte & Esercizi. Dre l definizione di iperole come luogo di punti. L iperole è un luogo di punti, è cioè un insieme di punti del pino le cui distnze d due punti fissi F e F

Dettagli

5. Funzioni elementari trascendenti

5. Funzioni elementari trascendenti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 5. Funzioni elementri trscendenti A. A. 2013-2014 1 FUNZIONI ESPONENZIALI Le più semplici funzioni esponenzili sono le funzioni f: R R definite

Dettagli

1 Il problema del calcolo dell area di una regione piana limitata

1 Il problema del calcolo dell area di una regione piana limitata Anlisi Mtemtic 2 1 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 1 INTEGRALI DI FUNZIONI DI UNA VARIABILE REALE 1 Il problem del clcolo dell re di un regione pin limitt Se si consider un

Dettagli

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 17/18 Integrali impropri cap10.pdf 1

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 17/18 Integrali impropri cap10.pdf 1 INTEGRALI IMPROPRI c Pol Gervsio - Anlisi Mtemtic - A.A. 7/8 Integrli impropri cp.pdf Abbimo visto che l integrle di Riemnn è definito per funzioni limitte e su intervlli limitti. Si or I R un intervllo

Dettagli

INTEGRALE INDEFINITO. Saper calcolare l integrale indefinito di una funzione utilizzando i diversi metodi

INTEGRALE INDEFINITO. Saper calcolare l integrale indefinito di una funzione utilizzando i diversi metodi INTEGRLE INDEFINITO OIETTIVI MINIMI: Sper definire l integrle indefinito di un funzione. onoscere le proprietà dell integrle indefinito. Sper clcolre l integrle indefinito di un funzione utilizzndo i diversi

Dettagli

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz

Dettagli

FLESSIONE E TAGLIO (prof. Elio Sacco)

FLESSIONE E TAGLIO (prof. Elio Sacco) Cpitolo FLESSIONE E TALIO (prof. Elio Scco). Sollecitzione di flessione e tglio Si esmin il cso in cui l risultnte delle tensioni genti sull bse dell trve x = L consist in un forz tglinte V, tlechev e

Dettagli

U.D. N 15 Funzioni e loro rappresentazione grafica

U.D. N 15 Funzioni e loro rappresentazione grafica 54 Unità Didttic N 5 Funzioni e loro rppresentzione grfic U.D. N 5 Funzioni e loro rppresentzione grfic ) Le coordinte crtesine ) L distnz tr due punti 3) Coordinte del punto medio di un segmento 4) Le

Dettagli

Anno 1. Numeri reali: proprietà e applicazioni di uso comune

Anno 1. Numeri reali: proprietà e applicazioni di uso comune Anno Numeri reli: proprietà e ppliczioni di uso comune Introduzione L insieme dei numeri rzionli è composto d numeri che si ottengono dl rpporto tr due numeri interi. Tle rpporto, o frzione, è sempre ssociile

Dettagli

Teorema della Divergenza (di Gauss)

Teorema della Divergenza (di Gauss) eorem dell ivergenz (di Guss) i un dominio tridimensionle regolre, l cui frontier è un superficie chius orientt con cmpo normle unitrionˆ uscente d. e F(,,z) F (,,z) i F (,,z) j F (,,z) k è un cmpo vettorile

Dettagli

Introduzione e strumenti

Introduzione e strumenti Controlli utomtici Introduzione e strumenti Convenzioni generli ed elementi di bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi 2

Dettagli

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO EQUAZIONI DI ECONDO GRADO Riepilogo delle soluzioni in bse l segno di < φ : b > : b b Prof I voi, EQUAZIONI DI ECONDO GRADO EQUAZIONI PURE DI ECONDO GRADO : EEMPI ) ) ) 7 7 ) > φ (impossibile) ) impossibil

Dettagli

Laboratorio di Matematica Computazionale A.A Lab. 11 Integrazione numerica

Laboratorio di Matematica Computazionale A.A Lab. 11 Integrazione numerica Lbortorio di Mtemtic Computzionle A.A. 2008-2009 1 Integrzione numeric Lb. 11 Integrzione numeric Un metodo di integrzione numerico consiste in un formul esplicit che permett di pprossimre il vlore di

Dettagli

Serie di Potenze. Introduciamo il concetto di convergenza puntuale ed uniforme per successioni. { 0 se 1 < x < 1

Serie di Potenze. Introduciamo il concetto di convergenza puntuale ed uniforme per successioni. { 0 se 1 < x < 1 Serie di Potenze Introducimo il concetto di convergenz puntule ed uniforme per successioni di funzioni. Definizione 1 Si I un intervllo di R. Si dt l vrire di n N l funzione f n : I R. Dicimo che l successione

Dettagli

UNITA DI MISURA. distanze

UNITA DI MISURA. distanze Unità di misur. ppunti di Topogrfi UNIT DI MISUR distnze L unità di misur bitulmente impiegt per esprimere le distnze è il metro. Per grndezze molto piccole è opportuno ricorrere i sottomultipli, centimetro

Dettagli

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento Questionrio Risolvi quttro degli otto quesiti: L Città dello sport è un struttur sportiv progettt dll rchitetto Sntigo Cltrv e mi complett, situt sud di Rom Rispetto l sistem di riferimento indicto in

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli