Unità Didattica N 5 Il riferimento cartesiano

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Unità Didattica N 5 Il riferimento cartesiano"

Transcript

1 01 Mtemtc Lceo \ Untà Ddttc N 5 : l femento ctesno 1 Untà Ddttc N 5 Il femento ctesno 01) Coodnt scss 0) Coodnte ctesne nel pno 03) Ve spece d sstem d femento 04) Rppesentzone ctesn d un vettoe 05) Le coodnte del punto medo d un segmento 06) Le coodnte del bcento d un tngolo 07) L dstnz t due punt 08) L dvsone d un segmento secondo un dto ppoto 09) Coodnte pol

2 01 Mtemtc Lceo \ Untà Ddttc N 5 : l femento ctesno Coodnt scss S fss sop l ett oentt d vesoe l punto. Consdeto un qulss punto P dell ett, est unvocmente defnto l vettoe P - e qund l numeo ele eltvo : P pende l nome d scss del punto P, s chm ogne delle scsse o semplcemente ogne, l ett oentt sse delle scsse. E evdente che not l scss s può cve l poszone del punto P e vceves, qund v è cospondenz bunvoc f nume el eltv ed punt d un ett sull qule bbmo scelto un ogne ed un vesoe. D tutto cò s deduce che ogn punto d un ett oentt d dto vesoe può ppesente un numeo ele eltvo e vceves ogn numeo ele eltvo h come mmgne geometc un punto d un ett oentt sull qule bbmo fssto un ogne ed un vesoe. Pe motv sop espost è lecto use l pol punto l posto dell pol numeo e vceves. S dce pue che P è l mmgne geometc del numeo ele eltvo. P Coodnte ctesne nel pno S fssno nel pno ( d vesoe ), ( d vesoe ) uscent d uno stesso punto. Consdeto nel pno un qulss punto P s tccno pe esso le ette pllele ll sse ed ll sse. E vld l seguente elzone vettole : ) ( ) ( ) P P + P + 1 nume el eltv ed s dcono le coodnte ctesne del punto P. S scve ( P, punto P. e s legge << P d coodnte ed >>. è dett scss ed odnt del ) Spesso s dce bevemente punto (, n luogo d punto d scss ed odnt.

3 01 Mtemtc Lceo \ Untà Ddttc N 5 : l femento ctesno 3 L ett oentt ( d vesoe ) è dett sse delle scsse o sse delle, mente l ett oentt ( d vesoe ) è dett sse delle odnte o sse delle. Le due ette ed costtuscono un copp d ss coodnt ctesn otogonl oppue oblqu second che esse sono otogonl oppue no. Il punto è detto ogne degl ss. D tutto cò s deduce che c è un cospondenz bunvoc f coppe odnte d nume el eltv e punt del pno e vceves. Inftt d un ben detemnt poszone del punto P s deducono n mne unvoc le sue coodnte ctesne (, ). Vceves, ssegnt l copp odnt (, ), estno unvocmente ndvdut su e punt P 1 e P, e conseguentemente P, come quto vetce del pllelogmm costuto su P 1 e P. I due ss ed dvdono l pno ctesno n qutto egon ngol ( dette qudnt ) n cscun delle qul punt hnno coodnte d segno detemnto: PP è l pmo qudnte PB è l secondo qudnte, BC 1 quto qudnte. o è l tezo qudnte, CP è l 1 Le ette, e le due bsettc degl ss ctesn dvdono l pno n otto egon ngol dette ottnt. P1 P P P II I III IV P 1

4 4 01 Mtemtc Lceo \ Untà Ddttc N 5 : l femento ctesno Ve spece d sstem d fement Sstem d femento geneco : 90 Sstem d femento nomle : 90 Sstem d femento otogonle : 90 Sstem d femento otonomle : 90

5 01 Mtemtc Lceo \ Untà Ddttc N 5 : l femento ctesno 5 Rppesentzone ctesn d un vettoe S B A un mmgne geometc del vettoe lbeo. Possmo scvee : B A ( H A) ( B H) + coè : + I nume el eltv, s dcono le component ctesne ( o le coodnte ctesne ) del vettoe secondo le dezon oentte d veso e ( del femento ctesno) 0 //, 0 // Le component ed possono consdes n luogo del vettoe che ppesentno. Con uno de seguent smbol : (, ), (, ), [, ],, ntendeemo l vettoe d component ( coodnte ) ctesne, qundo l bse del pno vettoe eucldeo è l copp odnt d veso (, ). B A 1 A B H A B A B H B A H A 1 B 1

6 6 01 Mtemtc Lceo \ Untà Ddttc N 5 : l femento ctesno TEREMA << b, b sono C.N.S. peché sultno ugul vetto + b b + b >> Dmostzone dell necesstà Hp { (, ) b ( b, b ) Th { b, I vetto e b, essendo ugul, sono ppesentt d segment oentt equpollent e B D. Il qudlteo ABCD è un pllelogmm. Rsult. H C, A H, K D b, B K AC BD b pe Hp AC H B D H pechè ngol AHC BKD vent lt pllel ed equves AHC BHK 90 CH DK H - C K - D b b AH BK A - H B - K b b Dmostzone dell suffcenz b CH AH I segment oentt H-C, A-H, K-D e B-K sno spettvmente le mmgn geometche de vetto,, b e b. H-C K-D CDHK pllelogmm { CD HK, CD // HK A-H B-K ABKH pllelogmm { AB HK, AB // HK e qund { AB CD, AB // CD } ABCD pllelogmm B-D A-C b A C D H b b B b K b DK BK A C

7 01 Mtemtc Lceo \ Untà Ddttc N 5 : l femento ctesno 7 Consdemo vetto +, b b + b, c c + c ed l numeo m R. b m b m b m b + b m( + ), b + b m + m b m, b m b b, b b + b - ( + ), b + b b m, b m c + b c +, c + b b c + c + + b + b, c + c ( + b ) + ( + b ) c + b c + b Le coodnte del punto medo d un segmento (, ) (, ) e ( ) S M M M l punto medo del segmento d estem P1 1 1 P,. M P P M ( ) ( ) ( ) ( ) M 1 M 1 M M M 1 M 1 M M M + +, M 1 1 P M M 1 P 1 1 M

8 8 01 Mtemtc Lceo \ Untà Ddttc N 5 : l femento ctesno Le coodnte del bcento d un tngolo S ( G G, ) l bcento del tngolo d vetc P (, ), P (, ), P (, ). G Rsult : M , Dll geomet euclde sppmo che : PG GM 1 1 Rsult petnto vld l seguente elzone vettole : P G ( G M ) G G G G G G 3 1 G G 3 G , G P 1 G M M 3 P Coodnte del bcento d un tngolo P 3 M 1 d cu conoscmo le coodnte de suo vetc

9 01 Mtemtc Lceo \ Untà Ddttc N 5 : l femento ctesno 9 L dstnz t due punt L dstnz t punt A( 1, 1 ) e B(, ) s clcol pplcndo l seguente fomul : ( ) ( ) d( A, B) AB B AH BH A - 1 H Dmostzone Bst pplce l teoem d Ptgo l tngolo ettngolo AHB. ( ) ( ) d( A. B) AH + HB A(-1,), B(-5,3) d( A, B) ( 5+ 1) + ( 3 ) ssevzone Se punt A e B hnno l stess odnt ( 1 ) llo l segmento AB è pllelo ll sse delle scsse. In questo cso bbmo : d( A, B) 1 Possmo nche de che : d( A, B) scss mggoe - scss mnoe 1 A B 1

10 10 01 Mtemtc Lceo \ Untà Ddttc N 5 : l femento ctesno Se punt A e B hnno l stess scss ( odnte. ) llo l segmento AB è pllelo ll sse delle 1 B In questo cso bbmo : 1 A d( A, B) 1 1 Possmo nche de che : d( A, B) odnt mggoe - odnt mnoe L dvsone d un segmento secondo un dto ppoto Dvdee l segmento PP 1 secondo un dto ppoto k ett PP pe l qule s vefc l elzone : QP1 1 Supponmo che s : P( ) QP RISLUZINE CARTESIANA,, P, m sgnfc tove un punto Q dell n m k con k, m, n R + n (, ) QXY (, ). Il punto Q( X Y) 1 1 1,,nteno l segmento PP, è defnto dll seguente elzone vettole : Q1 P1 k P Q1 d cu s deduce X + Y k X + k Y 1 ( ) ( ) che : ( ) ( ) ( ) ( ) ( 1) ( ) X1 1 k X Y1 Y1 k Y1 ) X Y1 1 + k 1 + k + k 1 + k n + m m + n 1 1 n + m m + n 1 1 Se k 1 Q è l punto medo del segmento PP e le [1] espmono le coodnte del punto medo d tle segmento. ( Il punto Q X, Y, eteno l segmento PP, è defnto dll seguente elzone vettole : 1 1 ( Q P) k ( Q P) 1 X + Y k X + k Y ) d cu s deduce che : ( ) ( ) ( ) ( [1]

11 01 Mtemtc Lceo \ Untà Ddttc N 5 : l femento ctesno 11 ( ) ( ) X 1 k X Y1 1 k Y X Y k 1 k k 1 k n n n n m m 1 1 m m 1 1 (, ) P (, ) P (, Y) Q X (, ) Q X Y Q 1 P 1 Q P o RISLUZINE SINTETICA S tccno due qulss ette f loo pllele, un pssnte pe P 1 e l lt pe P. Sull pm consdemo segment PH 1 e PR 1 vent come msu l numeo m e sull second l segmento PK vente come msu l numeo n. Q1 KR I P 1 P Q HK I P1P Q 1 e Q sono punt chest. Inftt : RP Q [] s Q P K QP 1 1: QP 1 PR 1 : PK coè : PHQ QP 1 1 QP 1 m k n [] s PKQ QP: QP PH: PK coè : 1 1 QP 1 QP m k n H K n Q m Q 1 P P 1 m R

12 1 01 Mtemtc Lceo \ Untà Ddttc N 5 : l femento ctesno Coodnte pol Un lto modo d stble un cospondenz bunvoc t punt P del pno eucldeo e le coppe odnte d nume el è quello d ntodue un sstem d coodnte pol. Fssmo nel pno eucldeo un punto detto Polo, un semett oentt p d ogne dett sse pole,l veso ntoo come veso postvo delle otzon,e l untà d msu U pe segment. Fssto n tl modo l femento, un qulss punto P del pno detemn seguent due nume : ρ P U 0 e pp defnto meno d multpl d π ed ndetemnto solo se P con : 0 < π [1] Il numeo postvo ρ è detto ggo vettoe o ggo pole o modulo del punto P ( che v t zeo e π ) è detto noml o gomento o ngolo pole d P. S vene così d ssoce d ogn punto P del pno un copp d nume el ρ e ( con ρ 0 e 0 < π ) qul pendono l nome d coodnte pol del punto P ( spetto l polo ed ll sse pole p ). Vceves, dt un qulunque copp odnt d nume ρ > 0 e ( con 0 < π ), sult ndvduto uno ed un sol punto P, come ntesezone dell cconfeenz d cento e ggo ρ con l semett uscente dl punto e tle che s l ngolo d cu deve uote n senso ntoo l ett oentt p fno ll su sovpposzone sull ett oentt P. Inftt de ρ > 0 sgnfc de che l punto P cecto dst ρ dl cento coè s tov sull cconfeenz d cento e ggo ρ ; de sgnfc de che P s tov sull semett uscente dl polo e fomnte con l sse pole l ngolo. In tl gus, vene stbls un cospondenz bunvoc ( con l sol eccezone del polo ) t punt P del pno e le coppe odnte ( ρ,) d nume el. Pe vee tutt punt del pno 1 bst fe ve l ggo vettoe ρ d zeo multpl d π ) l noml d zeo ncluso π escluso. + e ( meno d 1 Con l unc esclusone del punto, polo del femento pole

13 01 Mtemtc Lceo \ Untà Ddttc N 5 : l femento ctesno 13 ssevzone N 1 nde evte l ntoduzone d ngol concv ( coè > π ) s pefesce ( secondo sc Chsn ) ttbue l vloe che ppe pù ntule, quello coè n vloe ssoluto d π e col segno necesso. Petnto le [1] dventno : ρ > 0, π < π [] ed punt P( ρ,315 ) e P 1 ( ρ, 45 ) concdono, coè ppesentno lo stesso punto. <0 sgnfc che l otzone vvene n senso oo ρ P noml ρ ggo vettoe ρ > 0 0 < π sse pole P( ρ,) p o P (, ) P( ρ,) ρ H P p Con quest convenzone, è l ngolo convesso d cu deve uote n senso oo o n senso ntoo l sse pole p fno ll su sovpposzone sull ett P. I punt dell sse pole hnno noml 0 ssevzone N I punt dell semett oppost ll sse pole hnno noml π ( 180 ) I punt del pno che hnno ggo vettoe ρ ρo sono tutt punt dell cconfeenz d cento e ggo ρ o. I punt che hnno ugule noml sono stut sull stess semett In genele l sse pole è un semett ozzontle oentt veso dest pte dl polo Relzone f le coodnte pol e le coodnte ctesne In molt poblem è molto utle e comodo utlzze coodnte pol l posto delle coodnte ctesne. Vedmo desso come è possble psse d un pno feto d un sstem d ss ctesn quello feto d un sstem pole.. Ammettmo che un sstem d ss ctesn s sovpposto d un sstem d ss pol, supponmo coè che le due ogn concdno e che l semsse postvo delle concd con l sse pole del sstem pole.

14 14 01 Mtemtc Lceo \ Untà Ddttc N 5 : l femento ctesno I due fement, quello ctesno e quello pole, s dcono ssoct qunto l sse pole p concde col semsse postvo delle scsse n modo che l ogne degl ss ctesn concd col polo del sstem pole. Detto P un punto qulss del pno, ndchmo con (, ) e ( ρ,) spettvmente le coodnte ctesne e pol d questo punto. Poché sult : H P cos, HP P sn possmo scvee : Inolte : ρ cos, sn, ρ cos ρ sn [3] ρ ρ ( cos sn ) + + ρ d cu : ρ + cos + sn + tg ctg [4] Le fomule [3] sevono pe espmee l equzone ctesn d un cuv n equzone pole, qundo ssummo come polo l ogne del sstem ctesno e come sse pole l semsse postvo delle ; le [4] sevono pe l pssggo nveso coè pe l pssggo dl femento pole quello ctesno. Le ve convenzon che s seguono pe le coodnte pol sono le seguent : 1) Coodnte pol odne ρ > 0 0 < π oppue ρ > 0, π < π ) Coodnte pol genelzzte ρ > 0, < < + 3) Coodnte pol genel < ρ < + < < + 4) < ρ < + 0 π

I vettori. Grandezze scalari: Grandezze vettoriali

I vettori. Grandezze scalari: Grandezze vettoriali I etto Gndee scl: engono defnte dl loo loe numeco esemp: lunghe d un segmento, e d un fgu pn, tempetu d un copo, ecc. Gndee ettol engono defnte, olte che dl loo loe numeco, d un deone e d un eso esemp:

Dettagli

Vettori. Le grandezze fisiche sono: scalari; vettoriali;

Vettori. Le grandezze fisiche sono: scalari; vettoriali; Vetto 1 Le gndee fsche sono: scl; vettol; Def: Gnde scle defnt unvocmente d un numeo (postvo o negtvo) (con oppotun untà d msu) es.: tempo, mss, tempetu, cc elettc, Def: Gnde vettole (vd. pgn seguente)

Dettagli

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso. I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess

Dettagli

SISTEMI DI CONDOTTE: La verifica idraulica

SISTEMI DI CONDOTTE: La verifica idraulica SISTEMI DI CONDOTTE: L vefc dulc Clo Cpon Unvestà degl Stud d Pv Dptmento d Ingegne Idulc e Ambentle Poszone del del poblem Rete esstente d cu è not l geomet E pefsst l eogzone (ppocco DDA: Demnd Dven

Dettagli

Vettori e scalari. Scalari: sono completamente definite quando se ne conosce la sola misura (es. tempo, massa, temperatura, GRANDEZZE FISICHE

Vettori e scalari. Scalari: sono completamente definite quando se ne conosce la sola misura (es. tempo, massa, temperatura, GRANDEZZE FISICHE Vettoi e scli GRNDEZZE FISICHE Scli: sono completmente definite qundo se ne conosce l sol misu (es. tempo, mss, tempetu, volume ) Vettoili: ichiedono un mggio contenuto infomtivo (es. velocità, cceleione,

Dettagli

Numero 17 Aprile 2012

Numero 17 Aprile 2012 Numeo 17 Aple 1 Spl y Mc-Q http://www.flck.com/photos/mc-q/18857667/ TEOREMI INVERSI I PITAGORA E EUCLIE LUNULE E LENTI SEGMENTI PARALLELI LABORATORIO I PITAGORA SIMMETRIE ATTRAVERSAMENTO EL FIUME - LIBRI

Dettagli

I vettori. Grandezze scalari: Grandezze vettoriali

I vettori. Grandezze scalari: Grandezze vettoriali Grndee sclr: I ettor engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee ettorl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

Grandezze vettoriali. Descrizione matematica: l ente matematico vettore

Grandezze vettoriali. Descrizione matematica: l ente matematico vettore Gndezze vettoili. Descizione mtemtic: l ente mtemtico vettoe I concetti nuovi e fecondi di somm di vettoi, podotti di vettoi ecc. sono pplicti ll meccnic... Secondo [l utoe] il vntggio mggioe del [metodo]

Dettagli

Il lavoro è quindi una grandezza scalare le cui unita di misura sono: = Joule = J

Il lavoro è quindi una grandezza scalare le cui unita di misura sono: = Joule = J Ve. el 9/0/09 Lvoo e Eneg Denzone lvoo pe un oz cotnte Se un oz cotnte gce u un copo che eettu uno potmento ce che l oz compe un lvoo ento come: co ( co ) ove è l componente ell oz pllel llo potmento.

Dettagli

In generale i piani possono essere tra loro

In generale i piani possono essere tra loro Leione 7 - Alge e Geometi - Anno emio 9/ In genele i pini possono essee t loo Pini istinti inienti in un ett ppesentt l sistem sop sitto se. Pini plleli se istinti se, oinienti se. Eseiio tem esme) Si

Dettagli

Grandezze vettoriali.

Grandezze vettoriali. Gndee vettoili. Desciione mtemtic: l ente l mtemtico vettoe I concetti nuovi e fecondi di somm di vettoi, podotti di vettoi ecc. sono pplicti ll meccnic... Secondo [l utoe] il vntggio mggioe del [metodo]

Dettagli

CINEMATICA DEL MOTO ROTATORIO DI UNA PARTICELLA

CINEMATICA DEL MOTO ROTATORIO DI UNA PARTICELLA CINEMAICA DEL MOO OAOIO DI UNA PAICELLA MOO CICOLAE: VELOCIA ANGOLAE ED ACCELEAZIONE ANGOLAE Si considei un pticell P in moto cicole che descive un co di ciconfeenz s. L ngolo di otzione ispetto d un sse

Dettagli

LEGGE DI FARADAY, LEGGE DI LENZ, INDUTTANZA, ENERGIA MAGNETICA

LEGGE DI FARADAY, LEGGE DI LENZ, INDUTTANZA, ENERGIA MAGNETICA A. Chodon esecz d Fsc II LEGGE DI FARADAY, LEGGE DI LENZ, INDUTTANZA, ENERGIA MAGNETICA Eseczo 1 Un bobn costtut d N spe d e cm e esstenz complessv R 5Ω è post t le espnson d un elettomgnete e gce n un

Dettagli

Momento di una forza rispettto ad un punto

Momento di una forza rispettto ad un punto Momento di un fo ispettto d un punto Rihimimo lune delle definiioni e popietà sui vettoi già disusse ll iniio del oso Podotto vettoile: ϑ ϑ sin sin θ Il vettoe è dietto lungo l pependiole l pino individuto

Dettagli

Evandro Cozzi Giuseppe Della Monica INTRODUZIONE ALLA MECCANICA DELLE TERRE E DELLE ROCCE

Evandro Cozzi Giuseppe Della Monica INTRODUZIONE ALLA MECCANICA DELLE TERRE E DELLE ROCCE Endo Cozz Guseppe Dell Mon INTRODUIONE ALLA MECCANICA DELLE TERRE E DELLE ROCCE Copyght MMI ARACNE edte S..l. www.needte.t nfo@needte.t Rffele Goflo, 133 A/B 00173 Rom (06) 93781065 ISBN 978 88 548 809

Dettagli

r v i i P = m i i dt (M r cm ) = Mv r r i = d avendo definito il concetto di centro di massa (CM) del sistema ( M = m i r r r cm

r v i i P = m i i dt (M r cm ) = Mv r r i = d avendo definito il concetto di centro di massa (CM) del sistema ( M = m i r r r cm 6. Sstem d patcelle Legge della dnamca d taslazone pe un sstema d patcelle È possble scvee una legge pe l moto collettvo d un nseme d patcelle nteagent fa loo e con l esteno. Questo modo d fae pemette

Dettagli

1 VETTORI. 1.1 Operazioni tra vettori

1 VETTORI. 1.1 Operazioni tra vettori 1 VETTORI Ttte le gndee pe l ci definiione non concoono lti elementi l di foi dell loo mis engono dette gndee scli; sono esempi di gndee scli l intello di tempo l mss l tempet ecc Esistono ttti delle gndee

Dettagli

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI MATEMATICA FINANZIARIA Pro. Andre Berrd 999 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 PROGETTO ECONOMICO-FINANZIARIO Un progetto economco-nnzro è un

Dettagli

Teoremi su correnti e tensioni

Teoremi su correnti e tensioni Teorem su corrent e tenson 1) ombnzone lnere efnzone: n un crcuto, ogn corrente e tensone è dt un combnzone lnere d genertor: V = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... I = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... oe

Dettagli

11. Geometria piana ( ) ( ) 1. Formule fondamentali. Rettangolo. A = b = h = = b h. b = base h = altezza. Quadrato

11. Geometria piana ( ) ( ) 1. Formule fondamentali. Rettangolo. A = b = h = = b h. b = base h = altezza. Quadrato 11. Geometi pin 1. Fomule fonmentli Rettngolo = h = h = h p= + h p= + h h= p = p h + ( ) = h = h h = = se = igonle p = peimeto h = ltezz = e p = semipeimeto Quto = l l = = l l = l = lto = igonle = e p

Dettagli

Fisica II. 1 Esercitazioni

Fisica II. 1 Esercitazioni isic II Esecizi svolti Esecizio. Clcole l foz che gisce sull cic Q µc, dovut lle ciche Q - µc e Q 7 µc disposte come ipotto in figu Q Q α 5 cm 6 cm Q Soluzione: L foz che gisce sull cic Q è dt dll composizione

Dettagli

Campi Elettromagnetici e Circuiti I Teoremi delle reti elettriche

Campi Elettromagnetici e Circuiti I Teoremi delle reti elettriche Fcoltà d Ingegner Unverstà degl stud d Pv Corso d ure Trennle n Ingegner Elettronc e Informtc Cmp Elettromgnetc e Crcut I Teorem delle ret elettrche Cmp Elettromgnetc e Crcut I.. 04/5 Prof. uc Perregrn

Dettagli

MACCHINE SEMPLICI e COMPOSTE

MACCHINE SEMPLICI e COMPOSTE OBIETTIVI: MCCHINE SEMLICI e COMOSTE (Distillzione veticle) conoscenz del pincipio di funzionmento delle mcchine spee svolgee ppliczioni sulle mcchine Mcchin (def.) Foz esistente (def.) Foz motice (def.)

Dettagli

Fisica II. 6 Esercitazioni

Fisica II. 6 Esercitazioni Esecizi svolti Esecizio 61 Un spi cicole di ggio è pecos d un coente di intensità i Detemine il cmpo B podotto dll spi in un punto P sul suo sse, distnz x dl cento dell spi un elemento infinitesimo di

Dettagli

capacità si può partire dalla sua definizione: C = e dalla relazione fra la differenza di potenziale ed il campo elettrico: V

capacità si può partire dalla sua definizione: C = e dalla relazione fra la differenza di potenziale ed il campo elettrico: V secizio (ll ppello 6/7/4) n conenstoe pino è costituito ue mtue qute i lto b septe un istnz. Il conenstoe viene completmente cicto ll tensione e poi scollegto ll bttei ust pe ciclo, così est isolto ll

Dettagli

Obiettivi Specifici di apprendimento GEOGRAFIA. CURRICOLO VERTICALE DI ISTITUTO (dalla Cl. I Sc.Primaria alla Cl. III Sc.Second. 1 gr.

Obiettivi Specifici di apprendimento GEOGRAFIA. CURRICOLO VERTICALE DI ISTITUTO (dalla Cl. I Sc.Primaria alla Cl. III Sc.Second. 1 gr. bettv pecfc d ppendmento GGAFA VA D ( cpm cecond 1 g) A NNZ ABÀ sse cpm gnzzto tempo e spz (pm, po, mente, sop, sotto, dvnt, deto, vcno, ontno,snst, dest, ecc) sse cpm ement costtutv deo spzo vssuto: funzon,

Dettagli

ROTAZIONI ( E TEOREMA DI PITAGORA

ROTAZIONI ( E TEOREMA DI PITAGORA ROTAZIONI ( E TEOREMA DI PITAGORA ) Defnzone Defnmo rotzone nel pno R un funzone (,) --> f(,) = (',') R, tle che : ) f(,) = f(,) + ort(f(,), per ogn (,) R dove : ort(,b) := (-b,) "ortogonle (ntorro)" d

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ ALTRI SOLIDI GEOMETRICI Test di utovlutzione 0 0 0 0 0 50 60 70 80 90 00 n Il mio punteggio, in centesimi, è n Rispondi ogni quesito segnndo un sol delle 5 ltentive. n Confont le tue isposte con

Dettagli

Corrente elettrica. Conduttore in equilibrio. Condutture in cui è mantenuta una differenza di potenziale (ddp) E=0 V=cost

Corrente elettrica. Conduttore in equilibrio. Condutture in cui è mantenuta una differenza di potenziale (ddp) E=0 V=cost Coente elettca Conduttoe n equlbo B E 0 E0 cost B Conduttue n cu è mantenuta una dffeenza d potenzale (ddp) > B E 0 _ B Un campo elettco all nteno d un conduttoe appesenta una stuazone d non equlbo. Un

Dettagli

PROBLEMI DI MECCANICA APPLICATA

PROBLEMI DI MECCANICA APPLICATA SEZIONE 5 OBLEI DI ECCNIC LIC In quest sezone s nlzzno lcun poble d eccnc delle ccne ne qul s uso d qunto pesentto nelle sezon pecedent. In ptcole sevnno s l teo eltv ll cnetc ce quell eltv ll dnc d cop

Dettagli

Meccanica dei sistemi

Meccanica dei sistemi Meccanca de sste 1. 1. Moento angolae 2. Moento d una foza 3. Foze cental 4. Sste d punt ateal 5. Foze estene e Foze ntene 6. Cento d assa d un sstea 7. Consevazone della quantta d oto 8. Teoea del oento

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Gnmr Mrtn UNIVERSITÀ DEGLI STUDI DI BERGAMO Fcoltà d Ingegner Isttuzon d Econom Lure Trennle n Ingegner Gestonle Lezone 9 Domnd del mercto Prof. Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner

Dettagli

MATEMATICA Classe Prima

MATEMATICA Classe Prima Liceo Clssico di Treiscce Esercizi per le vcnze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri nturli Primi ogni pgin del cpitolo Cpitolo Numeri nturli Primi ogni pgin del cpitolo Per gli llievi promossi

Dettagli

INSTABILITA PANNELLO PIANO SOGGETTO A COMPRESSIONE

INSTABILITA PANNELLO PIANO SOGGETTO A COMPRESSIONE Politecico di Milo Diptieto di Igegei Aeospzile INSTABILITA PANNLLO PIANO SOGGTTO A COMPRSSION DISPNS DL CORSO DI STRUTTUR MATRIALI AROSPAZIALI II VITTORIO GIAVOTTO CHIARA BISAGNI ANNO ACCADMICO 1/ Mteile

Dettagli

Facoltà di Ingegneria Compito scritto di Fisica II Compito B

Facoltà di Ingegneria Compito scritto di Fisica II Compito B ε = 8.85 1 1 C N ; Fcoltà i Ingegnei Copito scitto i Fisic II 17.7.6 Copito B = 1 7 T A Esecizio n.1 α Un filo ettilineo inefinito è pecoso un coente I(t)= t (l coente e iett veso l lto, con α positivo).

Dettagli

Esercitazioni di Elettrotecnica: doppi-bipoli

Esercitazioni di Elettrotecnica: doppi-bipoli . Mffucc: serctzon su dopp-pol er.-9 Unerstà degl tud d ssno serctzon d lettrotecnc: dopp-pol prof. ntono Mffucc er.. ottore 9 . Mffucc: serctzon su dopp-pol er.-9. opp-pol n rege stzonro.. on rferento

Dettagli

3. Componenti adinamici

3. Componenti adinamici 3. Comonen dnmc Ssem rsolene d un crcuo. elzone cosu d un comonene. Clssfczon: comonene lnere/non lnere, dnmco/dnmco, con memor/senz memor, emo nrne/emo rne, omogeneo/non omogeneo, mresso/non mresso, sso,

Dettagli

Università degli Studi Federico II di Napoli Facoltà di Architettura

Università degli Studi Federico II di Napoli Facoltà di Architettura Unverstà degl Stud Federco II d Npol Fcoltà d Archtettur Ferdnndo Csolro - Ivno Csolro Appunt del corso d Geometr CAPITOLO I - LA GEOMETRIA ANALITICA. - CENNI STORICI.2 - INTRODUZIONE ALLE COORDINATE CARTESIANE.3

Dettagli

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm Il lto d un ddo è pr. cm. Usndo le cfre sgnfctve per stmre l errore clcolre l volume del cuo. Supponendo che l devzone stndrd nell msur del lto s d mm clcolre l devzone stndrd che ssoct ll msur del volume.

Dettagli

Calcolo della concentrazione e della densità del Silicio Monocristallino

Calcolo della concentrazione e della densità del Silicio Monocristallino Clcolo dell concentrzone e dell denstà del Slco Monocrstllno Clcolo del numero d tom per cell Contrbuto de vertc: 8 1 8 1 Contrbuto delle superfc: 6 1 2 3 Contrbuto tom ntern: 4 1 4 Totle: 8 tom equvlent

Dettagli

= 4. L unita di misura della carica elettrica nel S.I. è il coulomb (C).

= 4. L unita di misura della carica elettrica nel S.I. è il coulomb (C). LGG DI COULOMB (3) L unta d msua della caca elettca nel.i. è l coulomb (C). F π o La caca elettca d C è uella caca che posta nel vuoto ad m d dstanza da una caca elettca uguale la espnge con la foza d

Dettagli

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

24 y. 6. ( 5 A. 1 B. 5 4 C D. 50 Applicando le proprietà delle potenze

24 y. 6. ( 5 A. 1 B. 5 4 C D. 50 Applicando le proprietà delle potenze Alunno/.. Alunno/ Pgin Esercitzione in preprzione ll PROVA d ESAME Buon Lvoro Prof.ss Elen Sper. Il piccolo fermcrte dell figur è relizzto nel seguente modo. Si prende un cubo di lto cm e su un fcci si

Dettagli

COMPITI PER LE VACANZE ESTIVE DALLA SECONDA ALLA TERZA

COMPITI PER LE VACANZE ESTIVE DALLA SECONDA ALLA TERZA COMPITI PER LE VACANZE ESTIVE DALLA SECONDA ALLA TERZA PROBLEMI DI APPLICAZIONE DELL'ALGEBRA ALLA GEOMETRIA ) Inscrivere in un semicirconferenz di dimetro r un rettngolo ABCD vente il lto AB sul dimetro

Dettagli

Unità Didattica N 27 Circonferenza e cerchio

Unità Didattica N 27 Circonferenza e cerchio 56 La ciconfeenza ed il cechio Ciconfeenza e cechio 01) Definizioni e popietà 02) Popietà delle code 03) Ciconfeenza passante pe te punti 04) Code e loo distanza dal cento 05) Angoli, achi e code 06) Mutua

Dettagli

Fig. 4.1 - Struttura elementare del motore in corrente continua

Fig. 4.1 - Struttura elementare del motore in corrente continua 4 MACCHINA IN CORRENTE CONTINUA 4.1 Suu schm lmn P compn l pncpo funzonmno ll mcchn n con connu (m.c.c.) fccmo fmno ll suu lmn nc n Fg. 4.1. 1 A φ 2 B Fg. 4.1 - Suu lmn l moo n con connu Fg. 4.2 - Pcoso

Dettagli

I PROBLEMI DI MASSIMO E DI MINIMO

I PROBLEMI DI MASSIMO E DI MINIMO I PROBLEMI DI MASSIMO E DI MINIMO Souzioni di pobemi ttti d ibo: Coso Bse Bu di Mtemti, vo. 5 [1] (Pobem n. pg. 1 ) Individu i punto de ett xy5 pe i que è minim distnz d oigine degi ssi oodinti. Consideimo

Dettagli

Cognome: Nome: Matricola:

Cognome: Nome: Matricola: Fcoltà Ingegne os Lue n Ingegne vle e ell Ambente oso lement Fsc A.A. - pov ccetmento cembe ognome: Nome: Mtcol: -ml: e cche puntfom (/( -7 - sono poste ne te vetc un uto lto L. m. S clcol l moulo el cmpo

Dettagli

MATRICI SIMILI E MATRICI DIAGONALIZZABILI

MATRICI SIMILI E MATRICI DIAGONALIZZABILI MATRICI SIMILI E MATRICI DIAGONALIZZABILI DEFINIZIONE: Due mtici qudte A e B, dello stesso odine n, si dicono simili se esiste un mtice non singole S, tle che isulti: B S A S L mtice S si chim nche mtice

Dettagli

x = Il problema del calcolo delle aree Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione

x = Il problema del calcolo delle aree Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione Integrle Dento. Il prolem del clcolo delle ree Suddvsone dell ntervllo [,] n sottontervll che ne costtuscono un prtzone De. Prtzone S chm prtzone P dell ntervllo [,] un nseme d n+ punt <

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

Problemi e approfondimenti su: Lavoro ed Energia

Problemi e approfondimenti su: Lavoro ed Energia Poble e ppoonent su: Loo e Eneg Poble 1,,,4: coltà e, utl pe l pepzone ll ese Poble 5,6: ppoonento, coltt 1) Un bbno tscn con eloctà costnte un sltt ss 5.6 Kg sull nee, tnol con un une pe un tgtto 1 n

Dettagli

CAP.IV TRASFORMAZIONE E CONVERSIONE DELL ENERGIA ELETTRICA

CAP.IV TRASFORMAZIONE E CONVERSIONE DELL ENERGIA ELETTRICA CAP. TRASFORMAZOE E COERSOE DE EERGA EETTRCA. Rchm sul tsfomtoe ele (o- pte) S efnsce tsfomtoe ele l oppo bpolo, ctteto lle elon v/v, /-/ ( - etto ppoto tsfomone- è numeo ele veso eo). Esso può essee letto

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

Nome..Cognome.classe 4C 7 Maggio Verifica di Matematica

Nome..Cognome.classe 4C 7 Maggio Verifica di Matematica Noe..Cognoe.clsse 4C 7 Mggio Verific di Mtetic PROBLEMA ( punti In un tringolo ABC il lto BC isur e l ngolo opposto è di. Deterinre in funzione dell piezz di ABC ˆ CH l ndento di f ( essendo CH e bisettrici

Dettagli

Geometria elementare. Sezione Prima Geometria nel piano

Geometria elementare. Sezione Prima Geometria nel piano pitolo 3 Geometi elemente Sezione Pim Geometi nel pino 1 Enti geometii fondmentli 113 on il temine Geometi, pol ompost di oigine ge he signifi lettelmente misuzione dell te, s intende l sienz zionle he

Dettagli

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna verso LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI secondo GRADO PROVA DI Mtemtic 30 quesiti Febbrio 0 Scuol... Clsse... Alunno... e b sono numeri reli che verificno quest uguglinz: Qunto vle il loro prodotto?

Dettagli

Economia del turismo. Prof.ssa Carla Massidda

Economia del turismo. Prof.ssa Carla Massidda Economa del tusmo Pof.ssa Cala Massdda Pate 2 Agoment Defnzone d domanda tustca Detemnant della domanda tustca L elastctà della domanda tustca La stma della domanda tustca Defnzone d domanda tustca Dato

Dettagli

Problemi di geometria

Problemi di geometria 1 2 3 4 5 6 7 8 9 10 11 12 13 14 In un triangolo rettangolo l altezza relativa all ipotenusa è lunga 16 cm e la proiezione sull ipotenusa di un cateto è lunga 4 cm. Calcola l area del triangolo. [544 cm

Dettagli

Fisica per Biologia. Principi di Fisica EdiSES. Presentazione essenziale di concetti e metodi usati nella descrizione della natura intorno a noi

Fisica per Biologia. Principi di Fisica EdiSES. Presentazione essenziale di concetti e metodi usati nella descrizione della natura intorno a noi Fsc pe Bolog Leone/Esectone Lunedì 10:30 12.30 Mtedì 10:30 11.30 Venedì 10:30 12.30 Tutoto Goved` 8:30-10.30 Rcevmento Lunedì 14:00 16.00 Testo: Sew Pncp d Fsc EdSES Pogmm: 8 Untà d msu Vetto (cp. 1) 8

Dettagli

Note di trigonometria.

Note di trigonometria. Note di tigonometi. Muo Sit e-mil: muosit@tisclinet.it Novembe 2014. 1 Indice 1 Seno, coseno e tngente di un ngolo. 2 1.1 Gfici delle funzioni seno e coseno......................... 3 1.2 Gfico dell funzione

Dettagli

Figura 1 Geometria attuale. Figura 2 Sezione trapezia

Figura 1 Geometria attuale. Figura 2 Sezione trapezia ESERCITAZIONE N. 4 (20 aple 2005) Dmensonamento daulco d un canale apeto PROBLEMA Nel pogetto d ecupeo d un aea s ntende potae alla luce un canale che n passato è stato tombnato con tubazon pefabbcate

Dettagli

METODI ITERATIVI PER LA RISOLUZIONE DI SISTEMI LINEARI

METODI ITERATIVI PER LA RISOLUZIONE DI SISTEMI LINEARI METODI ITERATIVI PER LA RISOLUZIONE DI SISTEMI LINEARI Per l rsoluzone d un sstem lnere A b, oltre metod drett, è possble utlzzre nche metod tertv che rggungono l soluzone estt come lmte d un procedmento

Dettagli

Il procedimento di linearizzazione consiste nell'usare una funzione delle variabili anziché le variabili stesse.

Il procedimento di linearizzazione consiste nell'usare una funzione delle variabili anziché le variabili stesse. Y Lnerzzzone Il dgrmm d dspersone suggersce che le funzone d nterpolzone de dt non sono lner, m presentno un ndmento che n un cso (dots ner) potree essere d tpo esponenzle, mentre nell ltro cso (dots ross)

Dettagli

Campo elettrico in un conduttore

Campo elettrico in un conduttore Cmpo elettico in un conduttoe In entmbi i csi se il conduttoe è isolto e possiede un cic totle, dett cic si dispone sull supeficie esten del conduttoe; se così non fosse inftti ci sebbe un foz sulle ciche

Dettagli

Lezione 16. Costruibilità con riga e compasso.

Lezione 16. Costruibilità con riga e compasso. Lezone 6 Prerequst: Lezon 9, 5. Costrubltà on rg e ompsso. Defnzone 6. S F un mpo, e s K un su estensone. Un elemento ostruble su F se esste un estensone -rdle d F ontenente α. α K s de Quest defnzone

Dettagli

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S Sessione ordinri 996 Liceo di ordinmento Soluzione di De Ros Nicol ) In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le prbole di equzione:, dove è un numero rele positivo.

Dettagli

Matematica FORMULARIO RICHIAMI DI ALGEBRA. Un equazione di secondo grado è riconducibile alla forma normale: ax 2 bx c 0, a 0. c 0: impossibile.

Matematica FORMULARIO RICHIAMI DI ALGEBRA. Un equazione di secondo grado è riconducibile alla forma normale: ax 2 bx c 0, a 0. c 0: impossibile. FRMULRI Mtemti RIHIMI DI LGER LE EQUZINI DI SEND GRD Un equzione di seondo gdo è ionduiile ll fom nomle: 0, 0 0, 0 (equzione pu) 0 se 0: impossiile se 0, 0, 0 (equzione spui) 0 ( ) 0 0, 0 (equzione monomi)

Dettagli

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y Differenzile Considerimo l vrizione finit, dell vriile indipendente cui corrisponde un vrizione finit dell funzione f, f y Δf 1 Δ 2 L vrizione dell vriile dipendente puo' essere molto piccol, infinitesim

Dettagli

Es1 Es2 Es3 Es4 Es5 tot

Es1 Es2 Es3 Es4 Es5 tot Ottore lsse E Verifi sommtiv Cognome Nome rgomenti: onihe, funzione esponenzile e grfii derivti Tempo disposizione: ore Voto Es Es Es Es Es tot.... Considert l ellisse vente ome sse fole l sse, eentriità

Dettagli

Problemi: dinamica. blocco M: blocco m: i due corpi hanno stressa accelerazione a!!! T + decimali e cifre significative!!

Problemi: dinamica. blocco M: blocco m: i due corpi hanno stressa accelerazione a!!! T + decimali e cifre significative!! Poblemi: inmic. Un blocco i mss M. k scoe su un supeicie oizzontle senz ttito. le blocco è leto meinte un une che pss ttveso un pulei un secono blocco i mss m. k. une e pulei sono pive i mss. Mente il

Dettagli

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe I H

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe I H Istituto Professionle di Stto per l Industri e l Artiginto Gincrlo Vlluri Clsse I H ALUNNO CLASSE Ulteriore ripsso e recupero nche nei siti www.vlluricrpi.it (dip. mtemtic recupero). In vcnz si può trovre

Dettagli

MATEMATICA FINANZIARIA 3. RENDITE

MATEMATICA FINANZIARIA 3. RENDITE MATEMATICA FINANZIAIA Prof. Adre Berrd 999 3. ENDITE Coro d Mtetc Fzr 999 d Adre Berrd Sezoe 3 ENDITA Operzoe fzr copot, crtterzzt d cdeze (,,...,,...,, rcuotere quelle cdeze,,...,,...,, t e d port d pgre

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Unverstà d Npol Prthenope Fcoltà d Ingegner Corso d Trsmssone Numerc docente: Prof. Vto Psczo 3 Lezone: /0/004 4 Lezone: /0/004 Sommro Quntzzzone sclre (unforme e non unforme) Quntzzzone vettorle (VQ)

Dettagli

MATEMATICA FINANZIARIA CAP. 14 20

MATEMATICA FINANZIARIA CAP. 14 20 MTEMTIC FINNZIRI CP. 42 pputi di estimo INTERESSE SEMPLICE Iteesse semplice I C M C ( ) = fzioe di o [] C M G F M M G L S O N D Motte semplice di te costti 2 3 M R R R... R [2] 2 2 2 2 Poiché l fomul è

Dettagli

VALORI MEDI (continua da Lezione 5)

VALORI MEDI (continua da Lezione 5) VALORI MEDI (cotu d Lezoe 5) Dott.ss Pol Vcrd 6. L ed rtetc è lere coè è vrte per trsforzo ler de dt. S u dstrbuzoe utr d ed A. Effettuo u trsforzoe lere delle osservzo coè b c d dove c e d soo due costt

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

Approfondimento 7.4 - Altri tipi di test di significatività del coefficiente di correlazione di Pearson

Approfondimento 7.4 - Altri tipi di test di significatività del coefficiente di correlazione di Pearson Appofondmento 7.4 - Alt tp d test d sgnfcatvtà del coeffcente d coelazone d Peason Una delle cause pncpal della cattva ntepetazone del test d sgnfcatvtà d è che s fonda su un potes nulla pe cu ρ 0. In

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le Sched Sei ESPONENZIALI E LOGARITMI L funzione esponenzile Assegnto un numero rele >0, si dice funzione esponenzile in bse l funzione Grfici dell funzione esponenzile Se = l funzione esponenzile è costnte:

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

BREVE APPENDICE SULLE UNITA' LOGARITMICHE

BREVE APPENDICE SULLE UNITA' LOGARITMICHE BREVE APPENDICE SULLE UNITA' LOGARITMICHE Per esprimere gudgni e ttenuzioni, nonché cifre di rumore e rpporti segnle-rumore si usno frequentemente le unità logritmiche. Come risultto, l grndezz in questione

Dettagli

C2 Congruenza - Esercizi

C2 Congruenza - Esercizi C Congruenza - Esercizi COSTRUZIONI 1) Disegnare un segmento congruente al segmento dato contando i quadretti. ) Disegnare un segmento congruente al segmento dato utilizzando riga e compasso (costruzione

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

Esercizi di riepilogo di elettrostatica e magnetostatica

Esercizi di riepilogo di elettrostatica e magnetostatica secii di iepilogo di eleosic e mgneosic SRCIZIO Do il poenile eleosico: V,, ) 3e ) ) ln 5 [V] clcole l fo gene su un eleone poso nel puno 3,,5). Si icod che l cic dell eleone è pi q -.6-9 C.. Soluione

Dettagli

Lezione 12. Funzioni polinomiali. Radici di un polinomio. Teorema di Ruffini.

Lezione 12. Funzioni polinomiali. Radici di un polinomio. Teorema di Ruffini. Lezone Peequs: Lezone. Funzon polnomal. Radc d un polnomo. Teoema d Ruffn. Sa K un campo e sa L un campo d cu K è soocampo (n al caso s dce anche che L è un'esensone d K). Sa f ( X ) K[ X ] e sa α L. Alloa,

Dettagli

dr Valerio Curcio Le affinità omologiche Le affinità omologiche

dr Valerio Curcio Le affinità omologiche Le affinità omologiche 1 Le ffinità omologiche 2 Tringoli omologici: Due tringoli si dicono omologici se le rette congiungenti i punti omologhi dei due tringoli si incontrno in un medesimo punto. Principio dei tringoli omologici

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

La bellezza nella Matematica La sezione aurea

La bellezza nella Matematica La sezione aurea L bellezz nell Mtemtic L sezione ure L stori dell sezione ure è ntic tre millenni. Ess rppresent lo stndrd di riferimento e di ispirzione per l perfezione, l grzi e l rmoni in ogni composizione rtistic;

Dettagli

VARIABILI ALEATORIE E. DI NARDO

VARIABILI ALEATORIE E. DI NARDO VARIABILI ALEATORIE E. DI NARDO 1. Vibile letoi Definizione 1.1. Fissto uno spzio di pobbilità (Ω, F, P ), un funzione X : Ω R si dice vibile csule (o vibile letoi, v..), se ess è F misubile, ossi B B(R)

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante Prof.. Di Muro Moto rettilineo uniformemente ccelerto ( m.r.u.. ) Il moto rettilineo uniformemente ccelerto è un moto che iene su un rett con ccelerzione costnte. Dll definizione di ccelerzione t t t t

Dettagli

0x3 0x5 2 R. Sistemi di disequazioni. Esercizio no.1. Esercizio no.2. Esercizio no.3. Esercizio no.4. Esercizio no.5. Esercizio no.6. Esercizio no.

0x3 0x5 2 R. Sistemi di disequazioni. Esercizio no.1. Esercizio no.2. Esercizio no.3. Esercizio no.4. Esercizio no.5. Esercizio no.6. Esercizio no. Edutecnic.it Sistemi di disequzioni Sistemi di disequzioni Esercizio no. Esercizio no. Esercizio no. ) ) Esercizio no. ) ) 9 ) Soluzione pg. [ ] Soluzione pg. [ ] Soluzione pg. 9 Soluzione pg. Esercizio

Dettagli

Misura masse molecolari

Misura masse molecolari Msur msse molecolr Le propretà de mterl polmerc dpendono dll mss molecolre. E possble conoscere l mss molecolre de sstem polmerc msurndo tl propretà Qul propretà? meccnche, fsche, n soluzone? Qule mss

Dettagli

INFORMAZIONI UTILI PER VERIFICA/AGGIORNAMENTO DEL CLASSAMENTO CATASTALE

INFORMAZIONI UTILI PER VERIFICA/AGGIORNAMENTO DEL CLASSAMENTO CATASTALE INFORMAZIONI UTILI PER VERIFICA/AGGIORNAMENTO DEL CLASSAMENTO CATASTALE (Delbezone del Consglo Comunle n. 5 del 12.02.2007 - Defnzone gevolt) L t. 1, comm 336 dell Legge Fnnz 2005, pevede che sno Comun,

Dettagli

CENTRO DI ISTANTANEA ROTAZIONE

CENTRO DI ISTANTANEA ROTAZIONE CENTRO DI ISTNTNE ROTZIONE Dunte il moto pino geneico di un copo igido, in ogni istnte esiste un punto C del copo (o solidle d esso) ctteizzto d elocità null. Tle punto è detto cento di istntne otzione

Dettagli

5. Funzioni elementari trascendenti

5. Funzioni elementari trascendenti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 5. Funzioni elementri trscendenti A. A. 2013-2014 1 FUNZIONI ESPONENZIALI Le più semplici funzioni esponenzili sono le funzioni f: R R definite

Dettagli

3) Il campo elettrostatico nella regione di spazio compresa tra il filo ed il cilindro (cioè per 0<r<R 1 ) è

3) Il campo elettrostatico nella regione di spazio compresa tra il filo ed il cilindro (cioè per 0<r<R 1 ) è Fcoltà i Ingegnei Pov Scitt i Fisic II - 3 Febbio 4 uesito n. Un lungo cilino metllico cvo i ggio inteno e ggio esteno viene cicto con un ensità i cic linee pi. Lungo il suo sse viene inseito un lungo

Dettagli

Parcheggio di scambio 2.200 auto

Parcheggio di scambio 2.200 auto ento Stud ettoe ott. olo sle ogetto cu l Responsble ch. Mco Muo es V o mnuell 31-00143 Rom Tel. 3286442061 - x 065011288 e-ml nfo@collellsteg.t www.collellsteg.t - ROLUNMNTO I VI. KOLR ROOST I VRINT L

Dettagli