IL PRINCIPIO DI INDUZIONE MATEMATICA

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "IL PRINCIPIO DI INDUZIONE MATEMATICA"

Transcript

1 IL PRINCIPIO DI INDUZIONE MATEMATICA Suppoiamo di vole dimostae ua ceta poposizioe Ρ che dipede da u umeo atuale; l idea che abbiamo dei umei atuali ci suggeisce che: se Ρ è vea pe il umeo 0, e se iolte il fatto che sia vea pe u geeico umeo atuale compota ecessaiamete che sia vea ache pe il successoe di, +, alloa è evidete che essu umeo atuale può sfuggie; la popietà Ρ è vea pe tutti i umei atuali. Questo è quato affema il Picipio di Iduzioe Matematica che caatteizza l isieme N: Se ua poposizioe P:. è vea pe 0 (base di iduzioe). se è vea pe, alloa è vea ache pe + (ipotesi d iduzioe) alloa P è vea pe ogi N. No è ecessaio patie da 0; spesso ua poposizioe diveta sigificativa da u ceto umeo atuale k i poi; pe esempio la poposizioe: La somma degli agoli itei di u poligoo di lati è ( ) 80 è sigificativa pe. È ovvio che il pimo passo della dimostazioe pe iduzioe cosiste el dimostae che la popietà è vea pe k, aziché pe k 0; la coclusioe è che la poposizioe è vea pe tutti i umei atuali. Il Picipio di Iduzioe si può così geealizzae: Se ua poposizioe P. è vea pe k,. e se tutte le volte che P è vea pe > k, alloa P è vea ache pe +, alloa P è vea pe tutti i umei atuali maggioi o uguali a k ESERCIZIO.: Dimostae, mediate il picipio di iduzioe, il teoema seguete: La somma dei pimi umei dispai è. U umeo dispai può scivesi ella foma ( - ); la somma dei pimi umei dispai si può idicae el seguete modo: ( ) ( ) (pe esempio, la somma dei pimi umei dispai è: , i cui è ) La dimostazioe mediate il picipio di iduzioe si effettua i due passi:. l euciato è veo pe, ed è baale: ;. dimostiamo oa che il fatto che la () sia vea pe u ceto, implica ecessaiamete che sia vea ache pe il suo successoe ( + ). Pemesso che il umeo dispai successivo a ( ) è ( + ) ( + ), si ha: ( ) + ( + ) + + ( + ) cioè, la somma dei pimi ( + ) umei dispai è il quadato di ( + ). Ma l espessioe otteuta coicide co il secodo membo della citata elazioe () i cui (+) sostituisce.

2 Soo così soddisfatte le codizioi imposte dal picipio di iduzioe e, petato, il teoema isulta dimostato. Se accettiamo il picipio di iduzioe matematica dobbiamo cocludee che la () è vea pe tutti gli. La figua seguete offe, iolte u utile compesioe gafica del teoema sopa euciato, i cui si è iteuto di limitae la appesetazioe gafica al caso di ; l estesioe ad iteo qualsiasi è, tuttavia, ovvia. ESERCIZIO.: Dimostae, mediate il picipio di iduzioe, il teoema seguete: Pe ogi >, la somma dei quadati dei pimi umei è data da: (... + ) ( + ). l euciato è veo pe ; ifatti è: ( + ). dimostiamo oa che se l euciato è veo pe u ceto, alloa è veo ache pe ( + ). Se: (... + ) ( + ) alloa: ( ) ( + ) ( + )... ( ) + ( + ) ( + ) [ ( + ) + ( + ) ] ( + ) ( ) ( + ) ( ) ( + ) ( + ) ( + ) Ma l espessioe otteuta coicide co il secodo membo della citata elazioe () i cui (+) sostituisce, ovveo: ( + ) [( + ) + ] [( ( + ) + ] ( + ) ( + ) ( + + ) ( + ) ( + ) ( + ) ESERCIZIO.: Dimostae, mediate il picipio di iduzioe, il teoema seguete: Pe ogi, la somma dei cubi dei pimi umei è data da: ( + ) l euciato è veo pe ; ifatti è: ( + ) + 9. dimostiamo oa che se l euciato è veo pe u ceto, alloa è veo ache pe ( + ). Se:

3 alloa: ( + ) ( + ) ( + ) + ( + ) ( + ) ( + ) + ( + ) ( + ) [ + ( + )] + ( + ) ( + ) ( + + ) ( + ) ( + ) ( + ) ( + ) Ma l espessioe otteuta coicide co il secodo membo della citata elazioe () i cui (+) sostituisce ; ifatti: ( ) ( + ) ( + ) ( + + ) ( + ) ( + ) ( + ) ESERCIZIO.: Dimostae, mediate il picipio di iduzioe, la posizioe seguete: Pe ogi, la somma dei temii elativi alla seguete elazioe vale: ( + ) +. l euciato è veo pe ; ifatti è: +. dimostiamo oa che se l euciato è veo pe u ceto, alloa è veo ache pe ( + ). Se: ( + ) + alloa: ( + ) ( + ) ( ) ( + ) ( + ) ( + ) + ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) Ma l espessioe otteuta coicide co il secodo membo della citata elazioe () i cui (+) sostituisce, ovveo: ( + ) ( ) +

4 ESERCIZIO.5: Dimostae, mediate il picipio di iduzioe, il teoema seguete: Il umeo dei sotto isiemi di u isieme A coteete elemeti è dato da N S ( A ) ( 5 ) (se 0, l uico sottoisieme possibile è l isieme stesso, cioè l isieme vuoto).. l euciato è veo pe ; ifatti è: I sottoisiemi otteibili dall isieme A, costituito da u solo elemeto, soo: A ({X }, {Φ}). Essi soo i umeo di due e quidi N S (A )... l euciato è veo pe ; ifatti è: I sottoisiemi otteibili dall isieme A, costituito da due soli elemeti, soo: A ({X }, {X }, {X, X }, {Φ}). Essi isultao i umeo di quatto e petato è X X N S (A )... l euciato è veo pe ; ifatti è: I sotto isiemi otteibili dall isieme A, costituito da te elemeti, soo: A X ({X }, {X }, {X }, {X, X }, {X, X }, {X, X }, {X, X, X }, {Φ}). X X Essi isultao i umeo di otto e petato è veificato N S (A ) 8.. dimostiamo oa che se l euciato è veo pe u ceto, alloa è veo ache pe ( + ). Pe quato otteuto dalla costuzioe pecedete, si osseva che se gli elemeti dell isieme A si icemetao di ua uità, alloa il umeo dei sottoisiemi di A addoppia. Quidi se gli elemeti dell isieme A soo, il umeo dei sotto isiemi di A è pai a N S (A ) ; se gli elemeti di A divetao (+) alloa il umeo di sotto isiemi di A addoppia, ovveo: ( + ) NS ( A+ ) NS ( A ) Ma l espessioe otteuta coicide co il secodo membo della citata elazioe (5) i cui (+) sostituisce, ovveo: X ( + ) ( + ) Risultao così veificate le due codizioi stabilite dall euciato del Picipio di Iduzioe, petato esta dimostata la validità dell asseto, ovveo: Il umeo dei sotto isiemi di u isieme A che cotiee elemeti è dato da N S (A ). ESERCIZIO.: Dimostae, mediate il picipio di iduzioe, la posizioe seguete: ette che o siao a due a due paallele e che o siao a te a te secati ello stesso puto, dividoo il piao i u umeo di egioi defiito da: Neg + + ( ) Il poblema cosiste el detemiae, applicado il picipio di iduzioe, il umeo di egioi i cui viee diviso il piao i seguito al tacciameto di alcue ette, ispettado detemiate codizioi. Osseviamo, pe ispezioe, che: co zeo ette, si ottiee ua egioe soltato, ovveo l iteo piao; co ua etta, si ottegoo due egioi, cioè i due semipiai (figua.a); co due ette, si ottegoo te egioi se le ette soo paallele, altimeti si ottegoo quatto egioi pe ette o paallele, come mostato i figua.b ed i figua.c. Peò l euciato del poblema idica che le ette o devoo essee a due a due paallele; petato, poiché dobbiamo suppoe che o ci siao coppie di ette paallele, si dovà cosideae solo il

5 caso mostato ella figua.c; (figua -.a) (figua -.b) (figua -.c) co te ette, il piao viee così diviso i sei egioi se le ette si itesecao tutte ello stesso puto, mete si ottegoo sette egioi i caso cotaio, come mostato i figua.d ed i figua.e. L euciato del poblema idica che o ci devoo essee più di due ette che si itesecao i u puto; petato, si dovà cosideae solo il caso mostato ella figua.e; Si tatta oa di geealizzae la pocedua e l aalisi al caso di ette.. l euciato è veo pe 0; ifatti è: [( + + )/] (0) l euciato è veo pe ; ifatti è: [( + + )/] (). suppoiamo, oa, che ette dividao il piao i ( + + )/ egioi, e dimostiamo che + ette lo dividoo i [(+) + (+) + )/] egioi. Ifatti quado viee tacciata la (+)_esima etta, poiché o è paallela ad alcua delle ette pecedetemete tacciate, iteseca ciascua di esse dado luogo a puti di itesezioe, e essuo di questi è a sua volta itesezioe di alte ette, come mostato i figua.f. Petato la (+)_esima etta geea ( + ) uove egioi. Il umeo totale delle egioi è defiito da: 5 (figua -.d) 7 5 (figua -.f) * * * 5 * Neg ( + ) ( + ) ( + + ) ( + ) + ( + ) + Ma l espessioe otteuta coicide co il secodo membo della citata elazioe () i cui (+) sostituisce, ovveo: 7 5 (figua -.e)

6 + + ( + ) + ( + ) + Neg ( + ) ( + ) Risultao così veificate le due codizioi stabilite dall euciato del Picipio di Iduzioe, petato esta dimostata la validità dell asseto, ovveo: ette che o siao a due a due paallele e che o siao a te a te secati ello stesso puto, dividoo il piao i u umeo di egioi defiito da: N eg ( + + )/. ESERCIZIO.7: Veificae, mediate il picipio di iduzioe, l asseto seguete: pemesso che pe quatto puti del piao, di cui te o siao mai allieati, passao sei ette distite, alloa el caso di puti le ette soo date dalla elazioe R ( )/ (7) Ricodiamo, sebbee ovvio, che il umeo miimo di puti ichiesti pe tacciae ua etta è dato da. Petato, la elazioe di cui si deve veificae la validità è da itedesi defiita pe. La dimostazioe mediate il picipio di iduzioe si effettua i due passi:. l euciato è veo pe, così come mostato i figua, otteedo u umeo di ette dato da: R ( )/ ;. l euciato è veo pe, come evideziato i figua a, otteedo u umeo di ette dato da: R ( )/. l euciato è veo pe, come evideziato i figua b, otteedo u umeo di ette dato da: R ( )/ R R R (figua - ) Dall ispezioe delle figue si evice che l aggiuta d u ulteioe puto, che o sia allieato co gli alti già peesisteti, costituisce u icemeto del umeo delle ette pai al umeo dei puti che soo stati collocati atecedetemete all iseimeto dell ultimo puto stesso..0 dimostiamo oa che il fatto che la (7) sia vea pe u ceto >, implica ecessaiamete che sia vea ache pe il suo successoe ( + ). Quato pemesso, osseviamo che: l aggiuta dello ( + )_esimo puto del piao icemeta il umeo di ette già tacciate di ua quatità pai a, così come mostato i figua c. Petato, il umeo complessivo di ette el caso di ( + ) puti è dato da: R 0 5 R + ( + ) (figua - a) (figua - c) R ( ) da cui si ottiee la elazioe: Ma l espessioe otteuta coicide co il secodo membo della citata elazioe (7) i cui (+) sostituisce, ovveo: (figua - b)

7 ( + ) ( ) ( + ) ( + ) ( + ) ( + ) Risultao così veificate le due codizioi stabilite dall euciato del Picipio di Iduzioe, pe tato esta dimostata la validità dell asseto. ESERCIZIO.8: Veificae, mediate il picipio di iduzioe, l asseto seguete: pe ogi > è vea la disuguagliaza > + (8) La dimostazioe mediate il picipio di iduzioe si effettua i due passi:. l euciato è veo pe, ed è baale veificae che: > + ; ovveo: 9 > 7;. dimostiamo oa che il fatto che la (8) sia vea pe u ceto >, implica ecessaiamete che sia vea ache pe il suo successoe ( + ). Quato pemesso, osseviamo che: ( + ) + + > ( + ) + + > ( + ) + Poiché pe ipotesi deve essee >, saà veo, a maggio agioe, che: >. Cosideado quato detto, si ottiee la seguete disuguagliaza: ( + ) + + > ( + ) + > ( + ) + Ma l espessioe otteuta coicide co la elazioe assegata (8) ella quale la scittua (+) sostituisce. Risultao, alloa, veificate le due codizioi stabilite dall euciato del Picipio di Iduzioe, petato esta dimostata la validità dell asseto, pe ogi > isulta vea la disuguagliaza > +. ESERCIZIO.9: Veificae, mediate il picipio di iduzioe, l asseto seguete: pe ogi > è vea la disuguagliaza > (9) La dimostazioe mediate il picipio di iduzioe si effettua i due passi:. l euciato è veo pe 5, ed è baale veificae che: 5 > 5 ; ovveo: > 5;. dimostiamo oa che il fatto che la (9) sia vea pe u ceto >, implica ecessaiamete che sia vea ache pe il suo successoe ( + ). Atteso quato pemesso, si ossevi che, moltiplicado pe ambo i membi della (9) si ottiee: ( + ) ( + ) > > > + Ricoedo alla posizioe, già veificata pe ogi > ell esecizio pecedete, > +, si ottiee la elazioe seguete: ( + ) ( + ) > + > + ( + ) > ( + ) Ma l espessioe otteuta coicide co la elazioe assegata (9) ella quale la scittua (+) sostituisce. Risultao, così, veificate le due codizioi stabilite dall euciato del Picipio di Iduzioe, petato esta dimostata la validità dell asseto, pe ogi > isulta vea la disuguagliaza >. ESERCIZIO.0: Dimostae, mediate il picipio di iduzioe, la posizioe seguete: Pe ogi, la somma dei temii elativi alla seguete elazioe vale:

8 (... ( ) + ) ( + ). l euciato è veo pe ; ifatti è:. dimostiamo oa che se l euciato è veo pe u ceto, alloa è veo ache pe ( + ). Se: (... ( ) + ) ( + ) alloa, è pue vea la elazioe di seguito ipotata: ( + )( + ) ( + ) + ( + )( + ) + ( + )( + ) + ( + )( + )( + ) ( + ) ( + ) + ( + ) ( + ) Ma l espessioe otteuta coicide co il secodo membo della citata elazioe (0) i cui (+) sostituisce ; ifatti: (0) ( + ) ( + ) ( + ) ( + + ) ( + + ) ( + ) ( + ) ( + ) ( + ) Soo così soddisfatte le codizioi imposte dal picipio di iduzioe e, petato, la elazioe isulta dimostato. Se accettiamo il picipio di iduzioe matematica dobbiamo cocludee che la (0) è vea pe tutti gli. ESERCIZIO.: Dimostae, mediate il picipio di iduzioe, che pe ogi, vale la posizioe seguete:. l euciato è veo pe ; ifatti è: k. dimostiamo oa che se l euciato è veo pe u ceto, alloa è veo ache pe ( + ). Se: ( ) alloa, è pue vea la elazioe di seguito ipotata:

9 + + ( + ) ( + ) ) + Ma l espessioe otteuta coicide co il secodo membo della citata elazioe () i cui (+) sostituisce ; ifatti: ( + ) Soo così soddisfatte le codizioi imposte dal picipio di iduzioe e, petato, la elazioe isulta dimostata. Se accettiamo il picipio di iduzioe matematica dobbiamo cocludee che la () è vea pe tutti gli. ESERCIZIO.: Dimostae, mediate il picipio di iduzioe, che, h N, vale la posizioe seguete: + h h 0. l euciato è veo pe 0; ifatti è: 0+ 0 l euciato è veo pe ; ifatti è: + h ( + ) h 0 ( ) ( + ) ( + ). dimostiamo oa che se l euciato è veo pe u ceto, alloa è veo ache pe ( + ). Se: si cosidea la scittua di seguito ipotata: + h () h 0 alloa, discete l ovvia elazioe: + h h h h 0 da cui, pocededo co le ecessaie semplificazioi algebiche, si icava; h ( ) ovveo, semplificado: h h h 0 Ma l espessioe otteuta coicide co il secodo membo della citata elazioe () i cui (+)

10 sostituisce ; ifatti: h h 0 + ( + ) + h h 0 Soo così soddisfatte le codizioi imposte dal picipio di iduzioe e, petato, la elazioe isulta dimostata. Se accettiamo il picipio di iduzioe matematica dobbiamo cocludee che la () è vea, supposto, pe tutti gli itei 0. ESERCIZIO.: Dimostae mediate il picipio d iduzioe matematica che N O vale l asseto seguete:! +! +! ! ( k k!) ( + )!. l euciato è veo pe ; ifatti è:! [( + )! ]! k. dimostiamo oa che se l euciato è veo pe u ceto, alloa è veo ache pe ( + ). Se: si cosidea la scittua di seguito ipotata:! +! +! ! ( + )! ( ) alloa, è pue vea la elazioe che di seguito si ipota co le elative ecessaie elaboazioi:! +! +! ! + ( + ) ( + )! ( + )! + ( + )( + )! ( + )!( + + ) ( + )!( + ) ( + )! Ma l espessioe otteuta coicide co il secodo membo della citata elazioe () i cui (+) sostituisce ; ifatti: ( ) [ ] ( ) +! ( + + )! +! ( + ) Soo così soddisfatte le codizioi imposte dal picipio di iduzioe e, petato, la elazioe isulta dimostata. Se accettiamo il picipio di iduzioe matematica dobbiamo cocludee che la () è vea pe tutti gli.

1. Generalità sull energia potenziale elettrica. Supponiamo di avere un sistema di due cariche elettriche positive, Q

1. Generalità sull energia potenziale elettrica. Supponiamo di avere un sistema di due cariche elettriche positive, Q UNITÀ 9 IL POTENZIALE ELETTRICO. Geealità sull eegia poteziale elettica.. L eegia poteziale elettica di due caiche putifomi e di più caiche putifomi.. Il poteziale elettico. 4. Poteziale elettico geeato

Dettagli

maturità 2015

maturità 2015 wwwmatematicameteit matuità QUETIONIO Detemiae l esessioe aalitica della fuzioe =f saedo ce la etta =-+ è tagete al gafico di f el secodo quadate e ce f =- + Dimostae ce il volume del toco di coo è esesso

Dettagli

Principio di induzione: esempi ed esercizi

Principio di induzione: esempi ed esercizi Pricipio di iduzioe: esempi ed esercizi Pricipio di iduzioe: Se ua proprietà P dipedete da ua variabile itera vale per e se, per ogi vale P P + allora P vale su tutto Variate del pricipio di iduzioe: Se

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MODELLI SCHEDA DI LAVORO 1 La edita fiaziaia U ispamiatoe, alla fie di ogi ao, vesa ua ata R di 6000 a ua baca che la capitalizza a u tasso d iteesse auo i del 3,5% Il motate M matuato alla fie

Dettagli

Aritmetica 2016/2017 Esercizi svolti in classe Seconda lezione

Aritmetica 2016/2017 Esercizi svolti in classe Seconda lezione Aritmetica 06/07 Esercizi svolti i classe Secoda lezioe Dare ua formula per 3 che o coivolga sommatorie Dato che sappiamo che ( + e ( + ( + 6 vogliamo esprimere 3 mediate, e poliomi i U idea possibile

Dettagli

1. L irraggiamento è la trasmissione di energia termica per opera delle onde elettromagnetiche.

1. L irraggiamento è la trasmissione di energia termica per opera delle onde elettromagnetiche. Il poblema del copo eo: etae el meito pe capie G.L. Michelutti IRRAGGIAMNO. L iaggiameto è la tasmissioe di eegia temica pe opea delle ode elettomagetiche.. Quado ua caica q subisce u acceleazioe a, essa

Dettagli

MATEMATICA DEL DISCRETO elementi di calcolo combinatorio. anno acc. 2009/2010

MATEMATICA DEL DISCRETO elementi di calcolo combinatorio. anno acc. 2009/2010 elemeti di calcolo combiatorio ao acc. 2009/2010 Cosideriamo u isieme fiito X. Chiamiamo permutazioe su X u applicazioe biuivoca di X i sè. Ad esempio, se X = {a, b, c}, le permutazioi distite soo 6 e

Dettagli

AUTOVALORI ED AUTOVETTORI DI UNA MATRICE

AUTOVALORI ED AUTOVETTORI DI UNA MATRICE AUTOVALORI ED AUTOVETTORI DI UNA MATRICE TEOREMA: Un elemento di K è un autovaloe pe una matice A, di odine n, se e solo se, indicata con I la matice identità di odine n, isulta: det( A I) Il deteminante

Dettagli

Equazioni e disequazioni irrazionali

Equazioni e disequazioni irrazionali Equazioni e disequazioni iazionali 8 81 Equazioni iazionali con un solo adicale Definizione 81 Un equazione si dice iazionale quando l incognita compae sotto il segno di adice Analizziamo le seguenti equazioni:

Dettagli

P10 CONVERTITORI A/D E D/A

P10 CONVERTITORI A/D E D/A P0 CONVETITOI A/D E D/A P0. Calcolae l itevallo di quatizzazioe LSB, la isoluzioe e l eoe massimo di quatizzazioe ε di u covetitoe A/D co 8 bit di uscita e valoe massimo della tesioe d igesso V 4 V. Stabilie

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

Sulle medie di due e di n numeri.

Sulle medie di due e di n numeri. di Guido Caolla 1 Sulle medie di due e di umei. Suto. Dappima si espoe u teoema sui medi di due umei e si peseta ua costuzioe gafica pe sei medi di due segmeti. Si itoducoo i cocetti delle medie logaitmica

Dettagli

PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA. A. Induzione matematica: Introduzione

PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA. A. Induzione matematica: Introduzione PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA CHU WENCHANG A Iduzioe matematica: Itroduzioe La gra parte delle proposizioi della teoria dei umeri dà euciati che coivolgoo i umeri aturali; per esempio

Dettagli

1. Tra angoli e rettangoli

1. Tra angoli e rettangoli . Tra agoli e rettagoli Attività : il foglio A4 e le piegature Predi u foglio di carta A4 e piegalo a metà. Cota di volta i volta quati rettagoli si ottegoo piegado a metà più volte il foglio. Immagia

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

Progetto Matematica in Rete - Numeri naturali - I numeri naturali

Progetto Matematica in Rete - Numeri naturali - I numeri naturali I umeri aturali Quali soo i umeri aturali? I umeri aturali soo : 0,1,,3,4,5,6,7,8,9,,11 I umeri aturali hao u ordie cioè dati due umeri aturali distiti a e b si può sempre stabilire qual è il loro ordie

Dettagli

Successioni e Progressioni

Successioni e Progressioni Successioi e Pogessioi Ua successioe è ua sequeza odiata di umei appateeti ad u isieme assegato: ad esempio, si possoo avee successioi di umei itei, azioali, eali, complessi Il pimo elemeto della sequeza

Dettagli

Distribuzioni doppie

Distribuzioni doppie Distibuzioi doppie Quado vegoo osideate ogiutamete due oloe di ua matie di dati si ha ua distibuzioe doppia disaggegata (o uitaia). Si tatta dell eleazioe delle modalità di due aattei ( X e Y ) ossevate

Dettagli

Lezione 22. Fattorizzazione di ideali.

Lezione 22. Fattorizzazione di ideali. Lezioe Peequisiti: Lezioi 0, Fattoizzazioe di ideali Teoema Sia A u domiio di Dedekid, e sia I u suo ideale popio o ullo Alloa esistoo uici ideali pimi o ulli P,, P a due a due distiti ed uici umei itei

Dettagli

Appunti complementari per il Corso di Statistica

Appunti complementari per il Corso di Statistica Apputi complemetari per il Corso di Statistica Corsi di Laurea i Igegeria Edile e Tessile Ilia Negri 24 settembre 2002 1 Schemi di campioameto Co il termie campioameto si itede l operazioe di estrazioe

Dettagli

Il teorema di Gauss e sue applicazioni

Il teorema di Gauss e sue applicazioni Il teoema di Gauss e sue applicazioi Cocetto di flusso Cosideiamo u campo uifome ed ua supeficie piaa pepedicolae alle liee di campo. Defiiamo flusso del campo attaveso la supeficie la uatità : = (misuata

Dettagli

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge.

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge. Le successioi A parole ua successioe é u isieme ifiito di umeri disposti i u particolare ordie. Piú rigorosamete, ua successioe é ua legge che associa ad ogi umero aturale u altro umero (ache o aturale):

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57 Tracce di soluzioi di alcui esercizi di matematica - gruppo 42-57 4. Limiti di successioi Soluzioe dell Esercizio 42.. Osserviamo che a = a +6 e duque la successioe prede valori i {a,..., a 6 } e ciascu

Dettagli

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride?

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride? Calcolo combiatorio sempi Qual è il umero delle badiere tricolori a righe verticali che si possoo formare co i 7 colori dell iride? Dobbiamo calcolare il umero delle disposizioi semplici di 7 oggetti di

Dettagli

TEOREMA DI GAUSS PER IL CAMPO ELETTROSTATICO. Premessa:

TEOREMA DI GAUSS PER IL CAMPO ELETTROSTATICO. Premessa: TORMA DI GAU PR IL CAMPO LTTROTATICO Pemessa: Fio ad oa abbiamo studiato le caiche feme, seza coeti. La paola stessa elettostatiche pesume che le caiche siao statiche. Defiizioe di flusso di u vettoe attaveso

Dettagli

Esercizi sul principio di induzione

Esercizi sul principio di induzione Esercitazioi di Aalisi I, Uiversità di Trieste, lezioe del 0/0/008 Esercizi sul pricipio di iduzioe Esercizio Dimostrare per iduzioe che + + + ( + ), Risoluzioe Le dimostrazioi di ua proprietà P() per

Dettagli

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

Tutorato di Probabilità 1, foglio I a.a. 2007/2008

Tutorato di Probabilità 1, foglio I a.a. 2007/2008 Tutorato di Probabilità, foglio I a.a. 2007/2008 Esercizio. Siao A, B, C, D eveti.. Dimostrare che P(A B c ) = P(A) P(A B). 2. Calcolare P ( A (B c C) ), sapedo che P(A) = /2, P(A B) = /4 e P(A B C) =

Dettagli

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri.

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri. Laboratorio di Matematica, A.A. 009-010; I modulo; Lezioi II e III - schema. Limiti e isiemi aperti; SB, Cap. 1 Successioi di vettori; SB, Par. 1.1, pp. 3-6 Itori sferici aperti. Nell aalisi i ua variabile

Dettagli

Prova scritta finale 22 giugno Istituzioni di Fisica della Materia Prof. Lorenzo Marrucci anno accademico

Prova scritta finale 22 giugno Istituzioni di Fisica della Materia Prof. Lorenzo Marrucci anno accademico ova scitta fiale giugo 006 Istituzioi di Fisica della Mateia of. oezo Maucci ao accademico 005-006 Tempo a disposizioe: 3 oe Uso degli apputi o di libi: NON AMMESSO uso della calcolatice: AMMESSO Nota:

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

Il Teorema di Markov. 1.1 Analisi spettrale della matrice di transizione. Il teorema di Markov afferma che

Il Teorema di Markov. 1.1 Analisi spettrale della matrice di transizione. Il teorema di Markov afferma che 1 Il Teorema di Marov 1.1 Aalisi spettrale della matrice di trasizioe Il teorema di Marov afferma che Teorema 1.1 Ua matrice di trasizioe regolare P su u isieme di stati fiito E ha ua uica distribuzioe

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO 0. Itroduzioe Oggetto del calcolo combiatorio è quello di determiare il umero dei modi mediate i quali possoo essere associati, secodo prefissate regole, gli elemeti di uo stesso

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f ( x; ϑ) θ = costate icogita Qual è il valore di θ? E verosimile

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

3. Calcolo letterale

3. Calcolo letterale Parte Prima. Algera 1) Moomi Espressioe algerica letterale 42 Isieme di umeri relativi, talui rappresetati da lettere, legati fra loro da segi di operazioi. Moomio Espressioe algerica che o cotiee le operazioi

Dettagli

Precorso di Matematica. Parte IV : Funzioni e luoghi geometrici

Precorso di Matematica. Parte IV : Funzioni e luoghi geometrici Facoltà di Igegeria Precorso di Matematica 1. Equazioi e disequazioi Parte IV : Fuzioi e luoghi geometrici Richiamiamo brevemete la ozioe di fuzioe, che sarà utilizzato i quest ultima parte del precorso.

Dettagli

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI ALGEBRA I MODULO PROF. VERARDI - ESERCIZI Sezioe 1 NUMERI NATURALI E INTERI 2 1.1. Si dimostri per iduzioe la formula: N, k 2 "1( * " 3 ) " 3k +1(. 3 1.2. A) Si dimostri che per ogi a,b N +, N +, se a

Dettagli

Unità Didattica N 32 Grandezze geometriche omogenee e loro misura

Unità Didattica N 32 Grandezze geometriche omogenee e loro misura Uità Didattica N 3 Uità Didattica N 3 01) Classi di gradezze omogeee 0) Multipli e sottomultipli di ua gradezza geometrica 03) Gradezze commesurabili ed icommesurabili 04) Rapporto di due gradezze 05)

Dettagli

SULLE PARTIZIONI DI UN INSIEME

SULLE PARTIZIONI DI UN INSIEME Claudia Motemurro Ricordiamo la SULLE PRTIZIONI DI UN INSIEME Defiizioe: Ua partizioe di u isieme è ua famiglia { sottoisiemi o vuoti di X tali che: - X è l uioe degli isiemi X i (i I ), cioè X = U i X

Dettagli

Diottro sferico. Capitolo 2

Diottro sferico. Capitolo 2 Capitolo 2 Diottro sferico Si idica co il termie diottro sferico ua calotta sferica che separa due mezzi co idice di rifrazioe diverso. La cogiugete il cetro di curvatura C della calotta co il vertice

Dettagli

Cenni di topologia di R

Cenni di topologia di R Cei di topologia di R. Sottoisiemi dei umeri reali Studieremo le proprietà dei sottoisiemi dei umeri reali, R, che hao ad esempio la forma: = (, ) (,) 6 8 = [,] { ;6;8} { } = (, ) (,) [, + ) Defiizioe:

Dettagli

(1 2 3) (1 2) Lezione 10. I gruppi diedrali.

(1 2 3) (1 2) Lezione 10. I gruppi diedrali. Lezioe 0 Prerequisiti: Simmetrie di poligoi regolari. Gruppi di permutazioi. Cetro di u gruppo. Cetralizzate di u elemeto di u gruppo. Riferimeto al testo: [PC] Sezioe 5.4 I gruppi diedrali. Ogi simmetria

Dettagli

Radicali. Esistenza delle radici n-esime: Se n è pari: ogni numero reale non negativo (cioè positivo o nullo) ha esattamente una radice n-esima in R.

Radicali. Esistenza delle radici n-esime: Se n è pari: ogni numero reale non negativo (cioè positivo o nullo) ha esattamente una radice n-esima in R. Radicali Radici quadrate Si dice radice quadrata di u umero reale a, e si idica co a, il umero reale positivo o ullo (se esiste) che, elevato al quadrato, dà come risultato a. Esisteza delle radici quadrate:

Dettagli

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma 1 Serie di poteze È stato dimostrato che la serie geometrica x (1.1) coverge se e solo se la ragioe x soddisfa la disuguagliaza 1 < x < 1. I realtà c è covergeza assoluta i ] 1, 1[. Per x 1 la serie diverge

Dettagli

Sottospazi associati a matrici e forma implicita. Sottospazi associati a una matrice Dimensione e basi con riduzione Sottospazi e sistemi. Pag.

Sottospazi associati a matrici e forma implicita. Sottospazi associati a una matrice Dimensione e basi con riduzione Sottospazi e sistemi. Pag. Spazi vettoriali Sottospazi associati a ua matrice Dimesioe e basi co riduzioe Sottospazi e sistemi 2 Pag. 1 2006 Politecico di Torio 1 Spazi delle righe e delle coloe Sia A M m, ua matrice m x. Allora

Dettagli

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni A Alcui cocetti di statistica: medie, variaze, covariaze e regressioi Esistoo svariati modi per presetare gradi quatità di dati. Ua possibilità è presetare la cosiddetta distribuzioe, raggruppare cioè

Dettagli

a'. a' e b n y se e solo se x, y, divisi per n danno lo stesso resto.

a'. a' e b n y se e solo se x, y, divisi per n danno lo stesso resto. E.5. Cogrueze Nella sezioe D. (esempio (d)) abbiamo itrodotto la relazioe di cogrueza modulo : dati due umeri iteri x, y e u umero itero positivo diciamo che x è cogruo a y modulo (i formula x y se è u

Dettagli

In questo capitolo approfondiremo le nostre conoscenze su sequenze e collezioni,

In questo capitolo approfondiremo le nostre conoscenze su sequenze e collezioni, Cotare sequeze e collezioi Coteuto Sequeze e collezioi di elemeti distiti Sequeze e collezioi arbitrarie 3 Esercizi I questo capitolo approfodiremo le ostre coosceze su sequeze e collezioi, acquisedo gli

Dettagli

1 Congruenze. Definizione 1.1. a, b, n Z n 2, allora definiamo a b (mod n) se n a b.

1 Congruenze. Definizione 1.1. a, b, n Z n 2, allora definiamo a b (mod n) se n a b. 1 Cogrueze Defiizioe 1.1. a, b, Z 2, allora defiiamo a b (mod ) se a b. Proposizioe 1.2. 2 la cogrueza mod è ua relazioe di equivaleza su Z. a a () perché a a a b () b a () a b () b c () a b b c a c =

Dettagli

1 Congruenze. Definizione 1.1. Siano a, b, n Z con n 2, definiamo a b (mod n) se n a b.

1 Congruenze. Definizione 1.1. Siano a, b, n Z con n 2, definiamo a b (mod n) se n a b. 1 Cogrueze Defiizioe 1.1. Siao a, b, Z co 2, defiiamo a b (mod ) se a b. Proposizioe 1.2. 2 la cogrueza mod è ua relazioe di equivaleza su Z. a a () perché a a a b () b a () a b () b c () a b b c a c =

Dettagli

Lezione 4. Gruppi di permutazioni

Lezione 4. Gruppi di permutazioni Lezioe 4 Prerequisiti: Applicazioi tra isiemi Lezioi e Gruppi di permutazioi I questa lezioe itroduciamo ua classe ifiita di gruppi o abeliai Defiizioe 41 ia X u isieme o vuoto i dice permutazioe su X

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

Corso di Istituzioni di Matematiche I, Facoltà di Architettura (Roma Tre) Roma, 3 Novembre Le successioni. Versione preliminare

Corso di Istituzioni di Matematiche I, Facoltà di Architettura (Roma Tre) Roma, 3 Novembre Le successioni. Versione preliminare Corso di Istituzioi di Matematiche I, Facoltà di Architettura (Roma Tre) Roma, 3 Novembre 2005 Le successioi Versioe prelimiare Uo dei cocetti fodametali dell aalisi modera é il cocetto di limite. Per

Dettagli

La base naturale dell esponenziale

La base naturale dell esponenziale La base aturale dell espoeziale Beiamio Bortelli 7 aprile 007 Il problema I matematica, ci è stato detto, la base aturale della fuzioe espoeziale è il umero irrazioale: e =, 7888... Restao, però, da chiarire

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

Elementi di calcolo combinatorio

Elementi di calcolo combinatorio Appedice A Elemeti di calcolo combiatorio A.1 Disposizioi, combiazioi, permutazioi Il calcolo combiatorio si occupa di alcue questioi iereti allo studio delle modalità secodo cui si possoo raggruppare

Dettagli

Incontri Olimpici 2015 Udine, ottobre Combinatoria e Probabilità Vincenza Fico (Liceo Sc. Rummo di Benevento)

Incontri Olimpici 2015 Udine, ottobre Combinatoria e Probabilità Vincenza Fico (Liceo Sc. Rummo di Benevento) Uioe Matematica Italiaa Pogetto Olimpiadi della Matematica Icoti Olimpici 20 Udie, 8-2 ottobe 20 Combiatoia e Pobabilità Viceza Fico (Liceo Sc. Rummo di Beeveto) ezafico@libeo.it Abstact Agometi classici

Dettagli

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4 Quarto Compito di Aalisi Matematica Corso di laurea i Iformatica, corso B 5 Luglio 016 Soluzioi Esercizio 1 Determiare tutti i umeri complessi z tali che z = 3 4 i. Soluzioe. Scrivedo z = a + bi, si ottiee

Dettagli

LE MISURE DI TENDENZA CENTRALE

LE MISURE DI TENDENZA CENTRALE STATISTICA DESCRITTIVA LE MISURE DI TENDENZA CENTRALE http://www.biostatistica.uich.itit OBIETTIVO Esempio: Nella tabella seguete soo riportati i valori del tasso glicemico rilevati su 0 pazieti: Idividuare

Dettagli

Stima della media di una variabile X definita su una popolazione finita

Stima della media di una variabile X definita su una popolazione finita Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe

Dettagli

min z wz sub F(z) = y (3.1)

min z wz sub F(z) = y (3.1) 37 LA FUNZIONE DI COSTO 3.1 Miimizzazioe dei costi Riprediamo il problema della massimizzazioe dei profitti del capitolo precedete e suppoiamo ora che l'impresa coosca il livello di output che deve produrre;

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

( ) ( ) ( )( ) PROBLEMA Fissiamo un sistema di riferimento in cui A ( 0;0) C x y : siano α l angolo , ( ; ) l angolo ˆ

( ) ( ) ( )( ) PROBLEMA Fissiamo un sistema di riferimento in cui A ( 0;0) C x y : siano α l angolo , ( ; ) l angolo ˆ Soluzioe a cura di: lessadra iglio, Liceo lassico Vittorio lfieri, Torio Giuliaa ru, Liceo Scietifico Isaac Newto, hivasso (TO) laudia hau, IRRE Val d osta toella uppari, Liceo Scietifico Galileo Ferraris,

Dettagli

Esame di Stato di Istituto tecnico Industriale A.S. 2009/2010

Esame di Stato di Istituto tecnico Industriale A.S. 2009/2010 Esame di Stato di stituto tecico dustiale A.S. 009/010 diizzo: Elettotecica e automazioe Tema di: Elettotecica Ua liea elettica tifase, avete esisteza di, e eattaza di 6,0, alimeta a 400 V - 50 Hz u motoe

Dettagli

di Enzo Zanghì pag 1 applichiamo il teorema di Pitagora e otteniamo:

di Enzo Zanghì pag 1 applichiamo il teorema di Pitagora e otteniamo: m@th_cone di Enzo Zanghì pag Distanza di due punti Pe deteminae la distanza ta i punti ( ; ) ( ; ) applichiamo il teoema di Pitagoa e otteniamo: = ( ) + ( ) Punto medio di un segmento M O M + Osseviamo

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria aalitica: rette e piai Coordiate polari Cambiameti di riferimeto el piao Cambiameti di riferimeto i geerale Isometrie Simmetrie Isometrie el piao Isometrie ello spazio 2 2006 Politecico di Torio

Dettagli

Istituzioni di Matematiche (CH-CI-MT) V o foglio di esercizi

Istituzioni di Matematiche (CH-CI-MT) V o foglio di esercizi Istituzioi di Matematiche (CH-CI-MT) V o foglio di esercizi ESERCIZIO. Si determiio le soluzioi dell equazioe x x + 5 = 0. Idicata co z 0 la soluzioe co parte immagiaria positiva, si disegi el piao di

Dettagli

ESERCIZIO n.2. y B. rispetto alle rette r e t indicate in Figura. GA#2 1

ESERCIZIO n.2. y B. rispetto alle rette r e t indicate in Figura. GA#2 1 ESERCZO n. Data la sezione a T ipotata in Figua, deteminae: a) gli assi pincipali centali di inezia; ) l ellisse pincipale centale di inezia; c) il nocciolo centale di inezia; d) i momenti di inezia e

Dettagli

RAPPRESENTAZIONE ANALITICA DEI PUNTALI OGIVALI PER PROIETTILI

RAPPRESENTAZIONE ANALITICA DEI PUNTALI OGIVALI PER PROIETTILI M. G. BUSATO RAPPRESENTAZIONE ANALITIA DEI PUNTALI OGIVALI PER PROIETTILI mgbstudio.et SOMMARIO I umerose applicazioi balistiche, ed i particolare per calcolare la resisteza aerodiamica di u proiettile,

Dettagli

CAPITOLO VIII CONDIZIONI DI FUNZIONAMENTO ANORMALI DELL IMPIANTO ELETTRICO: CORTO CIRCUITO

CAPITOLO VIII CONDIZIONI DI FUNZIONAMENTO ANORMALI DELL IMPIANTO ELETTRICO: CORTO CIRCUITO CAPOO V CODZO D FUZOAMEO AORMA DE MPAO EERCO: CORO CRCUO 1. Geealità 'impiato che si cosidea (Fig. V.1) è costituito da ua liea i M, u tasfomatoe M/B che alimeta u sistema di sbae i bassa tesioe da cui

Dettagli

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss 1 Appunti su agomenti monogafici pe il coso di FM1 Pof. Pieluigi Contucci Gavità e Teoema di Gauss Vogliamo dimostae, a patie dalla legge di gavitazione univesale che il campo gavitazionale geneato da

Dettagli

Lezione 5. Gli anelli

Lezione 5. Gli anelli Lezioe 5 Prerequisiti: Lezioe, Lezioe 3. Gli aelli I questa lezioe diamo il secodo esempio di struttura algebrica astratta, che si aggiuge a quella di gruppo, defiita ella Lezioe. Questa uova struttura,

Dettagli

Il candidato risolva uno dei due problemi e 4 quesiti del questionario. la sua primitiva tale che ( 1) f ( 1)

Il candidato risolva uno dei due problemi e 4 quesiti del questionario. la sua primitiva tale che ( 1) f ( 1) Sessioe ordiaria all estero caledario australe 005 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ E DELLA RICERCA SCUOLE ITALIANE ALL ESTERO ESAMI DI STATO DI LICEO SCIENTIFICO Sessioe Ordiaria 005 Caledario

Dettagli

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii)

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii) Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi : Riferimeti: R.Adams, Calcolo Differeziale. -Si cosiglia vivamate di fare gli esercizi del testo. Cap. 9.5 - Serie di poteze,

Dettagli

LIMITI DI SUCCESSIONI

LIMITI DI SUCCESSIONI LIMITI DI SUCCESSIONI Formalmete, ua successioe di elemeti di u dato isieme A è u'applicazioe dall'isieme N dei umeri aturali i A: L'elemeto a della successioe è quidi l'immagie a = f) del umero secodo

Dettagli

Esercitazione parte 1 Medie e medie per dati raggruppati. Esercitazione parte 2 - Medie per dati raggruppati

Esercitazione parte 1 Medie e medie per dati raggruppati. Esercitazione parte 2 - Medie per dati raggruppati Esercitazioe parte Medie e medie per dati raggruppati el file dati0.xls soo coteute alcue distribuzioi di dati. Calcolare di ogua. Media aritmetica o Mostrare, co u calcolo automatico, che la somma degli

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO Che cosa sigifica cotare Tutti coosciamo la successioe dei umeri iteri Naturali N = {0, 1,,, } si tratta di ua struttura metale fodametale, chiaramete presete alla ostra ituizioe che

Dettagli

STUDIO DEL LANCIO DI 3 DADI

STUDIO DEL LANCIO DI 3 DADI Leoardo Latella STUDIO DEL LANCIO DI 3 DADI Il calcolo delle probabilità studia gli eveti casuali probabili, cioè quegli eveti che possoo o o possoo verificarsi e che dipedoo uicamete dal caso. Tale studio

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 21 Misura della dipedeza di u carattere

Dettagli

Radici, potenze, logaritmi in campo complesso.

Radici, potenze, logaritmi in campo complesso. SOMMARIO NUMERI COMPLESSI... Formula di Eulero... Coiugato di u umero complesso... 3 Poteza -esima di u umero complesso z (formula di De Moivre... 3 Radice -esima di z... 3 Osservazioi... Logaritmo di

Dettagli

Interazioni Elettrodeboli. Lezione n. 8. Simmetrie e leggi di conservazione: Teorema di Noether Il campo scalare complesso

Interazioni Elettrodeboli. Lezione n. 8. Simmetrie e leggi di conservazione: Teorema di Noether Il campo scalare complesso Iteazioi Elettodeboli pof. Facesco Ragusa Uivesità di Milao Lezioe. 8 8.1.16 Simmetie e leggi di cosevazioe: Teoema di Noethe Il campo scalae complesso ao accademico 16-17 Calcolo dell Hamiltoiaa Pe cotiuae

Dettagli

Preparazione al corso di statistica Prof.ssa Cerbara

Preparazione al corso di statistica Prof.ssa Cerbara Preparazioe al corso di statistica Prof.ssa Cerbara Esistoo molti isiemi umerici, ciascuo co caratteristiche be precise. Alcui importatissimi isiemi umerici soo: N: isieme dei umeri aturali, cioè tutti

Dettagli

La parabola come luogo geometrico

La parabola come luogo geometrico La paabola come luogo geometico Definizioni e pime popietà Definizioni. Si chiama paabola il luogo ei punti equiistanti a un punto, etto fuoco, e a una etta etta iettice.. Il punto ella paabola che ha

Dettagli

Teorema delle progressioni di numeri primi consecutivi con distanza sei costante

Teorema delle progressioni di numeri primi consecutivi con distanza sei costante Teorema delle progressioi di umeri primi cosecutivi co distaza sei costate A cura del Gruppo Eratostee - http://www.gruppoeratostee.com/) Co la collaborazioe di Eugeio Amitrao ( http://www.atuttoportale.it/)

Dettagli

Esercizi di econometria: serie 2

Esercizi di econometria: serie 2 Esercizi di ecoometria: serie Esercizio Per quali delle segueti uzioi di desità cogiuta le variabili casuali ed soo idipedeti?......3.4.5..5 (a) (b) 3 4....3.6.9..4...5..5 3.. 3.8..4.6 (c) (d) Nel caso

Dettagli

Analisi Matematica I

Analisi Matematica I Uiversità di Pisa - orso di Laurea i Igegeria Edile-rchitettura alisi Matematica I Pisa, febbraio Domada La derivata della fuzioe f) log ) si è ) log )si B) log )cos ) log ) si cos loglog ) + si ) log

Dettagli

Lo schema seguente spiega come passare da una equazione all altra e al grafico della circonferenza. Svolgere i calcoli.

Lo schema seguente spiega come passare da una equazione all altra e al grafico della circonferenza. Svolgere i calcoli. D4. Ciconfeenza D4.1 Definizione di ciconfeenza come luogo di punti Definizione: una ciconfeenza è fomata dai punti equidistanti da un punto detto cento. La distanza (costante) è detta aggio. Ci sono due

Dettagli

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA Politecico di Torio 7 Fuzioi Radice FUNZIONI RADICE RICHIAMI DI TEORIA f ( x) = x dom f Im f grafici. = = =7 =9. dispari R R -. - -. - - -. Grafici di fuzioi radici co pari pari [,+ ) [,+ ).. = = =6 =8

Dettagli

Pseudo codice. Esempio - III. Struttura sequenziale

Pseudo codice. Esempio - III. Struttura sequenziale Pseudo codice Pseudo codice Paolo Biso Fodaeti di Ifoatica 1 A.A. 20004 Uivesità di Padova liguaggio testuale ix di liguaggio atuale ed eleeti liguistici la cui e soo be defiite ed uivoche eleeti base

Dettagli

Istituzioni di Analisi Superiore Esercizi

Istituzioni di Analisi Superiore Esercizi Istituzioi di Aalisi Superiore Esercizi G.P.Leoardi 13 aprile 2010 Nota: gli esercizi delle sezioi 2 4 soo stati tratti i buoa parte da ua raccolta di esercizi di Aalisi Fuzioale ad opera di H.Brezis e

Dettagli

LICEO delle SCIENZE UMANE B. PASCAL

LICEO delle SCIENZE UMANE B. PASCAL LICEO delle SCIENZE UMANE B. PASCAL Prof. Loredaa Maario INDICE 1. Scomposizioe di poliomi 1.1 Raccoglimeto totale a fattor comue..3 1. Raccoglimeto parziale a fattor comue 3 1.3 Triomio scompoibile el

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagia Giovaa Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secodaria di secodo grado UNITÀ CAMPIONE Edizioi del Quadrifoglio à t i U 2 Radicali I questa Uità affrotiamo

Dettagli

A.S ABSTRACT

A.S ABSTRACT ILLUSIONI GEOMETRICHE E NUMERI DI IBONACCI A.S. 00-0 GUGLIELMO SACCO (C) ENRICO IZZO (C) ABSTRACT I questo articolo vegoo messe i luce alcue "illusioi" geometriche elle quali giocao u ruolo chiave le proprietà

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1 Corso itegrato di Matematica per le scieze aturali ed applicate Materiale itegrativo Paolo Baiti Lorezo Freddi Dipartimeto di Matematica e Iformatica, Uiversità di Udie, via delle Scieze 206, 3300 Udie,

Dettagli

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con Calcolo Combiatorio Adolfo Scimoe pag 1 Calcolo combiatorio Cosideriamo u isieme di oggetti di atura qualsiasi. Idicheremo questi oggetti co a1 a2... a. Co questi oggetti si voglioo formare dei gruppi

Dettagli

Lezione 10 - Tensioni principali e direzioni principali

Lezione 10 - Tensioni principali e direzioni principali Lezioe 10 - Tesioi pricipali e direzioi pricipali ü [A.a. 2011-2012 : ultima revisioe 23 agosto 2011] I questa lezioe si studiera' cio' che avviee alla compoete ormale di tesioe s, al variare del piao

Dettagli

Esercizi sui limiti di successioni

Esercizi sui limiti di successioni AM0 - AA 03/4 ALFONSO SORRENTINO Esercizi sui iti di successioi Esercizio svolto a) Usado la defiizioe di ite, dimostare che: + 3 si π cos e ) e b) 0 Soluzioe Comiciamo da a) Vogliamo dimostrare che: ε

Dettagli