Def. Si dice variabile aleatoria discreta X una variabile che può assumere valori X1, X

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Def. Si dice variabile aleatoria discreta X una variabile che può assumere valori X1, X"

Transcript

1 Prof.ssa Emauela Baudo Fabrza De Berard VARIABILI ALEATORIE DISCRETE E DISTRIBUZIONI DI PROBABILITA Def. S dce varable aleatora dscreta X ua varable che può assumere valor X, X,... X corrspodet ad evet aleator E, E,... E o mpossbl, che s escludoo a vceda e tal che scuramete uo d ess s verfch. Og valore X che la varable può assumere è correlato alla probabltà corrspodete E, coè la probabltà che la varable X assuma l valore X. p dell eveto Def. Data ua varable aleatora dscreta X, co valor X, X,... X, la successoe delle probabltà p, p,... p ad ess assocate s chama dstrbuzoe d probabltà della varable X. Esempo U ura cotee 6 palle verd e 4 galle. S estraggoo 3 palle seza remmssoe. S cosdera l eveto uscta d ua palla verde. Esso può avvere da 0 a 3 volte. Il umero d volte cu esce ua palla verde è la varable aleatora X. Esso è ua varable casuale teorca perché ad esso possamo assocare u valore d probabltà calcolato teorcamete. S può costrure ua tabella che rappreseta la dstrbuzoe d probabltà della varable X. X 0 3 P(X) /30 3/0 / /6 (verfcare per eserczo la correttezza delle probabltà calcolate) S ot che, poché gl evet s escludoo a vceda e uo d ess s deve scuramete verfcare, la somma delle probabltà è. (codzoe d ormalzzazoe) Def. S dce fuzoe d rpartzoe d ua varable aleatora X la fuzoe F(X) che forsce la probabltà che X o assuma valore superore ad u valore prefssato X. Pertato l suo valore s ottee sommado le probabltà relatve a valor mor o ugual a X. X X X X3 X P(X) P P P3 P F(X) P P+P P+P+P3 P+P+ P Rtorado all esempo precedete: X 0 3 P(X) /30 3/0 / /6 F(X) /30 /3 5/6 I valor d F(X) rappresetao la probabltà che la palla verde esca al massmo 0 volte, al massmo volta, al massmo volte, al massmo 3 volte.

2 GIOCHI ALEATORI Prof.ssa Emauela Baudo Fabrza De Berard Ua delle prme questo cosderate da matematc agl albor della ascta della teora della probabltà fu la possbltà d calcolare la probabltà d vcta e qud la coveeza o meo per ua persoa d partecpare ad u goco d azzardo, cosderata la somma vestta e l evetuale guadago. Tale coveeza è espressa dalla gradezza detta speraza matematca. Def. S chama speraza matematca M(X) della varable X la somma de prodott della varable X per le rspettve probabltà: M ( X ) = X p + X p X p Se M(X) = 0 s dce che l goco è equo; se M(X) > 0 l goco è favorevole (per l gocatore), se M(X) < 0 l goco è sfavorevole. ESEMPIO I u goco s laca u dado. Se esce l umero, l gocatore vce 7 euro, se esce u umero par 4 euro, caso cotraro deve pagare euro. Moltplcado valor delle vcte (postv) e delle perdte (egatv) per le rspettve probabltà s ottee u valore che rappreseta la vcta che l gocatore avrebbe potuto sperare d realzzare medamete. X P(X) /6 / /3 M(X) = 7/6 + -/3 = 5/ =,5 I questo caso l goco è favorevole al gocatore. Se voglamo calcolare quato deve essere l ammotare della posta pagata dal gocatore caso d perdta, affché l goco sa equo, poamo: M(X) = 7/6 + P /3 = 0. S trova P = 9,5. La tabella el caso d goco equo dveta pertato: X 7 4-9,5 P(X) /6 / /3 Se s orgazza l goco dversamete, s può chedere ua posta da pagare al gocatore per poter partecpare al goco gestto da u baco, prma che l goco z. Poché l gocatore vce 7 euro se esce e la posta relatva al goco equo è 9,5, l gocatore casserà ua vcta lorda d 6,5 euro caso esca l umero ; poché vce 4 euro se esce u umero par, la vcta lorda questo caso sarà 3,5. (6,5-9,5 = 7, vcta etta; 3,5 9,5 = 4, vcta etta) La posta P che l gocatore deve pagare affché l goco sa equo è la somma de prodott delle vcte lorde per le rspettve probabltà d vcta: P = 6,5 + 3, 5 = 9,5 La tabella è: X 6,5 3,5 0 6 La posta P che l gocatore deve pagare, affchè l goco sa equo, è la speraza matematca della varable vcta lorda. P(X) /6 / /3

3 Prof.ssa Emauela Baudo Fabrza De Berard VALORI CARATTERIZZANTI UNA VARIABILE ALEATORIA DISCRETA Def. S chama speraza matematca o valor medo M(X) della varable X la somma de prodott della varable X per le rspettve probabltà: M ( X ) = X p + X p X p S ot che l espressoe equvale a: X p + X p X p ( ) = M X p + p +... p coè alla meda poderata de valor d X, essedo la somma delle probabltà uguale a. La speraza matematca d ua varable aleatora costate è la costate stessa. Se S è ua varable aleatora dscreta e a è ua costate, allora: M (ax) = a M(X). (La probabltà d X cocde co la probabltà d ax) La speraza matematca della somma S = X + Y d due varabl aleatore è par alla somma delle speraze matematche. M (X + Y) = M(X) + M(Y) La speraza matematca del prodotto P = XY d due varabl aleatore dpedet è par al prodotto delle due speraze matematche. M (XY) = M(X) M(Y) Può accadere che due dstrbuzo abbao lo stesso valor medo, ma sgol valor X abbao dstaze pù o meo grad dal valore medo, coè la dstrbuzoe preset ua maggore o more dspersoe rspetto al valor medo. S troduce qud ua uova gradezza correlata a tal dffereze. Def. S dce devazoe o scarto o varable aleatora cetrata la varable dffereza : X Mx. Le probabltà p (X) = p (X Mx) essedo Mx costate. S ot che: M (X Mx) = M(X) M (Mx) = Mx Mx = 0. La speraza matematca d ua varable aleatora cetrata è ulla. Sostture ad ua varable X la devazoe X - Mx equvale qud a ua traslazoe d sstema d rfermeto che port l valor medo ell orge degl ass. 3

4 Prof.ssa Emauela Baudo Fabrza De Berard Def. S chama varaza della varable aleatora X la speraza matematca del quadrato della devazoe X Mx. ( ) = ( ) V X M X M x oppure ( ) ( ) V X = X M p x S hao le seguet propretà della varaza. Sao X, Y varabl aleatore e k ua costate, allora: V ( kx ) = k V ( X ) V ( X + k ) = V ( X ) V ( X + Y ) = V ( X ) + V ( Y ), se le varabl X, Y soo dpedet. Def. S defsce scarto quadratco medo o devazoe stadard della varable aleatora X, la radce quadrata della varaza. ( X ) = M ( X M ) = ( X M ) p ( ) = = ( ) ( ) V X M X Mx x x Il valor medo e la varaza hao u mportate sgfcato fsco: se assocamo a put d ascssa X, X,... X le masse p, p,... p, allora s può dmostrare che M rappreseta l cetro d gravtà del sstema, V l mometo d erza. DISTRIBUZIONI DI PROBABILITA CLASSICHE Dstrbuzoe bomale o d Beroull Tale dstrbuzoe rguarda l problema delle prove rpetute. S rpete volte ua certa prova elle stesse codzo; og prova è dpedete dalle altre. Se p è la probabltà costate dell eveto A successo, q = p è la probabltà dell eveto B successo. Al terme delle prove, l eveto A potrà aver avuto luogo da 0 ad volte e l eveto B avrà qud avuto luogo da a 0 volte. La legge d dstrbuzoe è forta dal teorema d Beroull delle prove rpetute. La probabltà che su prove rpetute l eveto A s verfch x ( x ) volte è data dalla fuzoe d probabltà: = = x ( ) ( ) x x f x P x p q 4

5 Prof.ssa Emauela Baudo Fabrza De Berard Rportamo seza dmostrazoe l seguete Se X è ua varable aleatora beroullaa, d orde e parametro p: - l suo valor medo è: M(X) = p - la sua varaza è: V(X) = pq - lo scarto quadratco medo è: = pq = p ( p) Dstrbuzoe multomale S ha ua geeralzzazoe della dstrbuzoe bomale quado og prova dà luogo a pù d due alteratve, coducedo ad evet A, A,... A dpedet co probabltà assocate p, p,... p, costat da prova a prova, e tal che la loro somma sa. Per determare la probabltà che gl evet A, A,... A s preseto X, X,... X volte su prove, s fa rcorso al La probabltà dell eveto composto dato dal verfcars d X evet A, X evet A ecc. è data dalla legge N! = X! X!... X! X X X p p p... p N N N (Ex. U ura cotee 0 palle d cu 3 rosse, bache, 5 verd. Calcolare la probabltà che estraedo successvamete 5 palle, co remmssoe, e escao rosse, baca e verd) Dstrbuzoe geometrca Cosderata ua prova rpetuta molte volte elle stesse codzo, l umero d prove ecessare affchè s verfch per la prma volta l eveto A successo è ua varable aleatora X detta tempo d attesa dell eveto A e la sua dstrbuzoe s dce dstrbuzoe geometrca. S ot che: l eveto A s verfca alla prma prova co probabltà p; l eveto A s verfca alla secoda prova co probabltà pq; l eveto A s verfca alla terza prova co probabltà pq Qud la probabltà che l eveto A s verfch alla x-esma prova sarà: ( ) = pq x p x E facle otare che l rapporto geometrca. ( + ) p ( x) p x = q, per questo motvo la dstrbuzoe vee detta Essedo q< s avrà che le probabltà soo sempre decrescet: p( x ) p ( x) terme, dvegoo trascurabl. + < e, dopo u certo 5

6 Prof.ssa Emauela Baudo Fabrza De Berard Eucamo teorem: p x = p q = codzoe d ormalzzazoe x - ( ) = p q p = = p p - La speraza matematca della varable X geometrca è M ( X ) - La varaza della varable X geometrca è : ( ) V Data ua varable d legge geometrca X d parametro p, la varable aleatora X codzoata dall eveto X >k, è ua varable aleatora d parametro p. Cò sgfca che la varable tempo d attesa del prmo successo, ache se codzoata dal o avverars dell eveto per k volte, matee la stessa probabltà. La varable X d legge geometrca è seza memora. E qud erroeo l ragoameto d cert gocator del lotto che scommettoo su umer che hao accumulato u rtardo. La probabltà d uscta alla prossma estrazoe è sempre la stessa. X Dstrbuzoe pergeometrca S cosder questa volta ua sere d prove che sao effettuate cotemporaeamete o modo successvo e dpedete (ad esempo l estrazoe d palle da u ura seza remmssoe). Se s hao N elemet d cu K co la caratterstca d poter verfcare l eveto A (ad esempo, se A = estrazoe d ua palla baca, K = umero delle palle bache), allora s può verfcare faclmete che la probabltà d otteere x success (estrazoe d x palle bache) su prove rpetute, pesata come rapporto tra cas favorevol e cas possbl, è data dalla legge: ( ) p x K N K x x = N Tale fuzoe rappreseta la dstrbuzoe d probabltà pergeometrca d ua varable casuale dscreta. S può dmostrare che per le varabl co dstrbuzoe pergeometrca valgoo le seguet: M ( X ) ( ) V X ( X ) = p dove N = pq N N = pq N K p =, q = - p N 6

7 Prof.ssa Emauela Baudo Fabrza De Berard Dstrbuzoe d Posso Sa X ua varable aleatora dscreta che può assumere valor 0,,,3 e sa λ ua costate assegata. S dce dstrbuzoe d Posso d parametro λ la dstrbuzoe regolata dalla legge d probabltà: ( ) p x = λ x e λ x! Tale dstrbuzoe s mafesta molt feome atural, come umero d chamate telefoche ad u cetralo, error d stampa u lbro, partcelle emesse da ua sostaza radoattva, ecc. Per ua varable aleatora d Posso s ha che: M ( x) = λ V ( x) = = λ = λ Relazoe tra le dstrbuzo d Beroull e d Posso La dstrbuzoe d Posso può esser vsta come ua buoa approssmazoe della dstrbuzoe bomale per pccol valor d x, purchè p sa molto pccolo (evet rar) e p lm + p x q x λ = e x x! λ λ =. Per valor elevat d s può sostture la dstrbuzoe bomale co quella d Posso se p<0,. (Ad esempo se >50 ed p<5) d Beaymé-Cebcev Suppoamo d cooscere spermetalmete valor assut da ua varable X seza cooscere la dstrbuzoe d probabltà. Voglamo determare qual è la probabltà che valor X dfferscao valore assoluto dal valor medo almeo d u certo ε > 0. A tale questoe rspode l teorema seguete. Data ua varable casuale X co scarto quadratco medo, la probabltà che valor assut da X dfferscao valore assoluto dal suo valore medo M d almeo ε > 0 (co ε > ) è data da: P ( X M > ε ) ε 7

8 Prof.ssa Emauela Baudo Fabrza De Berard Dmostrazoe Sappamo che ( ) ( ) x. = V X = X M p Se trascuramo tutt gl scart mor valore assoluto d ε, che suppoamo sao prm m, avremo: e fe ( ) X M p x = m+ ε p = m+, qud = m+ ε p, dove la sommatora rappreseta la probabltà cercata: P ( X M > ε ) c.v.d. ε S può allora calcolare la probabltà dell eveto cotraro, coè che valor assut da X dfferscao modulo dal valor medo per u fattore more d ε. P ( X M < ε ) > ε Utlzzado tale relazoe s può determare u tervallo d valor che ua varable X può assumere co ua data probabltà. Il teorema d Beaymé-Cebcev permette d superare la legge emprca del caso co ua formulazoe astratta ota come Legge de grad umer o teorema d Beroull. Se u eveto ha probabltà costate p d verfcars ad og prova, la probabltà che l valore della frequeza relatva dffersca valore assoluto dalla probabltà per meo d u arbtraro ε > 0, pccolo a pacere, tede ad, coè alla certezza, quado l umero delle prove tede all fto. Dmostrazoe (caso d ua dstrbuzoe bomale) Se è l umero d prove, la varable X/ rappreseta la frequeza del verfcars dell eveto assocato alla varable X. X M = M ( X ) = p = p X V = pq = pq Applcado l teorema d Cebcev P X pq p < ε > ε pq lm = 0 ε Poché more d u ε fssato tede ad, coè alla certezza., la probabltà che la dffereza tra la frequeza e la probabltà teorca p dell eveto sa 8

Calcolo delle Probabilità: esercitazione 4

Calcolo delle Probabilità: esercitazione 4 Argometo: Probabltà classca Lbro d testo pag. 1-7 e 7-77 e varable casuale uforme dscreta NB: asscurars d cooscere le defzo, le propretà rchamate e le relatve dmostrazo quado ecessaro Eserczo 1 S cosder

Dettagli

Teoria dei Fenomeni Aleatori AA 2012/13

Teoria dei Fenomeni Aleatori AA 2012/13 La Legge de Grad Numer Cosderata ua sere d prove rpetute co p par alla probabltà d successo ua sgola prova, l rapporto tra l umero d success K ed l umero d prove tede a p quado tede ad fto: K P p ε per

Dettagli

Variabilità = Informazione

Variabilità = Informazione Varabltà e formazoe Lo studo d u feomeo ha seso solo se esso s preseta co modaltà/testà varabl da u soggetto all altro. Ad esempo, se dobbamo studare l reddto ua certa regoe è ecessaro osservare utà statstche

Dettagli

Istogrammi e confronto con la distribuzione normale

Istogrammi e confronto con la distribuzione normale Istogramm e cofroto co la dstrbuzoe ormale Suppoamo d effettuare per volte la msurazoe della stessa gradezza elle stesse codzo (es. la massa d u oggetto, la tesoe d ua pla, la lughezza d u oggetto, ecc.):

Dettagli

SIMULAZIONE DI SISTEMI CASUALI 1 parte. Variabili casuali e Distribuzioni di variabili casuali. Calcolo delle probabilità

SIMULAZIONE DI SISTEMI CASUALI 1 parte. Variabili casuali e Distribuzioni di variabili casuali. Calcolo delle probabilità SIMULAZIONE DI SISTEMI CASUALI parte Varabl casual e Dstrbuzo d varabl casual Calcolo delle probabltà Defzo Il calcolo delle probabltà tede a redere razoale l comportameto dell uomo d frote all certezza;

Dettagli

Variabili casuali ( ) 1 2 n

Variabili casuali ( ) 1 2 n Varabl casual &. Valore edo. Data ua varable casuale = ( x,x 2, K,x ) (.) cu valor assuoo le rspettve probabltà P = p,p, K,p (.2) s defsce valore edo la quattà ( ) 2 = [ ] T M = M = P = xp (.3) Sgfcato:

Dettagli

Facoltà di Economia - STATISTICA - Corso di Recupero a.a Prof.ssa G. Balsamo CONCETTI di BASE Carattere X [o A ] i = 1

Facoltà di Economia - STATISTICA - Corso di Recupero a.a Prof.ssa G. Balsamo CONCETTI di BASE Carattere X [o A ] i = 1 Facoltà d Ecooma - STATISTICA - Corso d Recupero a.a. 2012-13 Prof.ssa G. Balsamo CONCETTI d BASE Carattere X [o A ] caratterstca quattatva [o qualtatva] rappresetatva d u feomeo sottoposto ad dage Popolazoe

Dettagli

Lezione 4. La Variabilità. Lezione 4 1

Lezione 4. La Variabilità. Lezione 4 1 Lezoe 4 La Varabltà Lezoe 4 1 Defzoe U valore medo, comuque calcolato, o è suffcete a rappresetare l seme delle osservazo effettuate (o l seme de valor assut dalla varable statstca); è ecessaro qud affacare

Dettagli

Università di Cassino Esercitazioni di Statistica 1 del 5 Febbraio Dott. Mirko Bevilacqua

Università di Cassino Esercitazioni di Statistica 1 del 5 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 5 Febbrao 00. Dott. Mrko Bevlacqua ESERCIZIO N A partre dalla dstrbuzoe semplce del carattere peso rlevata su 0 studet del corso d Mcroecooma peso: { 4, 59, 65,

Dettagli

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che:

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che: Eserctazoe VI: Il teorema d Chebyshev Eserczo La statura meda d u gruppo d dvdu è par a 73,78cm e la devazoe stadard a 3,6. Qual è la frequeza relatva delle persoe che hao ua statura superore o ferore

Dettagli

Caso studio 10. Dipendenza in media. Esempio

Caso studio 10. Dipendenza in media. Esempio 09/03/06 Caso studo 0 S cosder la seguete dstrbuzoe degl occupat Itala secodo l umero d ore settmaal effettvamete lavorate e l settore d attvtà (cfr. Itala cfre, Ao 008, pag. 7 ): Ore lavorate Settore

Dettagli

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione?

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione? Prma dstrb. Secoda dstrb. Totale Meda 0 5 8 35 85 63 63/5 =3,6 5 5 38 40 45 63 63/5 =3,6 Due dstrbuzo, stessa meda ma quale delle due la meda rappreseta, stetzza meglo la stuazoe? Le mede stetzzao la dstrbuzoe,

Dettagli

Matematica elementare art.1 di Raimondo Valeri

Matematica elementare art.1 di Raimondo Valeri Matematca elemetare art. d Ramodo Valer I questo artcolo voglamo provare che esste ua formula per calcolare l umero de dvsor d u dato umero aturale seza cooscere la scomposzoe fattor prm del umero stesso.

Dettagli

LEZIONI DI STATISTICA MEDICA

LEZIONI DI STATISTICA MEDICA LEZIONI DI STATISTICA MEDICA A.A. 00/0 - Idc d dspersoe Sezoe d Epdemologa & Statstca Medca Uverstà degl Stud d Veroa La dspersoe o varabltà è la secoda mportate caratterstca d ua dstrbuzoe d dat. Essa

Dettagli

I percentili e i quartili

I percentili e i quartili I percetl e quartl I percetl soo quelle modaltà che dvdoo la dstrbuzoe ceto part d uguale umerostà. I quartl soo quelle modaltà che dvdoo la dstrbuzoe quattro part d uguale umerostà. Il prmo quartle Q

Dettagli

Capitolo 6 Gli indici di variabilità

Capitolo 6 Gli indici di variabilità Captolo 6 Gl dc d varabltà ommaro. Itroduzoe. -. Il campo d varazoe. - 3. La dffereza terquartle. - 4. Gl scostamet med. -. La varaza, lo scarto quadratco medo e la devaza. - 6. Le dffereze mede. - 7.

Dettagli

LE MEDIE. Le Medie. Medie razionali. Medie di posizione

LE MEDIE. Le Medie. Medie razionali. Medie di posizione LE MEDIE RAZIONALI LE MEDIE Msure stetche trodotte per valutare aspett compless e global d ua dstrbuzoe d u feomeo X medate u solo umero reale costruto modo da dsperdere al mmo le formazo su dat orgar.

Dettagli

CORSO DI STATISTICA I (Prof.ssa S. Terzi) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI. Esercitazione n 3

CORSO DI STATISTICA I (Prof.ssa S. Terzi) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI. Esercitazione n 3 ORSO I STTISTI I (Prof.ssa S. Terz) STUIO ELLE ISTRIUZIONI SEMPLII Eserctazoe 3 3. ata la seguete dstrbuzoe de reddt: lass d reddto Reddter Reddto medo 6.500-7.500 4 6.750 7.500-8.500 7.980 8.500-9.500

Dettagli

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100 ESERCIZIO Data la seguete dstrbuzoe percetuale delle famgle talae per class d reddto, espresso mlo d lre, (ao 995, fote Istat): Class d reddto % famgle Fo a 5 5.3 5-5 6. 5-35. 35-45 8.6 45-55 3.6 Oltre

Dettagli

Caso studio 2. Le medie. Esercizio. La media aritmetica. Esempio

Caso studio 2. Le medie. Esercizio. La media aritmetica. Esempio 8/02/20 Caso studo 2 U vesttore sta valutado redmet d due ttol del settore Petrolo e Gas aturale. Sulla base de redmet goraler della settmaa passata vuole cercare d prevedere l redmeto per la prossma settmaa

Dettagli

Gli indici sintetici Forma. Gli indici sintetici. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma

Gli indici sintetici Forma. Gli indici sintetici. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma Uverstà d Macerata Facoltà d Sceze Poltche - Ao accademco 01-013013 Gl dc d varabltà Crsta Davo Gl dc stetc Qualche cosderazoe Tedeza cetrale Varabltà La scelta dell dce d tedeza cetrale/poszoe dpede dal

Dettagli

Gli indici sintetici Forma. Un caso studio. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma

Gli indici sintetici Forma. Un caso studio. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma Uverstà d Macerata Dpartmeto d Sceze Poltche, della Comucazoe e delle Relaz. Iterazoal Gl dc d varabltà Crsta Davo Gl dc stetc Qualche cosderazoe Tedeza cetrale Varabltà La scelta dell dce d tedeza cetrale/poszoe

Dettagli

INDICI DI VARIABILITA

INDICI DI VARIABILITA INDICI DI VARIABILITA Defzoe d VARIABILITA': la varabltà s può defre come l'atttude d u carattere ad assumere dverse modaltà quattatve. La varabltà è la quattà d dspersoe presete e dat. Idc d varabltà

Dettagli

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0)

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0) Massm e Mm Fuzo d pù varabl Massm e Mm Dezoe: Sa z = (, ) ua uzoe deta u seme E U puto (, E s dce puto d massmo (rsp mmo) relatvo per (, ) se esste δ > tale che ((, ) B((, ), δ ) E (, ) (, ) (rsp (, )

Dettagli

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,

Dettagli

Quando si parte il gioco de la zara, colui che perde si riman dolente,repetendo le volte, e tristo impara;

Quando si parte il gioco de la zara, colui che perde si riman dolente,repetendo le volte, e tristo impara; PROBABILITÀ VARIABILI ALATORI Problem ) Qual è la probabltà d otteere 0 lacado due dad equlbrat a se facce? ) Qual è la probabltà che ua doa al volate abba u cdete? 3) Qual è la probabltà che la Juvetus

Dettagli

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100)

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100) ESERCIZIO Il Moblty Maager d u azeda ha rlevato l umero d chlometr percors settmaalmete da 60 mpegat. I dat soo rportat ello schema successvo. 67 4 93 58 66 87 5 53 86 8 7 47 56 70 54 86 48 43 60 58 5

Dettagli

frazione 1 n dell ammontare complessivo del carattere A x

frazione 1 n dell ammontare complessivo del carattere A x La Cocetrazoe Il cocetto d cocetrazoe rguarda l modo cu l ammotare totale d u carattere quattatvo trasferble s rpartsce tra utà statstche. Tato pù tale ammotare è addesato u sottoseme d utà, tato pù s

Dettagli

Caso studio 12. Regressione. Esempio

Caso studio 12. Regressione. Esempio 6/4/7 Caso studo Per studare la curva d domada d u bee che sta per essere trodotto sul mercato, s rlevao dat rguardat l prezzo mposto e l umero d pezz vedut 7 put vedta plota, ell arco d ua settmaa. I

Dettagli

Statistica descrittiva per l Estimo

Statistica descrittiva per l Estimo Statstca descrttva per l Estmo Paolo Rosato Dpartmeto d Igegera Cvle e Archtettura Pazzale Europa 1-34127 Treste. Itala Tel: +39-040-5583569. Fax: +39-040-55835 80 E-mal: paolo.rosato@da.uts.t 1 A cosa

Dettagli

Il campionamento e l inferenza

Il campionamento e l inferenza e l fereza Popolazoe Campoe Da dat osservat medate scelta campoara s guge ad affermazo che rguardao la popolazoe da cu ess soo stat prescelt Uverstà d Macerata Facoltà d Sceze Poltche - Ao accademco Ao

Dettagli

Esercizi su Rappresentazioni di Dati e Statistica

Esercizi su Rappresentazioni di Dati e Statistica Esercz su Rappresetazo d Dat e Statstca Eserczo Esprmete forma percetuale e traducete u aerogramma dat della seguete tabella: Nord Cetro Sud Isole Totale 5 58 866 0 95 36 4 35 30 6 79 56 57 399 08 Soluzoe

Dettagli

Facoltà di Farmacia Corso di Matematica con elementi di Statistica Docente: Riccardo Rosso

Facoltà di Farmacia Corso di Matematica con elementi di Statistica Docente: Riccardo Rosso Facoltà d Farmaca Corso d Matematca co elemet d Statstca Docete: Rccardo Rosso Statstca descrttva: l coeffcete d cocetrazoe d G Quado s vuole rpartre ua certa somma d dearo, v soo due suddvso che soo,

Dettagli

MISURE DI TENDENZA CENTRALE. Psicometria 1 - Lezione 2 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek

MISURE DI TENDENZA CENTRALE. Psicometria 1 - Lezione 2 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek MISURE DI TENDENZA CENTRALE Pscometra 1 - Lezoe Lucd presetat a lezoe AA 000/001 dott. Corrado Caudek 1 Suppoamo d dsporre d u seme d msure e d cercare u solo valore che, meglo d cascu altro, sa grado

Dettagli

Analisi dei Dati. La statistica è facile!!! Correlazione

Analisi dei Dati. La statistica è facile!!! Correlazione Aals de Dat La statstca è facle!!! Correlazoe A che serve la correlazoe? Mettere evdeza la relazoe esstete tra due varabl stablre l tpo d relazoe stablre l grado d tale relazoe stablre la drezoe d tale

Dettagli

Generalmente sia l ampiezza che il valore medio della sollecitazione sono variabili nel tempo.

Generalmente sia l ampiezza che il valore medio della sollecitazione sono variabili nel tempo. È molto raro che u compoete meccaco sa sollectato a fatca da u carco cclco ad ampezza costate. Geeralmete sa l ampezza che l valore medo della sollectazoe soo varabl el tempo. max a a max m m m m Tempo

Dettagli

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione Artmetca 06/07 Esercz svolt classe Quarta lezoe Rcorreze o lear Sa a c a cq ua rcorreza dove {c }, c C e c 0. Sa P C[λ] l polomo caratterstco della rcorreza. Allora ua soluzoe partcolare della rcorreza

Dettagli

Esercitazione 5 del corso di Statistica (parte 1)

Esercitazione 5 del corso di Statistica (parte 1) Eserctazoe 5 del corso d Statstca (parte 1) Dott.ssa Paola Costat 8 Novembre 011 I alcue crcostaze s poe u maggor teresse sullo studo della varabltà tra le sgole utà statstche, puttosto che lo studo della

Dettagli

Indipendenza in distribuzione

Indipendenza in distribuzione Marlea Pllat - Semar d Statstca (SVIC) "Lo studo delle relazo tra due caratter" Aals delle relazo tra due caratter Dpedeza dstrbuzoe s basa sul cofroto delle dstrbuzo codzoate Dpedeza meda s basa sul cofroto

Dettagli

2 si da eguale peso alle misure senza tener conto dell incertezza, che in generale possono essere diverse.

2 si da eguale peso alle misure senza tener conto dell incertezza, che in generale possono essere diverse. 5 MEDIE PESTE Come combare msure separate? Esempo, msure Msura d : ± Msura d B: B ± B Se s effettua la meda artmetca: B s da eguale peso alle msure seza teer coto dell certezza, che geerale possoo essere

Dettagli

Stima puntuale Quando un parametro della popolazione incognito è valutato (stimato) da una sola statistica (parametro) tratto da un campione

Stima puntuale Quando un parametro della popolazione incognito è valutato (stimato) da una sola statistica (parametro) tratto da un campione STIMA PARAMTRICA TST DLL IPOTSI L fereza Statstca rguarda affermazo crca I parametr d ua popolazoe sulla base della metodologa statstca e del calcolo delle probabltà Stma putuale Quado u parametro della

Dettagli

MEDIA DI Y (ALTEZZA):

MEDIA DI Y (ALTEZZA): Uverstà d Casso Eserctazo d Statstca del 4 Marzo 0 Dott. Mrko Bevlacqua ESERCIZIO Su u collettvo d dvdu soo stat rlevat caratter X Peso( kg) e Altezza ( cm) otteamo la seguete dstrbuzoe d frequeza coguta:

Dettagli

Numeri complessi Pag. 1 Adolfo Scimone 1998

Numeri complessi Pag. 1 Adolfo Scimone 1998 Numer compless Pag. Adolfo Scmoe 998 NUMERI COMPLESSI Come sappamo, o esstoo el campo de umer real le radc d dce par de umer egatv. Ammettamo pertato l esstea della radce quadrata del umero. Questo uovo

Dettagli

Lezione 13. Anelli ed ideali.

Lezione 13. Anelli ed ideali. Lezoe 3 Prerequst: Aell e sottoaell. Sottogrupp. Rfermet a test: [FdG] Sezoe 5.2; [H] Sezoe 3.4; [PC] Sezoe 4.2 Aell ed deal. Rcordamo la seguete defzoe, data el corso d Algebra : Defzoe 3. S dce aello

Dettagli

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in Le mede Italo Nofro LE MEDIE Le mede (o valor med) soo dc d tedeza cetrale e costtuscoo u modo semplce ed mmedato per stetzzare u solo valore dat eterogee raccolt u collettvo Statstca medca Le mede Le

Dettagli

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in due gruppi

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in due gruppi Le mede Italo Nofro LE MEDIE Statstca medca Le mede (o valor med) soo dc d tedeza cetrale e costtuscoo u modo semplce ed mmedato per stetzzare u solo valore dat eterogee raccolt el collettvo oggetto d

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 26 Febbrao 200 Dott. Mrko Bevlacqua ESERCIZIO Cosderado le class d altezza 60 6; 6 70; 70 78; 78 86 per u collettvo d 20 persoe, s può affermare che l ALTEZZA dpede

Dettagli

Lezione 3. Gruppi risolubili.

Lezione 3. Gruppi risolubili. Lezoe 3 Prerequst: Lezo 1 2 Class d cougo e cetralzzat rupp rsolubl I questo captolo troducamo ua ozoe che come vedremo seguto fuge da raccordo tra la teora de grupp e la teora de camp Defzoe 31 Dato u

Dettagli

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno Idc d Poszoe Gl dc s poszoe soo msure stetche ( valor caratterstc ) che descrvoo la tedeza cetrale d u feomeo La tedeza cetrale è, prma approssmazoe, la modaltà della varable verso la quale cas tedoo a

Dettagli

CORSO DI STATISTICA I (Prof.ssa S. Terzi)

CORSO DI STATISTICA I (Prof.ssa S. Terzi) CORSO DI STATISTICA I (Prof.ssa S. Terz) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI Eserctazoe 2 2.1 Da u dage svolta su u campoe d lavorator dpedet co doppo lavoro è stata rlevata la dstrbuzoe coguta del reddto

Dettagli

Lezione 4. Metodi statistici per il miglioramento della Qualità

Lezione 4. Metodi statistici per il miglioramento della Qualità Tecologe Iormatche per la Qualtà Lezoe 4 Metod statstc per l mglorameto della Qualtà Msure d Tedeza Cetrale Ultmo aggorameto: 30 Settembre 2003 Il materale ddattco potrebbe coteere error: la segalazoe

Dettagli

Indici di asimmetria. Elementi di Statistica descrittiva Parte IV. Simmetria di una distribuzione di frequenze. Primo indice di asimmetria (1/3)

Indici di asimmetria. Elementi di Statistica descrittiva Parte IV. Simmetria di una distribuzione di frequenze. Primo indice di asimmetria (1/3) Smmetra d ua dstrbuzoe d frequeze Ua dstrbuzoe s dce asmmetrca se o è possble dvduare (aalzzado u stogramma) u asse vertcale che tagl la dstrbuzoe due part specularmete ugual Idc d asmmetra Rferedoc a

Dettagli

6. LA CONCENTRAZIONE

6. LA CONCENTRAZIONE UNIVERSITA DEGLI STUDI DI PERUGIA DIPARTIMENTO DI FILOSOFIA SCIENZE SOCIALI UMANE E DELLA FORMAZIONE Corso d Laurea Sceze per l'ivestgazoe e la Scurezza 6. LA CONCENTRAZIONE Prof. Maurzo Pertchett Statstca

Dettagli

corrispondenza della generica i-esima modalità. Indicando con #(.) la cardinalità di un insieme, per esse si ha, rispettivamente:

corrispondenza della generica i-esima modalità. Indicando con #(.) la cardinalità di un insieme, per esse si ha, rispettivamente: Corso d Statstca docete: Domeco Vstocco Le requeze cumulate S cosder ua varable qualtatva ordale X Per essa, oltre alle requeze assolute, relatve e ercetual, è ossble calcolare ache le requeze cumulate

Dettagli

Capitolo 2 Errori di misura: definizioni e trattamento

Capitolo 2 Errori di misura: definizioni e trattamento Captolo Error d msura: )Geeraltà defzo e trattameto I cocett d meda, varaza e devazoe stadard s utlzzao ormalmete per otteere formazo sulla botà d ua msura. I geerale, s assume come msura m della gradezza

Dettagli

Propagazione di errori

Propagazione di errori Propagazoe d error Gl error e dat possoo essere amplfcat durate calcol. Rspetto alla propagazoe degl error s può dstguere: comportameto del problema - codzoameto del problema: vedere come le perturbazo

Dettagli

VARIABILI CASUALI O ALEATORIE

VARIABILI CASUALI O ALEATORIE VARIABILI CASUALI O ALEATORIE Cosderamo seguet esem: S lac tre volte ua moeta: l umero d "teste" che s ossoo resetare è uo de seguet : 0 o o o. Gl evet soo comatbl e ecessar. ossamo schematzzare rsultat

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA COSIDERAZIOI PRELIMIARI SULLA STATISTICA La Statstca trae suo rsultat dall osservazoe de feome che c crcodao. Gl stess feome per essere oggetto d statstca devoo essere adeguatamete umeros modo tale che

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione Corso d laurea Sceze Motore Corso d Statstca Docete: Dott.ssa Immacolata Scacarello Lezoe 9: Covaraza e correlazoe Altr tp d dpedeza L dce Ch-quadro presetato ella lezoe precedete stablsce l grado d dpedeza

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 3 VARIABILI QUANTITATIVE Indici di centralità, dispersione e forma

STATISTICA DESCRITTIVA - SCHEDA N. 3 VARIABILI QUANTITATIVE Indici di centralità, dispersione e forma Matematca e statstca: da dat a modell alle scelte www.dma.uge/pls_statstca Resposabl scetfc M.P. Rogat e E. Sasso (Dpartmeto d Matematca Uverstà d Geova) STATISTICA DESCRITTIVA - SCHEDA N. 3 VARIABILI

Dettagli

LA REGRESSIONE LINEARE SEMPLICE

LA REGRESSIONE LINEARE SEMPLICE LA REGRESSIONE LINEARE SEMPLICE L ANALISI DI REGRESSIONE La regressoe è volta alla rcerca d u modello atto a descrvere la relazoe esstete tra ua varable Dpedete e ua varable dpedete (regressoe semplce)

Dettagli

Matrice: tabella di m righe ed n colonne. A T matrice trasposta di A=(a ij ) di elementi a ijt =a ji. Serena Morigi Università di Bologna 1

Matrice: tabella di m righe ed n colonne. A T matrice trasposta di A=(a ij ) di elementi a ijt =a ji. Serena Morigi Università di Bologna 1 Matrc Matrce: tabella d m rghe ed coloe T matrce trasposta d (a j ) d elemet a jt a j Serea Morg Uverstà d Bologa Matrc Matrce quadrata m sottomatrc Matrce rettagolare m Serea Morg Uverstà d Bologa Matrc

Dettagli

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione IV

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione IV Uverstà degl Stud d Napol Partheope Facoltà d Sceze Motore a.a. 011/01 Statstca Lezoe IV E-mal: paolo.mazzocch@upartheope.t Webste: www.statmat.upartheope.t Fuzoe d regressoe Attraverso la fuzoe d regressoe

Dettagli

Dott.ssa Marta Di Nicola

Dott.ssa Marta Di Nicola RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quado s cosderao due o pù caratter (varabl) s possoo esamare ache l tpo e l'testà delle relazo che sussstoo tra loro. http://www.bostatstca.uch.tt Nel caso cu per

Dettagli

), mentre l unico intero che divide 0 è 0. Enunciamo alcune proprietà di ovvia dimostrazione.

), mentre l unico intero che divide 0 è 0. Enunciamo alcune proprietà di ovvia dimostrazione. Dvsbltà e umer prm Sao a,b elemet dell seme Z degl ter relatv Dcamo che a dvde b, smbol a b, se b è multplo d a, ossa se esste u tero h Z tale che b ha Og tero a dvde 0 ( 0 0a ), metre l uco tero che dvde

Dettagli

valido se i dati E dato da max(x i )-min(x i )

valido se i dati E dato da max(x i )-min(x i ) Idc d Dspersoe o d Varabltà: Rage e DIQ No basta la coosceza d quale è la poszoe meda de dat statstc, serve ache cooscere quale è la varabltà de dat raccolt attoro al valore medo. Allo scopo d troducoo

Dettagli

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso ESERCIZIO Co rfermeto a dvers modell d auto del medesmo segmeto d mercato e cldrata s soo rlevat dat sul prezzo d lsto mglaa d euro (X), la veloctà massma dcharata km/h (Y) ed l peso kg (Z). I dat soo

Dettagli

Voti Diploma Classico Scientifico Tecn. E Comm Altro

Voti Diploma Classico Scientifico Tecn. E Comm Altro 4 Data la seguete dstrbuzoe doppa de vot rportat ad u esame secodo l Dploma posseduto: Vot 8-3-5 6-8 9-30 Dploma Classco 8 4 5 Scetfco 5 7 7 5 Tec E Comm 8 0 0 Altro 3 a) s calcol la meda artmetca de vot

Dettagli

Interpolazione. Definizione: per interpolazione si intende la ricerca di una funzione matematica che approssima l andamento di un insieme di punti.

Interpolazione. Definizione: per interpolazione si intende la ricerca di una funzione matematica che approssima l andamento di un insieme di punti. Iterpolazoe Defzoe: per terpolazoe s tede la rcerca d ua fuzoe matematca che approssma l adameto d u seme d put. Iterpolazoe MATEMATICA Calcola ua fuzoe che passa PER tutt put Tp d terpolazoe Iterpolazoe

Dettagli

Elementi di Statistica descrittiva Parte II

Elementi di Statistica descrittiva Parte II Elemet d Statstca descrttva Parte II Nella prma parte d queste ote s soo llustrate le tecche utlzzate per rappresetare dat, maera stetca, medate tabelle e grafc Tal tecche soo applcabl sa a caratter quattatv

Dettagli

Variabili casuali. Esempio. Variabili casuali discrete. W discreto. W continuo. V.C. discreta. V.C. discreta o continua

Variabili casuali. Esempio. Variabili casuali discrete. W discreto. W continuo. V.C. discreta. V.C. discreta o continua //7 arabl casual Ua varable casuale X e ua fuzoe defta sullo spazo campoaro W che assoca ad og eveto W u uco umero reale. X Ua varable casuale può essere classfcata come dscreta o cotua. Ua varable casuale

Dettagli

Modelli di accumulo del danno dovuto a carichi ciclici

Modelli di accumulo del danno dovuto a carichi ciclici Modell d accumulo del dao dovuto a carch cclc Modell d accumulo del dao dovuto a carch cclc È molto raro che u compoete meccaco sa sollectato a fatca da u carco cclco ad ampezza costate. Geeralmete sa

Dettagli

Le misure di variabilità

Le misure di variabilità arlea Pllat - Semar d Statstca (SVIC) "Le msure d varabltà e cocetrazoe" La varabltà L atttude d u carattere quattatvo X ad assumere valor dfferet tra le utà compoet u seme statstco è chamata varabltà

Dettagli

Università della Calabria

Università della Calabria Uverstà della Calabra FACOLTA DI INGEGNERIA Corso d Laurea Igegera per l Ambete e l Terrtoro CORSO DI IDROLOGIA Ig. Daela Bod SCHEDA DIDATTICA N 5 ISOIETE E TOPOIETI A.A. 20-2 Calcolo della precptazoe

Dettagli

3 Variabilità. variabilità. Senza deviazione dalla norma il progresso non è possibile. (Frank Zappa) Statistica - 9CFU

3 Variabilità. variabilità. Senza deviazione dalla norma il progresso non è possibile. (Frank Zappa) Statistica - 9CFU 3 Varabltà 3 varabltà Seza devazoe dalla orma l progresso o è possble (Frak Zappa) 68 Statstca - 9CFU 3 Varabltà 3. varabltà Defzo Varabltà E l atttude d u feomeo ad assumere dverse modaltà. Essa è msurata

Dettagli

Capitolo 17. Suggerimenti agli esercizi a cura di Elena Siletti. Esercizio 17.1: Suggerimento

Capitolo 17. Suggerimenti agli esercizi a cura di Elena Siletti. Esercizio 17.1: Suggerimento Captolo 17 Suggermet agl eercz a cura d Elea Slett Eerczo 17.1: Suggermeto S rcord che X 1, X 2, X 3 oo v.c. dpedet quado le etrazo oo co rpozoe. Uo tmatore T dce o dtorto e l uo valore atteo cocde co

Dettagli

Laboratorio di Fisica I: laurea in Ottica e Optometria. Misura di una resistenza con il metodo VOLT-AMPEROMETRICO

Laboratorio di Fisica I: laurea in Ottica e Optometria. Misura di una resistenza con il metodo VOLT-AMPEROMETRICO Laboratoro d Fsca I: laurea Ottca e Optoetra Msura d ua ressteza co l etodo OLTMPEOMETICO descrzoe s sura ua ressteza utlzzado u voltetro e u llaperoetro sfruttado la relazoe : Per coduttor ohc è dpedete

Dettagli

ELABORAZIONE DEI DATI

ELABORAZIONE DEI DATI ELABORAZIONE DEI DATI QUESTA FASE SERVE AD ESPRIMERE IN MODO SINTETICO I RISULTATI DELL INDAGINE SVOLTA CALCOLANDO DEGLI INDICI: VALORI MEDI INDICI DI VARIABILITA I valor med Il valore medo è u valore

Dettagli

STUDIO DEL LANCIO DI 3 DADI

STUDIO DEL LANCIO DI 3 DADI Leoardo Latella STUDIO DEL LANCIO DI 3 DADI Il calcolo delle probabilità studia gli eveti casuali probabili, cioè quegli eveti che possoo o o possoo verificarsi e che dipedoo uicamete dal caso. Tale studio

Dettagli

Come cambia la distribuzione se consideriamo 5 classi equiampie (k=5)? Freq. relativa. Freq. Ass. n i

Come cambia la distribuzione se consideriamo 5 classi equiampie (k=5)? Freq. relativa. Freq. Ass. n i Come camba la dstrbuzoe se cosderamo 5 class equampe (k5)? xmax xm 2.02 03 d 38,80 k 5 Class x xl x + Ass. relatva N Frequeza relatva cumulata F l 03,0 -- 484,8 4 0,82 0,82 484,8 -- 866,6 5 0,0 0,92 866,6

Dettagli

FUNZIONI LOGICHE FORME CANONICHE SP E PS

FUNZIONI LOGICHE FORME CANONICHE SP E PS FUNZIONI LOGICHE FORME CANONICHE SP E PS Ua fuzoe logca può essere espressa quattro forme: 1. attraverso ua proposzoe logca; 2. attraverso ua tabella della vertà; 3. attraverso u espressoe algebrca; 4.

Dettagli

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto CORSO DI LAUREA IN ECONOMIA AZIENDALE Metod Statstc per le decso d mpresa (Note ddattche) Bruo Chadotto 5. Campo casual e dstrbuzo campoare - Campo casual Nel Cap. 3 d queste ote s è avuto modo d dstguere

Dettagli

17. FATICA AD AMPIEZZA VARIABILE

17. FATICA AD AMPIEZZA VARIABILE 7. FIC D MPIEZZ VRIBILE G. Petrucc Lezo d Costruzoe d Macche Spesso compoet struttural soo soggett a store d carco elle qual ccl d fatca hao ampezza varable (fg.), ad esempo ccl co tesoe alterata a (o

Dettagli

Lezione 24. Campi finiti.

Lezione 24. Campi finiti. Lezoe 4 Prerequst: Lezo 0,,, 3 Rfermet a test: [FdG] Sezoe 86; [H] Sezoe 79; [PC] Sezoe 63; Cam ft Nelle lezo recedet abbamo vsto dvers esem d cam ft: ess erao tutt del to oure [ x ]/( f ( x )), dove f

Dettagli

Definizioni. Unità strutturale. Massa dell unità strutturale (M 0.) = 100 a.m.u. Macromolecola o Catena polimerica

Definizioni. Unità strutturale. Massa dell unità strutturale (M 0.) = 100 a.m.u. Macromolecola o Catena polimerica Defzo Utà strutturale (massa o moomero) assa dell utà strutturale (.) a.m.u acromolecola o Catea polmerca grado d polmerzzazoe (DP) massa molecolare x.p. Luda ateral polmerc 6 Defzo Grado d polmerzzazoe

Dettagli

DI IDROLOGIA TECNICA PARTE II

DI IDROLOGIA TECNICA PARTE II FACOLTA DI INGEGNERIA Laurea Specalstca Igegera Cvle NO Guseppe T Aroca CORSO DI IDROLOGIA TECNICA PARTE II Aals e prevsoe statstca delle varabl drologche Lezoe X: Scelta d u modello probablstco Aals e

Dettagli

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano Unverstà d Cassno Eserctazone d Statstca del 4 dcembre 6 Dott.ssa Smona Balzano Eserczo Sa la varable casuale che descrve l rsultato del lanco d dad, sulle cu facce v sono numer: 5, 5, 7, 7, 9, 9. a) Defnre

Dettagli

CAPITOLO III SISTEMI DI EQUAZIONI LINEARI

CAPITOLO III SISTEMI DI EQUAZIONI LINEARI CAPITOLO III SISTEMI DI EQUAZIONI LINEARI. GENERALITÀ Sao a,..., a,..., a, b umer real (o compless o elemet d u qualsas campo) ot. Defzoe.. U equazoe della forma: () a x +... + ax +... + a x b dces d prmo

Dettagli

Regressione e Correlazione

Regressione e Correlazione Regressoe e Correlazoe Probabltà e Statstca - Aals della Regressoe - a.a. 4/5 L aals della regressoe è ua tecca statstca per modellare e vestgare le relazo tra due (o pù) varabl. Nella tavola è rportata

Dettagli

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza Uverstà degl Stud d Ferrara 2014-2015 Corso TFA - A048 Matematca applcata Ddattca della matematca applcata all ecooma e alla faza 11 marzo 2015 Apput d ddattca della Matematca fazara Redte, ammortamet

Dettagli

Statistica descrittiva

Statistica descrittiva Statstca descrttva Grafc e tabelle permettoo d fare valutazo qualtatve, o quattatve. C è la ecesstà d stetzzare le caratterstche salet d ua varable: dc d locazoe o d poszoe dc d varabltà o dspersoe Questo

Dettagli

Design of experiments (DOE) e Analisi statistica

Design of experiments (DOE) e Analisi statistica Desg of epermets (DOE) e Aals statstca L utlzzo fodametale della metodologa Desg of Epermets è approfodre la coosceza del sstema esame Determare le varabl pù sgfcatve; Determare l campo d varazoe delle

Dettagli

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi.

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi. 7. Redte I questo captolo edremo solamete u caso d redta, che useremo po per geeralzzare le redte e dedurre tutt gl altr cas. S defsce redta ua successoe d captal (rate) tutte da pagare, o tutte da rscuotere,

Dettagli

Francesco Ciatara ELEMENTI STATISTICA

Francesco Ciatara ELEMENTI STATISTICA Fracesco Catara ELEMENTI d STATISTICA 0 La dstrbuzoe statstca Per llustrare e defre gl uvers, per assemblare le utà grupp, sosttuedo a soggett class equvalet, o meglo, costrure collettv mor costtut da

Dettagli

ESERCITAZIONE NUMERO 4

ESERCITAZIONE NUMERO 4 METODI STATISTICI PER L ECONOMIA (PROF.SSA M. R. FERRANTE) Eserczo D seuto soo rportat dat sul umero d mprese attve a uo 00 elle 0 reo talae: -ESERCITAZIONI 0/- Aachara Sauatt (aachara.sauatt@ubo.t) ESERCITAZIONE

Dettagli

ESERCIZI SU DISTRIBUZIONI CAMPIONARIE

ESERCIZI SU DISTRIBUZIONI CAMPIONARIE Corso d Ifereza Statstca Eserctazo A.A. 009/0 ESERCIZI SU DISTRIBUZIONI CAMPIONARIE Eserczo I cosumator d marmellata ua data popolazoe soo l 40%. Determare la probabltà che, per u campoe beroullao d =

Dettagli

Sommario. Facoltà di Economia. Obiettivo. Quando studiarla? Lezione n 7. X: carattere quantitativo tra le unità statistiche. Quando studiarla?

Sommario. Facoltà di Economia. Obiettivo. Quando studiarla? Lezione n 7. X: carattere quantitativo tra le unità statistiche. Quando studiarla? Corso d Statstca acoltà d Ecooma a.a. - La cocetrazoe Quado studarla? Obettvo Dagramma d Lorez apporto d cocetrazoe rea d cocetrazoe Esemp Sommaro Lezoe 7 Lez7-a.a. - statstca-fracesco mola Quado studarla?

Dettagli

Lezione 1. I numeri complessi

Lezione 1. I numeri complessi Lezoe Prerequst: Numer real: assom ed operazo. Pao cartesao. Fuzo trgoometrche. I umer compless Nell'attuale teora de umer compless cofluscoo due fodametal dee, ua artmetca, l'altra geometrca. La prma,

Dettagli

Modelli di Flusso e Applicazioni: Andrea Scozzari. a.a. 2013-2014

Modelli di Flusso e Applicazioni: Andrea Scozzari. a.a. 2013-2014 Modell d Flusso e Applcazo: Adrea Scozzar a.a. 203-204 2 Il modello d Flusso d Costo Mmo: Problem d Flusso A u l V b c P S A ), ( m ) ( ) ( ), ( Problem rcoducbl a problem d Flusso Il problema del trasporto

Dettagli

Il termine regressione fu introdotto da Francis Galton ( ), antropologo (promotore dell eugenetica).

Il termine regressione fu introdotto da Francis Galton ( ), antropologo (promotore dell eugenetica). Regressoe leare Il terme regressoe fu trodotto da Fracs Galto (8-9), atropologo (promotore dell eugeetca). I u suo famoso studo (877-885), Galto scoprì che, sebbee c fosse ua tedeza de getor alt ad avere

Dettagli